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Abstract: In 2013, Bai and Zhang constructed modulus-based synchronous multisplitting methods
for linear complementarity problems and analyzed the corresponding convergence. In 2014, Zhang
and Li studied the weaker convergence results based on linear complementarity problems. In 2008,
Zhang et al. presented global relaxed non-stationary multisplitting multi-parameter method by
introducing some parameters. In this paper, we extend Bai and Zhang’s algorithms and analyze global
modulus-based synchronous multisplitting multi-parameters TOR (two parameters overrelaxation)
methods. Moverover, the convergence of the corresponding algorithm in this paper are given when
the system matrix is an H+-matrix.
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1. Introduction

Consider the linear complementarity problems LCP(q, A), for finding a pair of real vectors r and
z ∈ Rn such that

r = Az + q ≥ 0, z ≥ 0 , zT(Az + q) = 0, (1)

where A = (aij) ∈ Rn×n is the given real matrix and q = (q1, q2, ..., qn)T ∈ Rn is the given real
vector. Here, zT and ≥ denote the transpose of the vector z and the componentwise defined partial
ordering between two vectors, respectively. Now, H+-matrices belong to class of P-matrices and so
play an important rule in the theory of LCP.

The readers may see references [1–4] for many problems in scientific computing and engineering
applications. When the matrix A is special for LCP(q, A), readers may see the references [5–14].
Lately, when LCP(q, A) is an algebra system, some scientist have studied it. Moreover, Bai and
Zhang presented the modulus-based multisplitting iterative methods for LCP(q, A) and analyzed
the convergence based on the corresponding methods in [10,11]. Zhang and Ren generalized the
compatible H-splitting condition to an H-splitting [15]. L generalized modulus-based splitting iterative
method to more general situationi [16]. Zhang et al. studied the wider convergence when system
matrix is an H+-matrix [17–19].

2. Notations and Lemmas

A matrix A = (aij) is called an M-matrix if aij ≤ 0 for i 6= j and A−1 ≥ 0. The comparison matrix
〈A〉 = (αij) of matrix A = (aij) is defined by: αij = |aij|, if i = j; αij = −|aij|, if i 6= j. A matrix A is
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called an H-matrix if 〈A〉 is an M-matrix and is called an H+-matrix if it is an H-matrix with positive
diagonal entries [5,20,21]. Let ρ(A) denote the spectral radius of A, a representation A = M− N is
called a splitting of A when M is nonsingular. Let A and B be M-matrices, if A ≤ B, then A−1 ≥ B−1.
Let A be an H-matrix, and A = D− B, D = diag(A), then ρ(|D|−1|B|) < 1. Moreover, D is nonsingular.
Finally, we define by Rn

+ = {x|x ≥ 0, x ∈ Rn} and denote the nonnegative matrix with entries |aij|
by |A|.

Lemma 1. Let A be an H-matrix. Then A is nonsingular, and |A−1| ≤ 〈A〉−1 [22].

Lemma 2. Let H(1), H(2), ..., H(l)...be a sequence of nonnegative matrices in Rn×n [23]. If there exists a real
number 0 ≤ θ < 1, and a vector ν > 0 in Rn, such that

H(l)ν ≤ θν, l = 1, 2, ...

then ρ(Kl) ≤ θl < 1, where Kl = H(l)H(l−1)...H(1), and therefore lim
l→∞

Kl = 0.

Lemma 3. Let A = (aij) ∈ Zn×n have all positive diagonal entries [24]. A is an M-matrix if and only if
ρ(B) < 1, where B = D−1C, D = diag(A), A = D− C.

Lemma 4. A ∈ Rn×n be an H+-matrix. Then, the LCP(q, A) has a unique solution for any q ∈ Rn[7,9,25].

Lemma 5. Let A = M− N be a splitting of the matrix A ∈ Rn×n, Ω be a positive diagonal matrix, and γ

a positive constant [10]. Then, for the LCP(q, A) the following statements hold true:

(i) if (z, r) is a solution of the LCP(q, A), then x = 1
2 γ(z−Ω−1r) satisfies the implicit fixed-point equation

(Ω + M)x = Nx + (Ω− A)|x| − γq; (2)

(ii) if x satisfies the implicit fixed-point Equation (2), then

z = γ−1(|x|+ x) , r = γ−1Ω(|x| − x) (3)

is a solution of the LCP(q, A).

