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Abstract: Temperature has an influence on damping characteristics of the viscoelastic damping
structure. The change of the damping characteristics of the structure under the cycle load is a
dynamic and coupled process. The hyperelastic-viscoelastic model was used to describe nonlinear
deformation and viscoelasticity simultaneously. The temperature distribution and change of the
damping characteristics under the coupled condition was analyzed by finite element method (FEM).
The maximum value of the simulation results was in agreement with the one calculated by the
formula in the literature. Dynamic stiffness and dissipated energy were obtained based on the
hysteresis loop. Dynamic stiffness and dissipated energy gradually decreased with the increase of
the temperature.
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1. Introduction

The viscoelastic damping structure is widely applying for vibration and noise reduction.
The viscoelastic damping layer, most of which is rubber or rubberlike polymers, represents hysteresis
under a dynamic load. Part of the mechanical energy is absorbed and finally dissipated as heat due to
the internal friction of the molecular chains. Continuous cyclic load and poor conduction of heat may
cause extensive heat to build up in the structure. The mechanical response of the viscoelastic materials
is often highly sensitive to temperature [1–3]. Heat may change the mechanical characteristics of the
structure and the damping capability [4–6]. Excessive heat may lead to early fatigue failure or even
explosive rupture. Therefore, it is essential to evaluate the temperature distribution and damping
characteristics of the viscoelastic damping structure due to the mechanical energy dissipation during
cyclic loading.

Numerous analyses have been proposed to estimate the temperature distribution and damping
characteristics of viscoelastic material and its structure. Macro-mechanical or micro-mechanical
material models were proposed to describe thermo-viscoelastic behavior [7–10]. The complexity
of the theory restricts their engineering application. Habibi et al. investigated structural bamboo
at the microscopic and macroscopic level [11]. Two kinds of biological cells separately have the
responsibility of viscoelasticity at lower or higher frequencies. David I. G. Jones introduced simple
and effective approaches for describing the damping-related properties of viscoelastic materials, with
emphasis on the effects of frequency and temperature, and proceeded to illustrate simple techniques
for measuring the desired properties and for selecting and applying the materials [12]. Johnson and
Chen employed a linear viscoelastic model (the Maxwell solid model) to solve the coupled thermal
and large strain history integral. Due to under-prediction of the size of the hysteresis loop in the
linear viscoelasticity, the error in dissipated energy prediction at large strain is unacceptable [13].
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Shah et al. studied the coupled problem of deformation of a linear-viscoelastic composite cylinder
by applying the correspondence principle [14]. Pesek et al. proposed a mathematical model based
on a weak formulation of the partial differential equation by FEMLAB (original release of COMSOL
Multiphysics) to investigate the thermo-mechanical interaction in a pre-stressed rubber block used
for resilient elements of composed tram wheels. A proportional damping model and the equality
of the heat energy density and the dissipation energy density were computed to perform coupling
between the mechanical and thermal equations under selected simple stress states [15]. Banic et al.
investigated the temperature of a rubber damper under cyclic loading due to hysteresis losses by finite
element analysis (FEA). The visco-plastic constitutive model established by Bergstrom-Boyce was used
to predict the heat generation and hysteresis in the rubber-metal spring of railway draw gear [16].
Luo et al. predicted the heat generation of a rubber spring instrument during the spring-accelerated
fatigue test. A static hysteresis loop was obtained via the FEA approach experimentally [17]. Kamran
and Anastasia used a non-linear visco-elastic constitutive model (proposed by Schapery) to analyze
the effect of coupling between the thermal and mechanical response, which was attributed to the
dissipation of energy, heat conduction and temperature-dependent material parameters on the overall
response of visco-elastic solids [18]. Hwang and Yeong analyzed the temperature distribution of
a coupled 3D dynamic rolling simulation of a tire by finite element method (FEM) [19]. The heat
generation rate was assumed to be equal to the strain energy density function multiplied by the
hysteresis coefficient. Fenza et al. investigated the damping characteristics of a viscoelastic embedded
composite fuselage structure by experiments at different temperatures [20]. Kerchman and Cheng [21]
evaluated the heat generation and transient temperature using linearized constitutive model and FEM.
Frequency-dependence on the Viscoelastic Damping VED structure is also a matter of major concern.
The sandwich viscoelastic damping structure is analyzed by the method of model reduction to reduce
the high-order finite element models to a smaller size in direct dynamic analysis [22]. The frequency
response analysis of viscoelastic beams and plane frames with an arbitrary number of Kelvin-Voigt
viscoelastic dampers was concerned. The exact frequency response in all frame members was also
obtained in closed analytical form [23].

