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Abstract: The idea of the normalisation of the Hamiltonian system is to simplify the system by
transforming Hamiltonian canonically to an easy system. It is under symplectic conditions that the
Hamiltonian is preserved under a specific transformation—the so-called Lie transformation. In this
review, we will show how to compute the normal form for the Hamiltonian, including computing
the general function analytically. A clear example has been studied to illustrate the normal form
theory, which can be used as a guide for arbitrary problems.
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1. Introduction

A Hamiltonian system is a dynamical system that satisfies

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

, (1)

ordinary differential equations (ODEs). Here, q ∈ Rn represents the coordinates of the configuration
variable (positions) and their canonically conjugate momenta p ∈ Rn. The function H = H(q, p, t)
is called the Hamiltonian of System (1) with n degrees of freedom (n dof).We may write the
Hamiltonian system

ẏ = J∇H(y, t)

where J is the 2n× 2n Poisson matrix J =

[
0 In

−In 0

]
and y = (q, p). Furthermore, the Hamiltonian

H possesses an equilibrium y0 (i.e., ∂H
∂y (y

0) = 0) at the origin in R2n. If not, we make the shift

y = ŷ + y0 zero. For many dynamical systems, the Hamiltonian H represents the energy in the system.
Furthermore, the Hamiltonian H will be in the form H(q, p) = T + V, where T is the kinetic energy
and V is the potential energy of the system and is a function of q alone. The energy is constant, if a
Hamiltonian does not depend explicitly on the time t:

dH
dt

=
∂H
∂q

dq
dt

+
∂H
∂p

dp
dt

= 0,

by (1). Hence, H(q(t), p(t)) = H(q(0), p(0)) = E. This is called conservation of energy.
Where the Hamiltonian depends on time H(q, p, t), the energy is not conserved [1–3].

2. Methodology

Here, we will provide a brief description of the normal form of the Hamiltonian system process
using the Lie transform [4–8]. We are going to transform a given Hamiltonian H = H(q, p)
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into another Hamiltonian K = K(Q, P) which is simpler by means of a canonical transformation
Q = Q(q, p, t) and P = P(q, p, t).

If we define the Hamiltonian function H(q, p, t) and transformed Hamiltonian function K(Q, P, t)
such that

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

, (2)

Q̇ =
∂K
∂P

, Ṗ = − ∂K
∂Q

, (3)

then the coordinate transformation (q, p) → (Q, P), such that Q = Q(q, p, t) and P = P(q, p, t), is
the so-called canonical transformation [9]. However, in our example, we use the exterior product to
verify whether the transformations are canonical or not by using its properties [10,11]. In detail, if
A(v, w) denotes the area of the parallelogram determined by the pair of vectors v and w then A has
the following properties:

• A(v, v) = 0 .
• A(v, w) = −A(w, v) .

Apply these two properties in the transformation (q, p)→ (Q, P) such that

ω2 = dq1 ∧ dp1 + dq2 ∧ dp2 + ...,

and
ω2 = dQ1 ∧ dP1 + dQ2 ∧ dP2 + ...,

if
n
∑

i=1
dqi ∧ dpi =

n
∑

i=1
dQi ∧ dPi , then the transformations are canonical.

Lie transformation provides a symplectic change of the variable that depends on a small parameter
as the general solution of the Hamiltonian system [4,5]. In detail, the general solution X (y, ε) defines
a canonical transformation such that x = X (y) with the inverse y = Y(x), and hence X (Y(x)) = x,
where the time ε maps the flow of the Hamiltonian system. It is defined by the generation function
W. [4,5] We will set time ε = 1 in order to make our transformations canonical. We then have

x = X (y) := X (y, ε = 1) = X |ε=1(y).

2.1. Generating Function

The generating function W(y, ε) is an auxiliary non-autonomous Hamiltonian depending on the
parameter ε, and the coordinates y = (q, p) = (q1, .., qn, p1, ..., pn). The Hamiltonian system associated
with the generating function is given by

dq
dε

=
∂W(y, ε)

∂p
,

dp
dε

=
−∂W(y, ε)

∂q
.

The general solution is written as X : (y, ε) 7→ X (y, ε). For example, the solution curve through
a particular point y∗ can be written as

Xy∗ : ε 7→ X (y∗; ε),

with initial condition x = (y, 0) = X (y, ε)|ε=0 = y.