3. Global Modulus-Based Synchronous Multisplitting Multi-Parameters TOR Methods

Firstly, we will introduce the idea of multisplitting algorithm and the parallel iterative process.
{Mk, Nk, Ek}l

k=1 is a multisplitting of A if

(1) A = Mk − Nk is a splitting for k = 1, 2, ..., l;
(2) Ek ≥ 0 is a nonnegative diagonal matrix, called weighting matrix;

(3)
l

∑
k=1

Ek = I, where I is the identity matrix.

If Ω is a positive diagonal matrix, γ is a positive constant, form Lemma 5, we may find that if x
satisfies the following implicit fixed-point systems,

(Ω + Mk)x = Nkx + (Ω− A)|x| − γq, k = 1, 2, ..., l, (4)

we have,
z = γ−1(|x|+ x) , r = γ−1Ω(|x| − x) (5)

which is a solution of the Equation (1).
Let

A = D− Lk − Fk −Uk, k = 1, 2, ..., l,
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where D = diag(A), Lk and Fk are the strictly lower triangular, and Uk are such that
A = D− Lk − Fk −Uk, then (D − Lk − Fk, Uk, Ek) is a multisplitting of A. With the equivalent
reformulations (4), (5) and TOR method of the Equation (1), we may obtain the global modulus-based
synchronous multisplitting multi-parameters TOR algorithm (GMSMMTOR). Please see the following
Method 1.

Method 1. The GMSMMTOR algorithm for the Equation (1). If (Mk, Nk, Ek)(k = 1, 2, ...l) are the
multisplitting of matrix A ∈ Rn×n. Given an initial value x(0) ∈ Rn for m = 0, 1, ... until the iteration
sequence {z(m)}∞

m=0 ⊂ Rn
+ is convergent, compute z(m+1) ∈ Rn

+ by

z(m+1) =
1
γ
(|x(m+1)|+ x(m+1))

and x(m,k) ∈ Rn according to

x(m+1) = ω
l

∑
k=1

Ekx(m,k) + (1−ω)x(m),

where x(m,k), k = 1, 2, ..., l, are obtained by solving the linear systems:

[αkΩ + D− (βkLk + γkFk)]x(m,k) = [(1− αk)D + (αk − βk)Lk + (αk − γk)Fk + αkUk]x(m)

+αk[(Ω− A)|x(m)| − γq],
k = 1, 2, ..., l,

(6)

respectively.

Remark 1. In this paper, TOR method has more splitting and parameters, so the faster convergence rate can
be obtained by selecting parameters. In Method 1, when αk = α, βk = β, γk = γ, ω = 1, the GMSMMTOR
algorithm reduces to MSMTOR (Modulus-Based Synchronous Multisplitting Two Parameters Overrelaxation
Method) algorithm; when αk = α, βk = β, γk = γ, GMSMMTOR algorithm reduces to GMSMTOR
(Global Modulus-Based Synchronous Multisplitting Two Parameters Overrelaxation Method) algorithm; when
γk = 0, ω = 1, GMSMMTOR algorithm reduces to MSMMAOR (Modulus-Based Synchronous Multisplitting
Multi-Parameters Accelerated Overrelaxation Method) algorithm; when γk = 0, GMSMMTOR algorithm
reduces to GMSMMAOR (Global Modulus-Based Synchronous Multisplitting Multi-Parameters Accelerated
Overrelaxation Method) algorithm; when αk = α, βk = β, γk = 0, ω = 1, GMSMMTOR algorithm reduces to
MSMAOR (Modulus-Based Synchronous Multisplitting Accelerated Overrelaxation Method) algorithm [26];
when αk = α, βk = β, γk = 0, GMSMMTOR algorithm reduces to GMSMAOR (Global Modulus-Based
Synchronous Multisplitting Accelerated Overrelaxation Method) algorithm.

Remark 2. From Table 1, one can find that GMSMMTOR algorithm is the generalization of MSMMAOR
algorithm. Moreover, when selecting proper parameters and Ek, we can get faster convergence rate.

Table 1. The relaxed modulus-based synchronous multisplitting multi-parameter algorithm and the
corresponding convergence.

Method αk, βk, ω Description Ref.

