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Abstract: In order to improve the flexibility of curves, a new five-point binary approximating
subdivision scheme with two parameters is presented. The generating polynomial method is used to
investigate the uniform convergence and Ck-continuity of this scheme. In a special case, the five-point
scheme changes into a four-point scheme, which can generate C3 limit curves. The shape-preserving
properties of the four-point scheme are analyzed, and a few examples are given to illustrate the
efficiency and the shape-preserving effect of this special case.

Keywords: subdivision scheme; parameter; Ck-continuity; monotonicity preserving; convexity preserving

1. Introduction

Subdivision schemes are widely used in the design of curves or surfaces because of their high
efficiency. Dyn et al. [1] introduced a four-point binary interpolating subdivision scheme, which can
generate C1 continuous limit curves, and they analyzed the smoothness of the limit curves theoretically
in [2]. The work in [3] analyzed the relationship between the smoothness of the subdivision scheme
and the tension parameter. Dyn et al. [4] gave the convexity condition of the classic scheme, which was
presented in [1], and analyzed how to select the tension parameters to generate the convexity preserving
limit curves when the initial control polygons are convex. Kuijt and van Damme [5] constructed
a series of local nonlinear stationary interpolatory subdivision schemes that can preserve monotonicity,
and they were also concerned with a class of shape-preserving schemes that interpolate the nonuniform
data in [6]. Dyn et al. [7] proposed a binary four-point approximating scheme based on Lagrange
interpolation, and it can generate C2 limit curves. Zheng et al. [8] introduced a class of four-point
subdivision schemes with two parameters, which includes cubic and quintic uniform B-spline curves.
Cai [9] presented a new four-point scheme when the control vertices are non-uniform, and analyzed
the convergence and derived the monotonicity-preserving condition. The work in [10] researched
the necessary and sufficient condition when the classic four-point scheme generates C2 limit curves.
Siddiqi and Ahmad [11] introduced a binary five-point subdivision scheme by using the basis function
of B-spline. Hao et al. [12] constructed a six-point scheme, which can generate a series of different
smooth limit curves, and gave the monotonicity-preserving condition. Cao and Tan [13] proposed
a five-point binary relaxation subdivision scheme and pointed out that when the tension parameter
takes some specific values, the limit curves will become fractal. Tan et al. [14] studied the monotonicity
preserving of a binary scheme based on [13]. Tan et al. [15] presented a more practical algorithm to
generate curves, which can interpolate some initial vertices and approximate the other vertices. Rehan
and Siddiqi [16] introduced a combined six-point subdivision scheme with tension parameters that
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can generate C1, C2 continuous interpolating limit curves and C1, C2, C3 continuous approximating
limit curves. Conti and Hormann studied the ability of convergent subdivision schemes to reproduce
polynomials in [17]. In order to improve the flexibility of curves, we propose a new five-point binary
approximation subdivision scheme with two parameters based on [1] and [13] and investigate its
uniform convergence and Ck-continuity. We are also concerned with one special case of this scheme
when it becomes a four-point scheme. The shape-preserving properties of the four-point one are
analyzed. Finally, a few examples are given to illustrate the efficiency and the shape-preserving
effect of the four-point scheme. Compared with [7] and the cubic uniform B-spline curves, the curves
generated by our four-point scheme have higher continuity and are closer to the control polygons.

2. Preliminaries

In this section, we recall some definitions and present some results which will be used in the next
section. The following Theorems 1–3 are shown according to Dyn [2].

Suppose p0 = {p0
j ∈ Rd}j∈Z is a set of initial control points; let pk = {pk

j ∈ Rd}j∈Z be the set of
control points at level k(k ≥ 0, k ∈ Z). The binary subdivision scheme is defined as:

pk+1
i = ∑

j∈Z
ai−2jpk

j , i ∈ Z, (1)

where a = {ai}i∈Z is called the mask of this scheme. Denote by S the subdivision scheme defined in (1),
then the generating polynomial for S is defined as a(z) = ∑

i∈Z
aizi, where only a finite number of the

coefficients ai is non-zero.

