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Abstract: The Black Scholes model is a well-known and useful mathematical model in financial
markets. In this paper, the two-dimensional Black Scholes equation with European call option is
studied. The explicit solution of this problem is carried out in the form of a Mellin–Ross function by
using Laplace transform homotopy perturbation method. The solution example demonstrates that
the proposed scheme is effective.
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1. Introduction

In the financial market, contracts between buyers and sellers are called options. Generally, options
are divided into two types: call option (the right to buy) and put option (the right to sell). In both
types, holders can buy or sell the underlying asset before the options’ expiry date at a strike price or a
fixed price. Considering only call options, European and American call options are usually concerned.
European call options may be brought only on the options’ expiry date, whereas American call options
may be brought before that time.

According to the benefit of European option pricing about trade at a discount, we are thus
interested in the European option. The European option occurs in the way that holders buy the
products from sellers. Before this process can happen, both the buyers and sellers have an agreement
about the price and date on which the product will be received and payment will be made. The
purchasing process of the products can be considered as the process of buying the underlying asset in
the market.

To study the financial derivative in the market, the Black Scholes model proposed by Black and
Scholes [1] in 1973 is used. The concept of their model is hedging and eliminating the risk of option
pricing for purchasing and selling of underlying assets. The European call option price of this model
varies over time and stocks price. In addition, the price of assets is modelled by a geometric Brownian
motion with a constant drift and volatility.

In recent years, the Black Scholes equation was used to investigate the behavior of the option
pricing. Since the option pricing in a market is dependent on other markets, the multidimensional
Black Scholes equation is more efficient than the one dimensional version. There are various methods to
find the solution of multidimensional Black Scholes model; for example, a radical basic function (RBF)
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method [2–6], the Mellin transform method [7], finite different method [8–12], a collection method
with the quantic B-spline function [13], and homotopy perturbation method (HPM) [14,15].

One of most commonly used is the homotopy perturbation method [16–19], which is an alternative
method of finding the solution as an infinite series. The solution obtained from HPM converges
rapidly to the exact solution. There are many researchers applying HPM to engineering and biological
problems [20–27], confirming that HPM has become a potential tool for solving mathematical
problems [17]. However, some complicated problems cannot be solved using HPM alone. Therefore,
many researchers [28–30] proposed Laplace transform homotopy perturbation method (LHPM),
which is a combination of Laplace transform and HPM.

In this work, we study the two-dimensional Black Scholes equation with basket option based on
European call option. The explicit solution is carried out by using Laplace transformation homotopy
perturbation method. The rest of this paper is organized as follows. In Section 2, the mathematical
model for two-dimensional Black Scholes equation with basket option based on European call option
is presented. In Section 3, the basic ideas of Laplace transform homotopy perturbation method are
shown. Moreover, the two dimensional Black Scholes equation with basket option based on European
call option is solved by using LHPM as shown in Section 4. The solution example is illustrated in
Section 5. Finally, we present a conclusion in Section 6.

2. Two-Dimensional Black Scholes Equation

In this section, we present the two-dimensional option pricing problem with correlation based on
the Black Scholes equation [31] as the following equation:
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with the initial condition and terminal condition

c(S1, 0, t) = 0 = c(0, S2, t), c(S1, S2, T) = max(β1S1 + β2S2 − K, 0). (2)

We denote by c(S1, S2, t) the value of a call option with S1 as the first underlying asset, S2 as the
second underlying asset, and t as time. σ1 and σ2 are the volatilities of the underlying assets S1 and
S2, respectively. r is the risk-free interest rate. K is the strike price. Finally, β1 and β2 are the portions
of the underlying assets S1 and S2, respectively. Because this equation is regularly augmented with a
final time condition, we set the variable τ = T − t. Thus, Equation (1) becomes
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Without loss of generality , we can consider τ as t, S1 as x, and S2 as y. Hence, this above equation can
be written as
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The initial condition becomes

c(x, y, 0) = max(β1x + β2y− K, 0).
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3. Basic Ideas of Laplace Transform Homotopy Perturbation Method