Since the damping characteristics of viscoelastic material are sensitive to temperature, also
due to the low conductivity of the material, the damping ability is a dynamic coupled process.
Some works treated the coupled problem with a one-way coupling approach, especially common in
the rolling resistance field of rubber tires. Some coupled thermo-mechanical constitutive models need
to user-defined material (UMAT) subroutine by support. Meanwhile, due to the coupled effect, the
temperature distribution of the viscoelastic damping structure may not be constant or homogeneous.
In this paper, a fully coupled analysis of the viscoelastic damping structure will be investigated to
describe the change of the damping characteristics more accurately. The investigation by commercial
finite code ABAQUS (Dassault Systèmes, Vélizy-Villacoublay, France) will be validated by comparing
it with the available field data in the present literature.

2. Simulation Method

2.1. Hyper-Viscoelastic Model

Viscoelastic materials usually represent large deformation and dynamic characteristics
simultaneously. The linear viscoelastic models do a poor job of replicating the hysteresis loop in
a load/unload cycle of deformation because the hysteresis loops generated are narrow. Therefore,
the combined usage of the hyperelasticity and linear viscoelasticity (usually described as a Prony
series) is used for the hysteresis analysis. The stress response of the hyper-viscoelastic model consists of
a nonlinear elastic part and a viscous part. The elastic response is instantaneous while the viscous part
is prolonged over time. More details of the constitutive model as formulations and implementation
are available in the literature [24,25]. The hyperelastic response (time-independent) is generally
derived from stress-strain data by tensile, compression, shear and/or biaxial tests. There stress-strain
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data may be fitted as a particular strain energy function by the linear or nonlinear least squares
method. The dynamic mechanical characteristics may be obtained by the dynamic mechanical
analyzer (DMA). The Prony series parameters were fitted by the optimization method. For simplicity,
the constitutive parameters of the material were from the example in the ABAQUS Example Problem
Manual article [26,27]. All units of British thermal units (BTU) parameters were translated into the
international system of units (SI).

The hyperelastic response is described as the Neo Hooke model:

U = C10(I1 − 3) +
1

D1
(Jel − 1)2 (1)

where C10 is the positive material parameter, C10 = 1.0423× 103, psi = 7.1864× 106 Pa, and D1 controls
compressibility, D1 = 9.6267× 10−6.

The N-term Prony series:

g(t) = g∞ +
N

∑
i=1

gi exp(−t/τi) (2)

where g∞ and gi are normalize dimensionless constants and g∞ +
N
∑

i=1
gi = 1.

The Prony parameters were as follows: g1 = 0.0396, t1 = 1.766. g2 = 0.1018, t2 = 0.1536.
g3 = 0.858, t3 = 0.0127.

2.2. Finite Element Method (FEM) Implementation

For temperature dependence, most viscoelastic materials are usually assumed as thermal
rheological simple (TRS) material near or above the glass transition temperature. The TRS translation
function is expressed by the Williams–Landel–Ferry (WLF) equation [28]:

log A = − C1(θ − θ0)

C2 + (θ − θ0)
(3)

where the values are defined as θ0 = 21.7 ◦C, C0
1 = 56.1 ◦C, and C0

2 = 1000 ◦C.
By means of the backward difference method, the temperature is integrated into the Newton

method for solving nonlinear equations. Its exact solution algorithm [28]:[
Kuu Kuθ

Kθu Kθθ

]{
∆u
∆θ

}
=

{
Ru

Rθ

}
(4)

where ∆u and ∆θ are the respective corrections to the incremental displacement and temperature,
Kij are sub-matrices of the fully coupled Jacobian matrix, Ru and Rθ are the mechanical and thermal
residual vectors, respectively.