Theorem 1. Let S be a convergent binary subdivision scheme with the mask a = {ai}i∈Z. Then, the mask
a must satisfy:

∑
i∈Z

a2i = ∑
i∈Z

a2i+1 = 1. (2)

Theorem 2. Let S denote a binary subdivision scheme with mask a satisfying (2). Then, there exists
a subdivision scheme S1 with the property dpk = S1dpk−1, where S1 is called the first order divided difference,
pk = Sk p0, dpk = {(dpk)i = 2k

(
pk

i+1− pk
i

)
|i ∈ Z}. In general, Sn denotes the n-th order divided difference,

and the generating polynomial of Sn is:

a(n) (z) = ∑
i∈Z

a(n)i zi =

(
2z

1+ z

)n
a (z) .

Theorem 3. Let S denote a binary subdivision scheme with mask a = {ai}i∈Z, and the j-th order divided
difference Sj (j = 1, 2, . . . , n + 1) with mask a(j) = {a(j)

i }i∈Z satisfies:
∑

i∈Z
a2i = ∑

i∈Z
a2i+1 = 1,

∑
i∈Z

a(j)
2i = ∑

i∈Z
a(j)

2i+1 = 1,
j = 1, 2, . . . , n + 1. (3)

If there exists a smallest positive integer L satisfying
∥∥∥∥( 1

2 Sn+1

)L
∥∥∥∥

∞
< 1, then the binary subdivision

scheme S is Cn continuous. In particular, when:

L = 1,
∥∥∥∥1

2
Sn+1

∥∥∥∥
∞
=

1
2

max{∑
i∈Z

∣∣∣a(n+1)
2i

∣∣∣, ∑
i∈Z

∣∣∣a(n+1)
2i+1

∣∣∣}.
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3. A Five-Point Binary Subdivision Scheme with Two Parameters

In this section, we propose a five-point subdivision scheme with two parameters u and v based
on [1] and [13], and analyze the uniform convergence and Ck-continuity.

pk+1
2i = 9

256 vpk
i−2 + (21

64 v− 7
608 u)pk

i−1 + (1− 153
608 u− 65

128 v)pk
i + (175

608 u + 9
64 v)pk

i+1

+( 1
256 v− 15

608 u)pk
i+2,

pk+1
2i+1 = 1

256 vpk
i−2 + (− 1

16 +
23
608 u + 13

64 v)pk
i−1 + ( 9

16 −
167
608 u− 9

128 v)pk
i

+( 9
16 +

113
608 u− 15

64 v)pk
i+1 + (− 1

16 +
31
608 u + 25

256 v)pk
i+2.

(4)

Remark 1. If u = 0, v = 0, our scheme (4) is the special case of [1], which can generate C1 interpolation limit
curves. If u = 0, v = 1, our scheme (4) is the special case [13], which can generate C7 limit curves.

Theorem 4. The five-point binary subdivision scheme (4) generates the limit curves of continuity up to C7.

Proof of Theorem 4. The generating polynomial a(z) for the mask of the subdivision scheme can be
written as:

a(z) = (− 15
608

u +
1

256
v)z−4 + (− 1

16
+

31
608

u +
25
256

v)z−3 + (
175
608

u +
9
64

v)z−2 + (
9
16

+
113
608

u− 15
64

v)z−1

+ (1− 153
608

u− 65
128

v) + (
9

16
− 167

608
u− 9

128
v)z + (

21
64

v− 7
608

u)z2 + (− 1
16

+
23
608

u +
13
64

v)z3

+
9

256
vz4 +

1
256

vz5.

Then, according to Theorem 2, we have the following generating polynomials for Sj(j = 1, 2, 3):

a(1)(z) = (− 15
304

u +
1

128
v)z−3 + (−1

8
+

46
304

u +
24

128
v)z−2 + (

1
8
+

129
304

u +
12

128
v)z−1 + (1− 16

304
u− 72

128
v)

+ (1− 137
304

u− 58
128

v)z + (
1
8
− 30

304
u +

40
128

v)z2 + (−1
8
+

23
304

u +
44

128
v)z3 +

8
128

vz4 +
1

128
vz5,

a(2)(z) = (− 15
152

u +
1

64
v)z−2 + (−1

4
+

61
152

u +
23
64

v)z−1 + (
1
2
+

68
152

u− 11
64

v) + (
3
2
− 84

152
u− 61

64
v)z

+ (
1
2
− 53

152
u +

3
64

v)z2 + (−1
4
+

23
152

u +
37
64

v)z3 +
7
64

vz4 +
1
64

vz5,

a(3)(z) = (−15
76

u +
1

32
v)z−1 + (−1

2
+ u +

22
32

v) + (
3
2
− 8

76
u− 33

32
v)z + (

3
2
− u− 28

32
v)z2

+ (−1
2
+

23
76

u +
31
32

v)z3 +
6

32
vz4 +

1
32

vz5,

it is easy to confirm that ∑
i∈z

a(j)
2i = ∑

i∈z
a(j)