The general form of time-dependent differential equation is investigated to describe the basic
ideas of the Laplace transformation Homotopy Perturbation Method as given below:

A(u(x, y, t))− f (x, y, t) = 0 (4)

where A is a differential operator, u(x, y, t) is an unknown function, and f (x, y, t) is a known analytic
function. Moreover, A can be separated into two parts:

A(u(x, y, t)) =
∂

∂t
u(x, y, t) + N(u(x, y, t)),

where ∂
∂t u(x, y, t) is a simple part which is investigated in the problem and N is a the remaining part of

A. Then, a general equation on the domain Ω : {0 ≤ x, y < ∞ ; 0 ≤ t ≤ T} can be written as follows:

∂

∂t
u(x, y, t) + N(u(x, y, t)) = f (x, y, t), (x, y, t) ∈ Ω, (5)

with the initial condition

u(x, y, 0) = h(x, y) for any x, y ∈ [0, ∞)× [0, ∞).

Now, we apply Laplace transform with respect to t on both sides of Equation (5), and we then get

L
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}
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}
= L

{
f (x, y, t)

}
.

Using the differentiation property of the Laplace transform, we get

L
{

u(x, y, t)
}

= s−1h(x, y)− s−1L
{

N(u(x, y, t))
}
+ s−1L

{
f (x, y, t)

}
.

Taking the inverse Laplace transform on the above equation, we then obtain

u(x, y, t) = G(x, y, t)−L −1
{

s−1L
{

N(u(x, y, t))
}}

,

where the function G(x, y, t) represents the term arising from the source term and the prescribed initial
conditions.

Applying the homotopy perturbation method, He [18,19] constructed the function

v(x, y, t; p) : Ω× [0, 1]→ R,

which can be satisfied as follows:

H(v(x, y, t; p), p) = (1− p)[v(x, y, t; p)− ṽ0(x, y, t)] + p
[
v(x, y, t; p)− G(x, y, t)

+L −1
{

s−1L
{

N(v(x, y, t; p))
}}]

= 0,
(6)

where p ∈ [0, 1] is an embedding parameter or homotopy parameter and ṽ0(x, y, t) is an initial
approximation of Equation (6) which can be freely chosen [32] in Equation (5).

Furthermore, Equation (6) is called the homotopy equation, and it can be expressed as follows:

v(x, y, t; p) = ṽ0(x, y, t)− p
[
ṽ0(x, y, t)− G(x, y, t)

+L −1
{

s−1L
{

N(v(x, y, t; p))
}}]

.
(7)
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From Equations (6) and (7), we can clearly see that

p = 0 → H(v(x, y, t; 0), 0) = v(x, y, t; 0)− ṽ0(x, y, t) = 0,

p = 1 → H(v(x, y, t; 1), 1) = v(x, y, t; 1)− G(x, y, t)

+L −1
{

s−1L
{

N(v(x, y, t; 1))
}}

= 0.

By HPM technique, the solution v(x, y, t; p) in Equation (7) is expressed as a sum of components
which can be presented by the infinite series

v(x, y, t; p) =
∞

∑
i=0

pivi(x, y, t). (8)

By substituting Equation (8) into Equation (7) and using HPM, it can be expressed as follows:

∞

∑
i=0

pivi(x, y, t) = ṽ0(x, y, t)− p
[
ṽ0(x, y, t)− G(x, y, t)

+L −1
{
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{

N(
∞

∑
i=0

pivi(x, y, t; p))
}}]

.

To find the approximate solution vi, i = 0, 1, 2, . . . of this problem, the equating coefficients of
corresponding power of p on both sides are utilized. Furthermore, we obtain the recurrence relation as
given below:

v0(x, y, t) = ṽ0(x, y, t)

v1(x, y, t) = G(x, y, t)− ṽ0(x, y, t)

−L −1
{

s−1L
{

N(ṽ0(x, y, t))
}}

vm(x, y, t) = −L −1
{

s−1L
{

N(vm−1(x, y, t))
}}

when m ≥ 2.

According to the solution of Equation (8), we obtain

v(x, y, t; p) = v0(x, y, t) + pv1(x, y, t) + p2v2(x, y, t) + p3v3(x, y, t) + . . . .