MSMJ αk = 1, βk = 0, ω = 1 Modulus-based synchronous [27]
multisplitting Jacobi algorithm

MSMGS αk = βk = 1, ω = 1 Modulus-based synchronous [27]
multisplitting Gauss-Seidel algorithm

MSMSOR 0 < α(αk) = β(βk) <
1

ρ(D−1|B|) , ω = 1 Modulus-based synchronous [27]
multisplitting SOR algorithm
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Table 1. Cont.

Method αk, βk, ω Description Ref.

MSMAOR 0 < β(βk) ≤ α(αk) <
1

ρ(D−1|B|) Modulus-based synchronous [27]
multisplitting AOR algorithm

MSMMAOR ω = 1, 0 < βk ≤ αk ≤ 1 or Modulus-based synchronous [17]
0 < βk < 1

ρ(D−1|B|) , 1 < αk < 1
ρ(D−1|B|) multisplitting multi-parameters

AOR algorithm

GMSMMTOR 0 < βk, γk ≤ αk ≤ 1, 0 < ω < 2
1+ρ′

or Global modulus-based this paper

0 < βk, γk < 1
ρ(D−1|B|) , 1 < αk < 1

ρ(D−1|B|) synchronous multisplitting

0 < ω < 2
1+ρ′

multi-parameter TOR algorithm

where ρ
′
= max

1≤k≤l
{1− 2αk + 2αkρε,

2δkρε − 1, 2αkρε − 1}, δk = max{βk, γk}

4. Convergence Analysis

In 2013, based on modulus-based synchronous multisplitting AOR method, Bai and Zhang got
the following Theorem [27].

Theorem 1. Let A ∈ Rn×n be an H+-matrix, with D =diag(A) and B = D − A, and let (Mk, Nk, Ek)

(k = 1, 2, ..., l) and (D − Lk, Uk, Ek)(k = 1, 2, ..., l) be a multisplitting and a triangular multisplitting of
the matrix A, respectively [27]. Assume that γ > 0 and the positive diagonal matrix Ω satisfies Ω ≥ D. If
A = D− Lk −Uk(k = 1, 2, ..., l) satisfies 〈A〉 = D− |Lk| − |Uk|(k = 1, 2, ..., l), then the iteration sequence
{z(m)}∞

m=0 generated by the MSMAOR iteration method converges to the unique solution z∗ of LCP(q, A) for
any initial vector z(0) ∈ Rn

+, provided the relaxation parameters α and β satisfy

0 < β ≤ α <
1

ρ(D−1|B|) .

In 2014, based on modulus-based synchronous multisplitting AOR algorithm, Zhang et al. [17]
obtained Theorem 2.

Theorem 2. Let A ∈ Rn×n be an H+-matrix, with D =diag(A) and B = D − A, and let (Mk, Nk, Ek)

(k = 1, 2, ..., l) and (D − Lk, Uk, Ek)(k = 1, 2, ..., l) be a multisplitting and a triangular multisplitting of
the matrix A, respectively [17]. Assume that γ > 0 and the positive diagonal matrix Ω satisfies Ω ≥ D. If
A = D− Lk −Uk(k = 1, 2, ..., l) satisfies 〈A〉 = D− |Lk| − |Uk|(k = 1, 2, ..., l), then the iteration sequence
{z(m)}∞

m=0 generated by the MSMMAOR iteration method converges to the unique solution z∗ of LCP(q, A)

for any initial vector z(0) ∈ Rn
+, provided the relaxation parameters αk and βk satisfy

0 < βk ≤ αk ≤ 1 or 0 < βk <
1

ρ(D−1|B|) , 1 < αk <
1

ρ(D−1|B|) .

In 2008, based on global relaxed non-stationary multisplitting multi-parameter TOR algorithm
(GRNMMTOR) for the large sparse linear system [26], Zhang, Huang and Gu [28] got the
corresponding theorem:

Theorem 3. Let A be an H-matrix, and for k = 1, 2, ..., l, Lk and Fk be strictly lower triangular matrices [26].
Define the matrix Uk, k = 1, 2, ..., l, such that A = D − Lk − Fk − Uk and assume that we have
〈A〉 = |D| − |Lk| − |Fk| − |Uk| = |D| − |B|. If

0 ≤ βk ≤ γk, 0 ≤ αk ≤ γk, 0 < γk <
2

1 + ρ
, 0 < ω <

2
1 + ργk

,
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then GRNMMTOR method converges for any initial vector x(0), where ρ = ρ(J), J = |D|−1|B|,
ργk = max

1≤k≤α
{|1− γk|+ γkρε}, q(m, k) ≥ 1, m = 0, 1, ..., k = 1, 2, ..., l.