2i+1 = 1, (j = 1, 2, 3). Additionally, it is not difficult to show that:

1. When∥∥∥∥1
2

S1

∥∥∥∥
∞
=

1
2

max{
∣∣∣∣− 15

304
u +

1
128

v
∣∣∣∣+ ∣∣∣∣18 +

129
304

u +
12

128
v
∣∣∣∣+ ∣∣∣∣1− 137

304
u− 58

128
v
∣∣∣∣+ ∣∣∣∣−1

8
+

23
304

u +
44

128
v
∣∣∣∣

+

∣∣∣∣ 1
128

v
∣∣∣∣ ,
∣∣∣∣−1

8
+

46
304

u +
24
128

v
∣∣∣∣+ ∣∣∣∣1− 16

304
u− 72

128
v
∣∣∣∣+ ∣∣∣∣18 − 30

304
u +

40
128

v
∣∣∣∣+ ∣∣∣∣ 8

128
v
∣∣∣∣} < 1,

the subdivision scheme (4) is uniformly convergent.
2. When∥∥∥∥1
2

S2

∥∥∥∥
∞
=

1
2
{
∣∣∣∣− 15

152
u +

1
64

v
∣∣∣∣+ ∣∣∣∣12 +

68
152

u− 11
64

v
∣∣∣∣+ ∣∣∣∣12 − 53

152
u +

3
64

v
∣∣∣∣+ ∣∣∣∣ 7

64
v
∣∣∣∣ ,
∣∣∣∣−1

4
+

61
152

u +
23
64

v
∣∣∣∣

+

∣∣∣∣32 − 84
152

u− 61
64

v
∣∣∣∣+ ∣∣∣∣−1

4
+

23
152

u +
37
64

v
∣∣∣∣+ ∣∣∣∣ 1

64
v
∣∣∣∣} < 1,

the subdivision scheme (4) generates C1 limit curves.
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3. When∥∥∥∥1
2

S3

∥∥∥∥
∞
=

1
2

max{
∣∣∣∣−15

76
u +

1
32

v
∣∣∣∣+ ∣∣∣∣32 − 8

76
u− 33

32
v
∣∣∣∣+ ∣∣∣∣−1

2
+

23
76

u +
31
32

v
∣∣∣∣+ ∣∣∣∣ 1

32
v
∣∣∣∣ ,∣∣∣∣−1

2
+ u +

22
32

v
∣∣∣∣+ ∣∣∣∣32 − u− 28

32
v
∣∣∣∣+ ∣∣∣∣ 6

32
v
∣∣∣∣} < 1,

the subdivision scheme (4) generates C2 limit curves.
4. When u + v = 1,

a(4) (z) = (−15
38

+
139
304

v) + (
53
38
− 329

304
v)z + (

53
38
− 234

304
v)z2 + (−15

38
+

310
304

v)z3 +
5
16

vz4 +
1
16

vz5,

and when − 32
329 < v < 576

329 , we have∥∥∥∥1
2

S4

∥∥∥∥
∞
=

1
2
{
∣∣∣∣−15

38
+

139
304

v
∣∣∣∣+ ∣∣∣∣53

38
− 234

304
v
∣∣∣∣+ ∣∣∣∣ 5

16
v
∣∣∣∣ ,
∣∣∣∣53
38
− 329

304
v
∣∣∣∣+ ∣∣∣∣−15

38
+

310
304

v
∣∣∣∣+ ∣∣∣∣ 1

16
v
∣∣∣∣} < 1,

and the subdivision scheme (4) generates C3 limit curves.
5. When v = 1, u = 0,

a(5) (z) =
1
8

z +
1
2

z2 +
3
4

z3 +
1
2

z4 +
1
8

z5,

we have ∥∥∥∥1
2

S5

∥∥∥∥
∞
=

1
2

max{
∣∣∣∣18
∣∣∣∣+ ∣∣∣∣34

∣∣∣∣+ ∣∣∣∣18
∣∣∣∣ ,
∣∣∣∣12
∣∣∣∣+ ∣∣∣∣12

∣∣∣∣} = 1
2
< 1,

the subdivision scheme (4) generates C4 limit curves. Similarly, we can prove that the subdivision
scheme (4) generates C7 limit curves when parameter u = 0 and v = 1.