From the above equation, p converges to 1, and we obtain the approximate solution in this problem (4)
can be expressed

u(x, y, t) = v(x, y, t; 1) = v0(x, y, t) + v1(x, y, t) + v2(x, y, t) + v3(x, y, t) + . . . . (9)

Furthermore, the series (9) leads to the explicit solution when infinite series converges.

4. Two-Dimensional Black Scholes Equation with Laplace Transformation Homotopy
Perturbation Method

In this section, the two-dimensional Black Scholes model in Equation (3) is considered
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)
− rc (10)

with initial condition

c(x, y, 0) = max(β1x + β2y− K, 0).
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Taking the Laplace transform with respect to t in Equation (10), we get
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Let
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L
{

c(x, y, t)
}

=
1
s

c(x, y, 0) +
1
s
L
{

N(c(x, y, t))
}

L
{

c(x, y, t)
}

=
1
s

max(β1x + β2y− K, 0) +
1
s
L
{

N(c(x, y, t))
}

.

Taking the inverse Laplace transform in the above equation, we obtain

c(x, y, t) = max(β1x + β2y− K, 0) +L −1
{1

s
L
{

N(c(x, y, t))
}}

.

Applying the Homotopy Perturbation Method, we construct the following:

(1− p)(c(x, y, t; p)− c̃0(x, y, t)) + p
[
c(x, y, t; p)

−max(β1x + β2y− K, 0)−L −1
{1
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where c̃0(x, y, t) can be freely chosen.
We choose c̃0(x, y, t) = max(β1x + β2y − K, 0) + ρ(x2 + y2)t and substitute c̃0(x, y, t)

in Equation (12). Thus,

c(x, y, t; p) = max(β1x + β2y− K, 0) + ρ(x2 + y2)t + p
[
− (x2 + y2)t

+L −1
{1

s
L
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N(c(x, y, t; p))
}}]

. (13)

We then assume the solution of problem (13) to be in the form

c(x, y, t; p) =
∞

∑
n=0

pncn(x, y, t). (14)
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By substituting the above Equation (14) into Equation (13), we get

∞

∑
n=0

pncn(x, y, t) = max(β1x + β2y− K, 0) + ρ(x2 + y2)t

+p

(
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Equating the corresponding power of p on the both sides in the above equation, we get

p0; c0(x, y, t) = max(β1x + β2y− K, 0) + ρ(x2 + y2)t

p1; c1(x, y, t) =
t2ρ
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,

and so on.

Proceeding in this same manner, we obtain

p0; c0(x, y, t) = max(β1x + β2y− K, 0) + ρ(x2 + y2)t

pn; cn(x, y, t) =
tn+1ρ
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[
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]
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−(−1)nrnmax(β1x + β2y− K, 0)
]

when n ≥ 1.
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So, the solution c(x, y, t; p) of problem (13) is given by

c(x, y, t; p) =
∞

∑
n=0

pncn(x, y, t)

= c0(x, y, t) +
∞

∑
n=1

pn

{
tn+1ρ

Γ(n + 2)

[
(σ2

1 + r)nx2 + (σ2
2 + r)ny2

]
− tn

Γ(n + 1)

[
(σ2

1 + r)n−1x2 + (σ2
2 + r)n−1y2

+(−1)nrn(max(β1, 0)x + max(β2, 0)y)

−(−1)nrnmax(β1x + β2y− K, 0)
]}

= c0(x, y, t) +
∞

∑
n=0

pn+1

{
tn+2ρ

Γ(n + 3)

[
(σ2

1 + r)n+1x2 + (σ2
2 + r)n+1y2

]

− tn+1

Γ(n + 2)

[
(σ2

1 + r)nx2 + (σ2
2 + r)ny2

+(−1)n+1rn+1(max(β1, 0)x + max(β2, 0)y)

−(−1)n+1rn+1max(β1x + β2y− K, 0)
]}

.