Based on global modulus-based synchronous multisplitting multi-parameter TOR algorithm,
we analyze the wider results of the presented algorithms for LCPs, which is as follows:

Theorem 4. Let A ∈ Rn×n be an H+-matrix, with D =diag(A) and B = D − A, and let (Mk, Nk, Ek)

(k = 1, 2, ..., l) and (D− Lk − Fk, Uk, Ek)(k = 1, 2, ..., l) be a multisplitting and a triangular multisplitting
of the matrix A, respectively. Assume that γ > 0 and the positive diagonal matrix Ω satisfies Ω ≥ D.
If A = D− Lk − Fk −Uk(k = 1, 2, ..., l) satisfies 〈A〉 = D − |Lk| − |Fk| − |Uk|(k = 1, 2, ..., l), then the
iteration sequence {z(m)}∞

m=0 generated by the GMSMMTOR iteration method converges to the unique solution
z∗ of LCP(q, A) for any initial vector z(0) ∈ Rn

+, provided the relaxation parameters αk and βk, ω satisfy

0 < βk, γk ≤ αk ≤ 1, 0 < ω < 2
1+ρ

′ or

0 < βk, γk <
1

ρ(J|) , 1 < αk <
1

ρ(J) , 0 < ω < 2
1+ρ

′ ,
(7)

where ρ = ρ(J) < 1, J = D−1|B|, ρ
′
= max

1≤k≤l
{1− 2αk + 2αkρε, 2δkρε − 1, 2αkρε − 1}, δk = max{βk, γk}.

Moreover, βk, γk should be greater than or less than αk at once.

Proof 1. From Lemma 3 and Equation (6), for GMSMMTOR algorithm, we have

(αkΩ + D− (βkLk + γkFk))x∗ = [(1− αk)D + (αk − βk)Lk + (αk − γk)Fk
+αkUk]x∗ + αk[(Ω− A)|x∗| − γq],
k = 1, 2, ..., l,

(8)

by subtracting Equation (8) from Equation (6), we obtain

x(m,k) − x∗ = (αkΩ + D− (βkLk + γkFk))
−1

[(1− αk)D + (αk − βk)Lk + (αk − γk)Fk + αkUk](x(m) − x∗)
+(αkΩ + D− (βkLk + γkFk))

−1αk(Ω− A)(|x(m)| − |x∗|), k = 1, 2, ..., l,

then, the error about the GMSMMTOR algorithm is as follows:

x(m+1) − x∗ = ω ∑l
k=1 Ek(αkΩ + D− (βk Lk + γkFk))

−1

[(1− αk)D + (αk − βk)Lk + (αk − γk)Fk + αkUk](x(m) − x∗)
+ω ∑l

k=1 Ek(αkΩ + D− (βk Lk + γkFk))
−1

αk(Ω− A)(|x(m)| − |x∗|) + (1−ω)(x(m) − x∗),

(9)

Equation (9) is the base for discussing the convergence results of GMSMMTOR algorithm. If we
take the absolute values on both sides of Equation (9) and compute ||x(m)| − |x∗|| ≤ |x(m) − x∗|,
defining ε(m) = x(m) − x∗ and assembling homothetic terms together, we have

|ε(m)| = |x(m+1) − x∗| ≤ HGMSMMTOR|x(m) − x∗|, (10)

where
HGMSMMTOR = ω ∑l

k=1 Ek(αkΩ + D− (βk|Lk|+ γk|Fk|))−1

[|1− αk|D + |αk − βk||Lk|+ |αk − γk||Fk|
+αk|Uk|+ αk|Ω− A|] + |1−ω|I.

(11)
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Problem 1. If 0 < βk, γk ≤ αk ≤ 1, 0 < ω < 2
1+ρ

′ . We define

Mk = αkΩ + D− (βk|Lk|+ γk|Fk|),
N1

k = (1− αk)D + (αk − βk)|Lk|+ (αk − γk)|Fk|+ αk|Uk|+ αk|Ω− A|. (12)

By Equation (12), Ω ≥ D and A = D−B, so the diagonal part of |Ω−A| is Ω−D and off-diagonal part is B.
So |Ω− A| = (Ω−D) + |B|, |B| = |Lk|+ |Fk|+ |Uk|, k = 1, 2, ..., l, we have N1

k = Mk − 2αkD + 2αk|B|. So

HGMSMMTOR = M−1
k N1

k = M−1
k (Mk − 2αkD + 2αk|B|) = I − 2αkM−1

k (D− |B|),

and
|HGMSMMTOR| ≤ M−1

k [Mk − 2αk(D− |B|)]
≤ I − 2αkM−1

k D(I −D−1|B|).