4. A Four-Point Shape-Preserving Subdivision Scheme

If u = 1, v = 0, the scheme (4) reduces to a four-point scheme.{
pk+1

2i = − 7
608 pk

i−1 +
455
608 pk

i +
175
608 pk

i+1 −
15

608 pk
i+2,

pk+1
2i+1 = − 15

608 pk
i−1 +

175
608 pk

i +
455
608 pk

i+1 −
7

608 pk
i+2.

(5)

According to the above analysis, the subdivision scheme (5) can generate C3 limit curves. In the
similar way to the argument in [17], we can prove that the polynomials of degree one can be reproduced
by means of the proposed scheme (5). Now, we will discuss what conditions should be imposed on
the initial points so that the limit curve generated by the scheme (5) is both monotonicity preserving
and convexity preserving.

4.1. Monotonicity Preservation

Proposition 1. Given a set of initial control points { f 0
i }i∈Z, satisfying · · · f 0

−1 < f 0
0 < f 0

1 < · · · < f 0
n−1 <

f 0
n < · · · , denote Dk

i = f k
i+1 − f k

i , qk
i =

Dk
i+1

Dk
i

, Qk = max{qk
i , 1

qk
i
}, ∀k ≥ 0, k ∈ Z, i ∈ Z. Furthermore,

let 1 ≤ u ≤ 129+
√

17121
30 , u ∈ R. If 1

u ≤ Q0 ≤ u,{ f k
i } is defined by the subdivision scheme (5), then:

Dk
i > 0,

1
u
≤ Qk ≤ u, ∀k ≥ 0, k ∈ Z, i ∈ Z. (6)

Proof of Proposition 1. We use induction to verify Proposition 1.
With the given conditions in Proposition 1, clearly D0

i = f 0
i+1 − f 0

i > 0, 1
u ≤ Q0 ≤ u; therefore,

(6) is satisfied for k = 0. Suppose that (6) holds for some k ≥ 1. In what follows, we will verify it also
holds for k + 1. We first prove Dk

i > 0, ∀k ≥ 0, k ∈ Z, i ∈ Z.
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By assumption, Dk
i > 0, ∀i ∈ Z, holds for some k ≥ 1. Then, it follows for ∀i ∈ Z,

Dk+1
2i = f k+1

2i+1 − f k+1
2i = 8

608 ( f k
i − f k

i−1) +
288
608 ( f k

i+1 − f k
i ) +

8
608 ( f k

i+2 − f k
i+1)

= 8
608 Dk

i−1 +
288
608 Dk

i +
8

608 Dk
i+1 =

Dk
i

608 (
8

qk
i−1

+ 288 + 8qk
i ) > 0,

(7)

and:

Dk+1
2i+1 = f k+1

2i+2 − f k+1
2i+1 = − 15

608 ( f k
i − f k

i−1) +
167
608 ( f k

i+1 − f k
i ) +

167
608 ( f k

i+2 − f k
i+1)−

15
608 ( f k

i+3 − f k
i+2)

= − 15
608 Dk

i−1 +
167
608 Dk

i +
167
608 Dk

i+1 −
15

608 Dk
i+2 =

Dk
i+1

608 (−15 1
qk

i−1

1
qk

i
+ 167 1

qk
i
+ 167− 15qk

i+1)

≥ Dk
i+1

608 [167− 15u + (167− 15u) 1
qk

i
] ≥ Dk

i+1
608 [167− 15u + (167− 15u) 1

u ] > 0.

(8)

Therefore, we have Dk+1
i > 0, ∀i ∈ Z. Applying induction gives Dk

i > 0, ∀k ≥ 0, k ∈ Z, i ∈ Z.
Now, we prove 1

u ≤ Qk ≤ u, ∀k ≥ 0, k ∈ Z.
Since:

qk+1
2i =

Dk+1
2i+1

Dk+1
2i

=
−15 1

qk
i−1

+ 167 + 167qk
i − 15qk

i qk
i+1

8 1
qk

i−1
+ 288 + 8qk

i
,

we have:

qk+1
2i − u =

Dk+1
2i+1

Dk+1
2i

− u =
−15 1

qk
i−1

+ 167 + 167qk
i − 15qk

i qk
i+1 − 8u 1

qk
i−1
− 288u− 8uqk

i

8 1
qk

i−1
+ 288 + 8qk

i
.