A viscoelastic damping structure consisting of two elastic constrained layers and one viscoelastic
damping layer was accomplished by the solution of temperature displacement in ABAQUS. The length
was 0.09 m with 45 elements. The thickness of the elastic constrained layer and the viscoelastic damping
layer was 0.01 m with eight elements. The elastic constrained layer was discretized into 4-node plane
strain thermally coupled quadrilateral (CPE4T) elements and 4-node plane strain thermally coupled
quadrilateral (CPE4HT) elements for the viscoelastic damping layer. A sinusoidal displacement
U = 0.0064 sin ωt (ω = 2π f , f = 1 Hz) in the x direction was applied on the top left-hand corner.
The bottom side was completely fixed (Figure 1). Heat generation by hysteresis is associated with
intrinsic dissipation due to plasticity, which is usually described by inelastic heat friction (IHF). IHF is
defined by the ratio of the dissipated energy to the plastic work [29]. For viscoelastic materials, the
IHF is assumed to be 1.071 × 10−4 in the ABAQUS help documentation. The properties of materials
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refer to the ABAQUS Example Problem Manual article (Table 1). The initial temperature was 21.7 ◦C.
An adaptive time stepping was determined with a creep strain error tolerance of 5 × 10−3.
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Figure 1. Finite Element (FE) model of viscoelastic structure.

Table 1. Properties of materials.

Property Elastic Constrained Layer Viscoelastic Damping Layer

Density (kg/m3) 7850 1130
Modulus of elasticity (Pa) 2.1 × 1011 -

Poisson ratio 0.3 -
Thermal expansion coefficient

(10−6(m/m·K)) 10.8 220

Specific heat capacity (J/kg·◦C) 502 1900
Heat conduction (W/(m·◦C) 70 0.14

Non-elastic thermal friction coefficient - 1.071 × 10−4

3. Results and Discussion

3.1. Temperature Distribution

The temperature distribution in the end was contoured on a postprocessor (Figure 2).
The temperature adjacent to the elastic constrained layer nearly maintained the ambient temperature
(21.7 ◦C) due to pure elasticity and excellent thermal conductivity. The temperature was increased
from the outside to the inside as concentric circle in the viscoelastic damping layer. The maximal value
θmax appeared in the center, and reached 28.1 ◦C. The same result could be found in the ABAQUS
Example Problem Manual article.

Math. Comput. 2017, 22, x FOR PEER  4 of 8 

 

article (Table 1). The initial temperature was 21.7 °C. An adaptive time stepping was determined 
with a creep strain error tolerance of 5 × 10−3.  

 

Figure 1. Finite Element (FE) model of viscoelastic structure. 

Table1. Properties of materials. 

Property  Elastic Constrained Layer Viscoelastic Damping Layer 
Density (kg/m3) 7850 1130 

Modulus of elasticity (Pa) 2.1 × 1011 - 
Poisson ratio 0.3 - 

Thermal expansion coefficient 
(10−6(m/m·K)) 

10.8 220 

Specific heat capacity (J/kg·°C) 502 1900 
Heat conduction（W/(m·°C) 70 0.14 

Non-elastic thermal friction coefficient - 1.071 × 10−4 

3. Results and Discussion  

3.1. Temperature Distribution  

The temperature distribution in the end was contoured on a postprocessor (Figure 2). The 
temperature adjacent to the elastic constrained layer nearly maintained the ambient temperature 
(21.7 °C) due to pure elasticity and excellent thermal conductivity. The temperature was increased 
from the outside to the inside as concentric circle in the viscoelastic damping layer. The maximal 
value maxθ appeared in the center, and reached 28.1 °C. The same result could be found in the 
ABAQUS Example Problem Manual article.  