Let e denote vector e = (1, 1, ..., 1)T ∈ Rn. Since J is a nonnegative matrix, this matrix J + εeeT has only
positive entries and is irreducible for any ε > 0. By Perron-Frobenius theorem for any ε > 0, there is a vector
xε > 0 such that

(J + εeeT)xε = ρεxε,

where ρε = ρ(J + εeeT) = ρ(Jε). Moreover, if ε > 0 is small enough, we obtain ρε < 1 by continuity of spectral
radius. Since 0 < αk ≤ 1, we also obtain 1− 2αk + 2αkρ < 1, and 1− 2αk + 2αkρε < 1. So

|HGMSMMTOR| ≤ I − 2αkM−1
k D[I − (D−1|B|+ εeeT)]

= I − 2αkM−1
k D[I − Jε].

Multiplying xε in both sides of the equation, and M−1
k ≥ D−1, we have

|HGMSMMTOR|xε ≤ xε − 2αkM−1
k D[1− ρ(Jε)]xε

≤ xε − 2αkD−1D[1− ρ(Jε)]xε

= (1− 2αk + 2αkρ(Jε))xε

By Equation (11), we have

|HGMSMMTOR|xε ≤ ωΣl
k=1Ek(1− 2αk + 2αkρ(Jε))xε + |1−ω|xε

≤ ωΣl
k=1Ek(1− 2αk + 2αkρε)xε + |1−ω|xε

= (ωρ1 + |1−ω|)xε

= θ1xε(ε→ 0),

where θ1 = ωρ1 + |1−ω| < 1, ρ1 = Σl
k=1Ek(1− 2αk + 2αkρε).

Problem 2. If 0 < βk, γk <
1

ρ(D−1|B|) , 1 < αk <
1

ρ(D−1|B|) , 0 < ω < 2
1+ρ

′ .

Subproblem 2.1.: αk ≥ βk and αk ≥ γk. We define:

N2
k = (αk − 1)D + (αk − βk)|Lk|+ (αk − γk)|Fk|+ αk|Uk|

+αk|Ω− A| = Mk − 2D + 2αk|B|.
(13)

So
|HGMSMMTOR| ≤ M−1

k [Mk − 2(D− αk|B|)]
≤ I − 2M−1

k D(I − αkD−1|B|).
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Similar to the Problem 1, let e denote vector e = (1, 1, ..., 1)T ∈ Rn, and xε > 0 such that
Jεxε = (J + εeeT)xε = ρ(Jε)xε. Moreover, if ε > 0 is small enough, we can obtain ρε < 1 by continuity of
spectral radius. Since 1 < αk <

1
ρ(D−1|B|) , we may obtain

2αkρ− 1 < 1 and 2αkρε − 1 < 1,

so
|HGMSMMTOR| ≤ I − 2M−1

k D[I − αk(D−1|B|+ εeeT)]

= I − 2M−1
k D[I − αk Jε].

Multiplying xε in both sides of the above equation, and M−1
k ≥ D−1, we have

|HRMSMMAOR|xε ≤ xε − 2M−1
k D[1− αkρ(Jε)]xε

≤ xε − 2(1− αkρ(Jε))]xε

= (2αkρ(Jε)− 1)xε.

By Equation (11), we have

|HGMSMMTOR|xε ≤ ωΣl
k=1Ek(2αkρ(Jε)− 1)xε + |1−ω|xε

≤ ωΣl
k=1Ek(2αkρε − 1)xε + |1−ω|xε

= (ωρ2 + |1−ω|)xε

= θ2xε(ε→ 0),

where θ2 = ωρ2 + |1−ω| < 1, ρ2 = Σl
k=1Ek(2αkρε − 1).