By (7), the denominator of the above expression is greater than zero. The numerator satisfies:

numerator ≤ (−15 1
u + 167− 8u)qk

i + 167− 15 1
qk

i−1
− 8u 1

qk
i−1
− 288u

≤ (−15 1
u + 167− 8u)u + 167− 15 1

u − 8− 288u = −8u2 − 121u + 144− 15 1
u

= 1
u (u− 1)(−8u2 − 129u + 15) ≤ 0.

Therefore, qk+1
2i ≤ u.

In the same way, we can get qk+1
2i+1 ≤ u, 1

qk+1
2i
≤ u, 1

qk+1
2i+1
≤ u.

Therefore, 1
u ≤ Qk+1 ≤ u, and by induction, we have 1

u ≤ Qk ≤ u, ∀k ≥ 0, k ∈ Z.
This completes the proof.

Combining Proposition 1 and the Theorem 2.1 proposed by Cai [9], we get the following Theorem.

Theorem 5. Assume the initial control points {p0
i }i∈Z with p0

i = (x0
i , f 0

i ) are strictly monotone increasing
(strictly monotone decreasing). Denote:

X0 = max
i
{

x0
i+2 − x0

i+1

x0
i+1 − x0

i
,

x0
i+1 − x0

i

x0
i+2 − x0

i+1
}, Q0 = max

i
{q0

i ,
1
q0

i
}.

Then, for 1
u ≤ X0 ≤ u, and 1

u ≤ Q0 ≤ u, 1 ≤ u ≤ 129+
√

17121
30 , the limit functions generated by the

subdivision scheme (5) are strictly monotone increasing (strictly monotone decreasing).

4.2. Convexity Preservation

Given a set of initial control points {p0
i }i∈Z with p0

i = (x0
i , f 0

i ), which are strictly convex,
where {x0

i }i∈Z are equidistant points. For convenience, we make ∆x0
i = x0

i+1 − x0
i = 1. By the
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subdivision scheme (5), we have ∆xk+1
i = xk+1

i+1 − xk+1
i = 1

2 ∆xk
i = 1

2k+1 . Let dk
i = f [xk

i−1, xk
i , xk

i+1] =

22k−1( f k
i−1 − 2 f k

i + f k
i+1) denote the second order divided differences. In the following, we will prove

dk
i > 0, ∀k ≥ 0, k ∈ Z, i ∈ Z.

Theorem 6. Suppose that the initial control points {p0
i }i∈Z, p0

i = (x0
i , f 0

i ) are strictly convex; if d0
i > 0,

∀i ∈ Z, denote rk
i =

dk
i+1
dk

i
, Rk = max

i
{rk

i , 1
rk

i
}, ∀k ≥ 0, k ∈ Z. Furthermore, let 1 ≤ λ ≤ 72+

√
4839

23 , λ ∈ R.

Then, for 1
λ ≤ R0 ≤ λ,

dk
i > 0,

1
λ
≤ Rk ≤ λ, ∀k ≥ 0, k ∈ Z, i ∈ Z. (9)

Namely, the limit functions generated by the subdivision scheme (5) are strictly convex.

Proof of Theorem 6. We use induction to verify Theorem 6.
When k = 0, d0

i > 0, 1
λ ≤ R0 ≤ λ, (9) holds true. Suppose that (9) holds for some k ≥ 1. We

verify it also holds for k + 1. We first show that dk
i > 0, ∀k ≥ 0, k ∈ Z, i ∈ Z. From the assumption that

dk
i > 0, ∀i ∈ Z, it follows for: ∀i ∈ Z

dk+1
2i = 22k+1( f k+1

2i−1 − 2 f k+1
2i + f k+1

2i+1)

= 22k+1(− 15
608 f k

i−2 +
174
608 f k

i−1 −
280
608 f k

i + 98
608 f k

i+1 +
23

608 f k
i+2)

= − 15
152 dk

i−1 +
144
152 dk

i +
23

152 dk
i+1 =

dk
i

152 (−15 1
rk

i−1
+ 144 + 23rk

i )

≥ dk
i

152 (144 + 23 1
λ − 15λ) > 0,

(10)

and:

dk+1
2i+1 = 22k+1( f k+1

2i − 2 f k+1
2i+1 + f k+1

2i+2)

= 22k+1( 23
608 f k

i−1 +
98

608 f k
i −

280
608 f k

i+1 +
174
608 f k

i+2 −
15

608 f k
i+2)

= 23
152 dk

i +
144
152 dk

i+1 −
15

152 dk
i+2 =

dk
i+1

152 (23 1
rk

i
+ 144− 15rk

i+1)

≥ dk
i+1

152 (144 + 23 1
λ − 15λ) > 0,

(11)

which implies that dk+1
i > 0, ∀i ∈ Z. By induction, we have dk

i > 0, ∀k ≥ 0, k ∈ Z, i ∈ Z.
Next, we will prove 1

λ ≤ Rk+1 ≤ λ.