Math. Comput. Appl. 2017, 22, 37 3 of 10

To make sure that the transformation between the original Hamiltonian and the new one is valid,
we resort to an indirect generating function approach that can be derived from an action principle of
the form

Sqp =
∫ t1

t0

[pq̇− H(q, p, t)]dt.

Let us consider the independent variations δq, δp and ask the action to be minimized with respect
to these variations:

0 = δSqp =
∫ t1

t0
[pδq̇ + q̇δp− ∂H

∂q δq− ∂H
∂p δp]dt

=
∫ t1

t0
[(− ṗ− ∂H

∂q )δq + (q̇− ∂H
∂p )δp]dt + [pδq]|t1

t0

Similarly, we calculate the variation of the action in P and Q:

δSQP =
∫ t1

t0

[(−Ṗ− ∂K
∂Q

)δQ + (Q̇− ∂K
∂P

)δP]dt + [PδQ]|t1
t0

.

We need to show that the integral term vanishes for any variations δQ, δP. Furthermore, the
solution to the action principle is unchanged if Sqp − SQP = W|t1

t0
, where W = W(q, t) is a function

of coordinates and time. If we use this condition of the action principle and keep both q and p fixed
at the initial and final times, then W is a function of coordinates and momenta W = W(q, p, t). To
summarize, we have demonstrated a sufficient condition for the transformation (q, p)→ (Q, P) to be
a canonical transformation, if there is a function W(q, Q, t) such that

p =
∂W
∂q

P = −∂W
∂Q

, K = H +
∂W
∂t

,

where W is called a generating function. Note that if the system does not depend explicitly on time
t then the new Hamiltonian function is the same as the old Hamiltonian function. There are four
types of generating functions. All have old coordinates or old momenta and new coordinates or
new momenta, respectively. Moreover, the generating function can be determined with respect to
the normal forms. It has a different process to calculate. In the next section, we will explain the normal
form of a Hamiltonian and then provide an example to clarify the theoretical part.

2.2. Normal Form

We write the coordinate change as

x = X (y), y = Y(x),

with X (Y(x)) = x, where x = (x1, ..., x2n) = (q1, ..., qn, p1, ..., pn) and y = (y1, ..., y2n) =

(Q1, ..., Qn, P1, ..., Pn). Suppose the Hamiltonian function H depends on a parameter ε:

H =
∞

∑
i=0

εi

i!
Hi(x, ε),

where xi, 1 ≥ i ≥ n refers to the coordinates and xi, n + 1 ≥ i ≥ 2n refers to their conjugate momenta.
The transformed Hamiltonian K also depends on a parameter ε:

K =
∞

∑
i=0

εi

i!
Ki(y, ε) ≡

∞

∑
i=0

εi

i!
H(i)

0 (y, ε),

where xi, 1 ≥ i ≥ n refers to the transformed coordinates and xi, n + 1 ≥ i ≥ 2n refers to their
conjugate momenta.
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Lie transformation can be achieved by using the solution to another Hamiltonian system defined
by the generating function

W =
∞

∑
i=0

εi

i!
Wi+1(y, ε), where Wi+1(y) = (

∂i

∂εi W(y, ε)),

following the recursion formula

H(j)
i = H(j−1)

i+1 +
i

∑
k=0

(
i
k

)
{H(j−1)

i−k , Wk+1}, (4)

with i ≥ 0, j ≥ 1, and hence, Hi
(0) = Hi. The operator {·, ·} is the so-called Poisson bracket of two

scalar fields: given A, B : R2n → R and is defined as the quantity

{A, B} =
n

∑
i=1

∂A
∂xi

∂B
∂xn+i

− ∂A
∂xn+i

∂B
∂xi

,

where q, p are coordinates and momenta, respectively [12].
Note that W(x, ε) is conserved under the transformation and can be written as W(x, ε) = W(y, ε).
We express the original Hamiltonian (H) in terms of the new variable (Q, P) as K = K(Q, P, ε) by

means of
K(Q, P, ε) ≡ H(q(Q, P, ε), p(Q, P, ε)︸ ︷︷ ︸

X (y,ε)

, ε),

where X (y, ε) =
∞
∑

i=0

εi

i!Xi(y, ε). The coordinate change will be a near-identity map, which means that

X0(y) = y and thus,

X (y, ε) = y +
∞

∑
i=1

εi

i!
Xi(y, ε).