Subproblem 2.2.: αk ≤ βk and αk ≤ γk. We define

N3
k = (αk − 1)D + (βk − αk)|Lk|+ (γk − αk)|Fk|+ αk|Uk|+ αk|Ω− A|

= Mk − 2D + 2βk|Lk|+ 2γk|Fk|+ 2αk|Uk|
≤ Mk − 2D + 2δk|B|.

(14)

where δk = max{βk, γk}, so

|HGMSMMTOR| ≤ M−1
k [Mk − 2(D− δk|B|)]

≤ I − 2M−1
k D(I − δkD−1|B|).

Similar to the Problem 1, let e denote vector e = (1, 1, ..., 1)T ∈ Rn, and xε > 0 such that
Jεxε = (J + εeeT)xε = ρ(Jε)xε. Furthermore, if ε > 0 is small enough, we obtain ρε < 1 by continuity
of spectral radius. Since 0 < βk, γk <

1
ρ(D−1|B|) , we can obtain

2δkρ− 1 < 1 and 2δkρε − 1 < 1,

so
|HGMSMMTOR| ≤ I − 2M−1

k D[I − δk(D−1|B|+ εeeT)]

= I − 2M−1
k D[I − δk Jε].

Multiplying xε in both sides of the equation, and M−1
k ≥ D−1, we have

|HGMSMMTOR|xε ≤ xε − 2(1− δkρ(Jε))]xε

= (2δkρ(Jε)− 1)xε
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By Equation (11), we have

|HGMSMMTOR|xε ≤ ωΣl
k=1Ek(2δkρ(Jε)− 1)xε + |1−ω|xε

≤ ωΣl
k=1Ek(2δkρε − 1)xε + |1−ω|xε

= (ωρ3 + |1−ω|)xε

= θ3xε(ε→ 0),

where θ3 = ωρ3 + |1−ω| < 1, ρ3 = Σl
k=1Ek(2δkρε − 1).

Remark 3. Obviously, one can find that the conditions of Theorem 4 in this paper are wider than those of
Theorem 2.3 in [28]. Furthermore, we have more choices for the splitting A = B−C which makes multisplitting
iterative methods converge. So, convergence results are generalized in applications.

Remark 4. In this paper, GMSMMTOR algorithm is also the generalization of MSMAOR method in [27] and
MSMMAOR algorithm in [17].

5. Numerical Experiments

In this section, numerical examples are used to illustrate the feasibility and effectiveness of the
relaxed modulus-based synchronous multisplitting multi-parameter AOR methods (GMSMMAOR)
(F = U) in terms of iteration count (denoted by IT) and computing time (denoted by CPU), and norm
of absolute residual vectors (denoted by RES). Here, RES is defined as

RES(z(k)) = ‖min(Az(k) + q, z(k))‖2

where z(k) is the kth approximate solution to the LCP(q, A) and the minimum is taken componentwise
in [10].

In our numerical computations, to compare the GMSMMAOR method with the modulus-based
synchronous multisplitting multi-parameter methods (MSMAOR), all initial vectors are chosen to be

x(0) = (1, 0, 1, 0, · · · , 1, 0, · · · )T ∈ Rn

all runs are performed in MATLAB 7.0 (MathWorks, Natick, MA, USA) with double machine
precision, and all iterations are terminated with RES(z(k)) ≤ 10−5. In the table, α, β denote the
iteration parameters in the GMSMMAOR methods and the MSMAOR. In addition, we take Ω = 1

2α D
in [10] for GMSMMAOR and MSMAOR methods. In particular, when we choose the parameter
pair (αk, βk) to be (αk, αk) (1, 1) and (1, 0) respectively, the GMSMMAOR method gives the so-called
GMSMMSOR (Global Modulus-Based Synchronous Multisplitting Multi-Parameters Successive Over
Relaxation Method), GMSMGS (Global Modulus-Based Synchronous Multisplitting Multi-Parameters
Successive Gauss-Seidel Method), and GMSMJ (Global Modulus-Based Synchronous Multisplitting
Multi-Parameters Successive Jacobi Method) methods, correspondingly. For convenience, let
αk = α, βk = β, γ = 2, ω = 1, k = 1.

Let m be a prescribed positive integer and n = m2. Consider the LCP(q, A), in which A ∈ Rn×n is
given by A = Â + µI and q ∈ Rn is given by q = −Mz∗ where

Â = tridiag(−rI, S,−tI) =



S −tI 0 · · · 0 0
−rI S −tI · · · 0 0

0 −rI S · · · 0 0
...