 

Figure 2. Temperature (°C) contour in the end.  

The value for maxθ  can also be calculated by the next formula [30]: 

2

max 8
dfU H
K

θ θ= +  (5) 

whereθ is the initial temperature, f is the frequency of the loading cycles, H is the thickness of the 
viscoelastic component, K is the heat conduction of the viscoelastic material, and dU is the amount 
of energy generated per cycle: 

2
2 0dU Eπ ε=  (6) 

Elastic constrained layer
Viscoelastic damping

layer 

U 

Fixed

Figure 2. Temperature (◦C) contour in the end.

The value for θmax can also be calculated by the next formula [30]:

θmax = θ +
f UdH2

8K
(5)

where θ is the initial temperature, f is the frequency of the loading cycles, H is the thickness of the
viscoelastic component, K is the heat conduction of the viscoelastic material, and Ud is the amount of
energy generated per cycle:

Ud = πE2ε2
0 (6)

where E2 is the loss modulus of the viscoelastic material and ε0 is the amplitude of the strain.
Further, θmax calculated at 28.9 ◦C by Equation (5) matched well with the simulation (28.1 ◦C).

The simulation error was 2.7%, so it is clear that the proposed method has the advantages of high
accuracy to evaluate the maximal value of the temperature distribution.
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3.2. Dynamic Damping Characteristics

In this part, the change of the dissipated energy and dynamic stiffness were discussed.
The hysteresis loop is generated by load and displacement due to hysteresis behavior. The integration
area of the hysteresis loop is the dissipated energy Ed, which represents the ability of the viscoelastic
damping structure. The reaction force of every node RFn on the bottom and displacement x of left
corner on the top were extracted separately on the postprocessor. The reaction force of the structure
RF was summed by RFn. The combined RF with x the hysteresis curve was drawn (Figure 3a).
The hysteresis loop did not form completely in the first period, so Ed was calculated from the second
period to the end. Ed was reduced with the increase of the temperature. With the temperature increased,
the relaxation time of the intermolecular motion was shortened. The dissipated energy was decreasing
because the motion of the molecule gradually kept up with the external force [13]. Dynamic stiffness is
defined as GB/T 15168-2013 [31]

Fd =
F0

X0
· y′

x′
(7)

where F0 is double amplitude in maximal displacement, X0 is double amplitude corresponding to the
transmitting force, x′ is the displacement per unit length on the x-axis, and y′ is the force per unit
length on the y-axis (Figure 3b). Thirty percent of the dynamic stiffness was decreased in the period of
loading. A similar result was found by Liu [23]. Both the stiffness and damping coefficient decreased
with the temperature increasing. Creep was aggravated by the temperature rising while the carrying
capacity of the viscoelastic damping structure decreased. With the increase of the total number of
cycles, the elastic modulus or stiffness of the material decreases. It is a common phenomenon that the
structural stiffness cannot bear external load before the material has been destroyed. The ability of the
dissipated energy will strongly decline. The change of Ed and Fd were seen in Figure 4.
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4. Conclusions

The aim of this research was to investigate the temperature distribution and change of the damping
characteristics of the viscoelastic damping structure under a coupled condition. A hyper-viscoelastic
constitutive model was employed to describe the hyperelastic response and viscoelastic response.
A two-dimensional planar FEM model was analyzed in the coupled temperature-displacement solver
in ABAQUS. The temperature distribution at the end of the load illustrated that built-up heat appeared
in the center of the structure. The maximal temperature is in agreement with the one calculated by
the empirical formula. With the increase of the temperature caused by inelastic dissipation comes
a reduction in the dissipated energy and dynamic stiffness. Since viscoelastic materials exhibit
better dissipation behavior when subjected to shear load, in the future research the analysis will be
implemented in more styles of load such as bend, compression and hybrid condition. Besides, the IHF
coefficient is a key factor for determining the dissipated energy due to the inelastic deform. The value
of the IHF will be evaluated precisely by an experiment in the next step.
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