When p converges to 1, we get

c(x, y, t) = c0(x, y, t) +
∞

∑
n=0

{
tn+2ρ

Γ(n + 3)

[
(σ2

1 + r)n+1x2 + (σ2
2 + r)n+1y2

]

− tn+1

Γ(n + 2)

[
(σ2

1 + r)nx2 + (σ2
2 + r)ny2

+(−1)n+1rn+1(max(β1, 0)x + max(β2, 0)y)

−(−1)n+1rn+1max(β1x + β2y− K, 0)
]}

.

Hence, we obtain the explicit solution of Equation (10) as:

c(x, y, t) = max(β1x + β2y− K, 0) + x2
(

ρ(σ2
1 + r)E2,σ2

1+r(t)− E1,σ2
1+r(t) + ρt

)
+y2

(
ρ(σ2

2 + r)E2,σ2
2+r(t)− E1,σ2

2+r(t) + ρt
)

(15)

−r
(

max(β1, 0)x + max(β2, 0)y
)

E1,−r(t)

+rmax(β1x + β2y− K, 0)E1,−r(t)

where Ea,b(t) = ta ∑∞
k=0

(bt)k

Γ(a+k+1) is the Mellin–Ross function [33], in which a and b are constants.

5. Solution Example

In this section, the explicit solution in Equation (15) is implemented to compute the value of
European call option by using MATLAB programming (Matlab Release R2016b, The MathWorks Inc.,
Natick, MA, USA) and the condition as in (2) and β1 = 2, β2 = 1,

c(S1, S2, T) = max(2S1 + S2 − K, 0),



Math. Comput. Appl. 2017, 22, 23 8 of 11

with strike price K = 70. The risk-free interest rate per year is 5%, so r = 0.05, the maturity time
is T = 1 measured in years, and the volatilities of the underlying assets S1 and S2 are σ1 = 5% and
σ2 = 10%, respectively.

In Figure 1, the value surface of European call option with the correlation, ρ = 0.25, at maturity
time is presented over a range of stock prices 0 ≤ S1 ≤ 200 and 0 ≤ S2 ≤ 200 surrounding at the
strike price. The result shows that by increasing the stock prices, S1 and S2, the option value increases
significantly. For the set of parameters K, r, σ1, σ2 and T, the different value of European call option
of non-negative correlation ρ0 = 0 and ρ1 = 0.25 and non-positive correlation ρ0 = 0 and ρ2 = −0.5 is
plotted over a range of stock prices 0 ≤ S1 ≤ 200 and 0 ≤ S2 ≤ 200 at the maturity time, as shown
in Figure 2. The results as shown in Figure 2 indicate that the correlation has a significant effect on
the European call option. Furthermore, increasing both of the stock prices leads to an increase of the
different values of European call option.

Before the expiration date, the value of European call option when correlation varies from −1 to 1
is investigated as shown in Figure 3. The influence of stock price S2 with fixed stock price S1 and stock
price S1 with fixed stock price S2 is shown in Figure 3a,b, respectively. Three different stock prices
of S1 and S2 used in this investigation are set to strike price K = 70 and K ± 30. It is apparent that
the relationship between the European call option and the correlation parameter is a linear increasing
pattern. The results also indicate that a higher stock price gives a higher rate of change in European
call option.
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Figure 1. The explicit solution of European call option price obtained from two-dimensional Black
Scholes model with stock prices S1, S2 and correlation ρ = 0.25.
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Figure 2. The different value of European call option, Cρ1 − Cρ0 and Cρ0 − Cρ2 at the maturity T with
stock prices S1, S2 and correlation ρ each other: (a) ρ1 = 0.25 and ρ0 = 0; (b) ρ0 = 0 and ρ2 = −0.5.
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Figure 3. Relationship between the European call option and the correlation ρ at a day before the
maturity date: (a) S1 = 70; (b) S2 = 70.

6. Conclusions

One of the most well-known and useful mathematical models in the financial market is the Black
Scholes model. In this article, we consider the two-dimensional Black Scholes equation based on
European call option. By using the LHPM, we obtain the explicit solution of the problem in the form
of a special function, namely the Mellin–Ross function. The advantage of LHPM for this problem is
that this explicit solution can be easily implemented to simulate the European call option depending
on two stock prices in order to apply in a real life situation for financial markets.
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