...
. . .

...
...

0 0 · · · · · · S −tI
0 0 · · · · · · −rI S


∈ Rn×n (15)
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is a block-tridiagonal matrix,

S = tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
. . .

...
...

0 0 · · · · · · 4 −1
0 0 · · · · · · −1 4


∈ Rn×n (16)

is a tridiagonal matrix, and
z∗ = (1, 2, 1, 2, · · · , 1, 2, · · · )T ∈ Rn

is the unique solution of the LCP(q, A), one can see [10] for more details.
For symmetric case, we take r = t = 1, which is considered in [10]. In this case, the system matrix

A ∈ Rn×n is symmetric positive and definite for µ ≥ 0. So, the LCP(q, A) has a unique solution.
In Table 2, the iteration steps, the CPU times, and the residual norms of GMSMMAOR and

MSMAOR methods for the symmetric case are listed for different parameters and different problem
sizes of m. When both GMSMMAOR and MSMAOR methods are applied to solve the LCP(q, A), the
iteration parameters α, β about MSMAOR method satisfy Theorem 4.1 in [27] and Theorem 2 in this
paper, but the iteration parameters α, β about GMSMMAOR method only satisfy Theorem 2 in this
paper and don’t satisfy Theorem 4.1 in [27].

From Table 2, for GMSMMAOR and MSMAOR methods with α = 1, β = 1.2 and α = 1, β = 0.7,
fixing the value of µ, it is easy to see that the iteration steps do not change with the increasing of
the problem size m. However, CPU times increase as the problem size m increases. Moreover, for
GMSMMAOR and MSMAOR methods, fixing the value of m, it is also easy to see that the iteration
steps and CPU times decrease as the increasing of the problem size µ. In our numerical experiments,
we find that the iteration steps and CPU times of GMSMMAOR are less than that of MSMAOR under
certain conditions.

Table 2. IT, CPU and Error for GMSMMAOR and MSMAOR with different parameters in
symmetric case.

m 20 30 40 50 60

µ = 0.5 GMSMMAOR IT 22 22 22 22 22
α = 1 CPU 0.1560 0.7800 2.4336 5.9280 12.4957

β = 1.2 Error 7.2225× 10−6 7.2598× 10−6 7.2970× 10−6 7.3390× 10−6 7.3707× 10−6

µ = 0.5 MSMAOR IT 30 30 30 31 31
α = 1 CPU 0.2184 1.0764 3.2916 8.3773 17.6905

β = 0.7 Error 9.7188× 10−6 9.8399× 10−6 9.9531× 10−6 7.3792× 10−6 7.4496× 10−6

µ = 1.5 GMSMMAOR IT 19 19 19 19 19
α = 1 CPU 0.1716 0.6552 2.0748 5.0856 10.7797

β = 1.2 Error 6.6884× 10−6 6.8943× 10−6 7.0943× 10−6 7.2888× 10−6 7.4782× 10−6

µ = 1.5 MSMAOR IT 23 24 24 24 24
α = 1 CPU 0.1716 0.8424 2.6520 6.4584 13.6657

β = 0.7 Error 9.5945× 10−6 6.6969× 10−6 7.0677× 10−6 7.4200× 10−6 7.7563× 10−6

µ = 2.5 GMSMMAOR IT 17 17 17 17 17
α = 1 CPU 0.1404 0.6084 1.8720 4.5552 9.6565

β = 1.2 Error 7.6793× 10−6 8.2513× 10−6 8.7861× 10−6 9.2902× 10−6 9.7683× 10−6

µ = 2.5 MSMAOR IT 20 20 20 21 21
α = 1 CPU 0.1404 0.7020 2.2932 5.6472 11.9341

β = 0.7 Error 8.3861× 10−6 9.4078× 10−6 6.1592× 10−6 6.6458× 10−6 7.0992× 10−6

IT: iteration count; CPU: computing time, Error: norm of residual vectors, m: problem size, µ : µ ≥ 0
is a parameter to get a different matrix A.
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6. Conclusions

In this paper, global modulus-based synchronous multisplitting multi-parameters TOR methods
has been established and its convergence properties are discussed in detail when the system matrix is
either a positive-definite matrix or an H+-matrix. Numerical experiments show that the GMSMMTOR
methods are feasible under certain conditions.
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