Since:

rk+1
2i =

dk+1
2i+1

dk+1
2i

=
23 + 144rk

i − 15rk
i rk

i+1

−15 1
rk

i−1
+ 144 + 23rk

i
,

it follows:

rk+1
2i − λ =

dk+1
2i+1

dk+1
2i

− λ =
23 + 144rk

i − 15rk
i rk

i+1 + 15λ 1
rk

i−1
− 144λ− 23λrk

i

−15 1
rk

i−1
+ 144 + 23rk

i
.

By (10), the denominator of the above expression is greater than zero. The numerator satisfies:

numerator ≤ (144− 15 1
λ − 23λ)rk

i + 23 + 15λ 1
rk

i−1
− 144λ

= (144− 15 1
λ − 23λ)λ + 23 + 15λ2 − 144λ

= −8λ2 + 8 ≤ 0.
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Therefore, rk+1
2i ≤ λ.

In the same way, we can get rk+1
2i+1 ≤ λ, 1

rk+1
2i
≤ λ, 1

rk+1
2i+1
≤ λ.

Therefore, 1
λ ≤ Rk+1 ≤ λ, and by induction, we have 1

λ ≤ Rk ≤ λ, ∀k ≥ 0, k ∈ Z.
This completes the proof.

5. Conclusion and Numerical Examples

In this paper, we present a five-point subdivision scheme with two parameters and analyze the
uniform convergence and Ck, the continuity of this scheme. When parameters u and v take the specific
values, the five-point scheme reduces to a four-point scheme, which can generate C3 limit curves.
The shape-preserving properties of the four-point scheme are analyzed. In this section, a few examples
are given to show the effect of the scheme (4), and to illustrate the efficiency and the shape-preserving
effect of the scheme (5). Compared with the four-point scheme in [7] and the cubic uniform B-spline
curves in [8], the curves generated by our scheme (5) have higher continuity and are closer to the
control polygons.

In Figure 1, for given different initial control polygons, our subdivision scheme (4) generates
different approximation effects, C3 limit curves and C7 limit curves.

(a) (b) (c) 

(d) (e) (f)

Figure 1. Our scheme (4) generates C3 and C7 limit curves. The initial control polygon is drawn by
a dotted line, and the limit curve obtained by our scheme (4) is marked by a full line. (a,d) v = 0, u = 1,
C3; (b,e) v = 1/2, u = 1/2, C3; (c,f) v = 1, u = 0, C7.

In Figure 2, for given two initial control polygons which are strictly monotone increasing and
strictly monotone decreasing respectively, the limit curves generated by the subdivision scheme (5) are
monotone preserving.
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(a) (b)

Figure 2. Our scheme (5) generates some monotone preserving C3 limit curves; (a) increasing monotone,
and (b) decreasing monotone. The initial control polygon is drawn by a dotted line, and the limit curve
obtained by our scheme (5) is marked by a full line.

In Figure 3, for given different initial control polygons, which are strictly convex, the limit curves
generated by the subdivision scheme (5) are strictly convex. We can find that the curves generated by
our scheme (5) are very close to the control polygons.

(a) (b) (c) 

Figure 3. Our scheme (5) generates some strictly convex preserving C3 limit curves (full line), given
different (a–c) initial control polygons (dotted line).

In Figure 4, for given different initial control polygons, compared with the four-point scheme in
[7] and the cubic uniform B-spline curves in [8], the curves generated by our scheme (5) have higher
continuity and are closer to the control polygons.
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(a) (c) (b) 

(d) (f)(e)

Figure 4. Comparison of our scheme (5) (C3 limit curves) (b,e) with those proposed in [7] (C2 limit
curves) (a,d) and [8] (C4 limit curves) (c,f). The initial control polygon is drawn by a dotted line, and the
limit curve is marked by a full line.
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