A similar formula can be used to see the change of coordinates back to the old ones, which is

Y(x, ε) = x +
∞

∑
i=1

εi

i!
Yi(x, ε).

Here, we define the quantities Li
j as the relation between the coefficients of the various series that

are expressed in terms of intermediate quantities Li
j with 0 ≤ j, i ≤ n and j + i = n. These quantities

can compute the transformed Hamiltonian Kn from the original Hamiltonian Hn and other quantities
are computed by a chain of relations:

Hn ≡ Ln
0 → Ln−1

1 → ...→ L1
n−1 → L0

n ≡ Kn.

The following recursion formula relates the terms K with those in H and W by quantities Li
j

Li
j = Li−1

j+1 +
j

∑
k=0

(
j
k

)
{Li−1

j−k, Wk+1}, (5)

with j ≥ 0 and i ≥ 1 [9,13,14].
The last Equation (5) has the binomial coefficient ( j

k) = j!
k!(j−k)! . Note that the calculation of

L0
0 makes the first term H0 and K0 equal because W is a near identity transformation, and hence,

the transformation is generated [12]. In addition, the first term in the expansion for W starts with W1.
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The normal form process can be stopped at any existing order. The Lie triangle summarizes
the recursion process [4,5]. Thus, the process and Lie triangle are as follows:

K0 : K0 ≡ L0
0 = H0

K1 : K1 ≡ L0
1 = L0

1 + {W3, L0
0}

= H1 + {W1, H0}
K2 : K2 ≡ L0

2 = L1
1 + {W1, L0

1}
= L0

2 + {W1, L0
1}+ {W2, L0

0}+ {W1, L0
1}

= H2 + {W1, H1}+ {W2, H0}+ {H1 + {W1, H0}, W1}
= H2 + {W1, H1}+ {W2, H0}+ {W1, H1}+ {{W1, H0}, W1}
= H2 + 2{W1, H1}+ {W2, H0}+ {{W1, H0}, W1},

where Ki is the transformed Hamiltonian and

L0
0
↓ ↘
L0

1 → L1
0

↓ ↓ ↘
L0

2 → L1
1 → L2

0
↓ ↓ ↓ ↘
L0

3 → L1
2 → L2

1 → L3
0

...
. . .

...
. . .

...
. . .

...
. . . ,

(6)

respectively [9]. By using Lie transformations to compute the normal form, the transformed
Hamiltonian K is defined as

K = K0 + K1 + ...

In general, K is in normal form, where Kn is the polynomial of the degree n + 2. In addition, for
any smooth function f , then

{ f , Ki} = 0, with i = 0, 1, ... .

This is the so-called normal form with respect to a given function. However, the same property
can be applied on its own quadratic terms, namely K2 such that {K0, Ki} = 0. Thus, the normal form
of quadratic terms K0 has the form

K0(y) =
n

∑
j=1

λj(qj pj),

where qj and pj are configuration space coordinates and their conjugate momenta, respectively.
Additionally, the coefficients of products qj pj are given by the vector λ = (λ1, ..., λn) ∈ Cn.

To sum up, assume that we have the Hamiltonian such that

H = H0 + H1 + ... ,

with Hn is the polynomial of degree n + 2 and its coordinates denoted by x = (q, p). The aim of
normalization is to find the easiest change of coordinates

x = X (y), (canonical)

with the inverse
y = Y(x),

through the generating function W, such that the function H expressed in terms of y by means of

H(X (y)) = K(y),
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with K = K0 + K1 + ... results in a transformed Hamiltonian K, that is in the normal form through the
degree n + 2.

The above method was first proposed by Deprit [5]. Here, we have followed the presentation
style of [9].

2.3. Computing a Generating Function W

In more detail, we provide an example to show how to find generating functions W3 and W4 of
the degree three and four in formal norm [15].

Consider H to be a Hamiltonian of (n dof). Let us expand H in power series such that

H(q, p) = H2(q, p) + εH3(q, p) + ... , (7)

where Hn(q, p) is a homogeneous polynomial of degree n in the variables (q, p). The aim is to perform
transformations canonically to make the expansion simple. We will perform all series manipulations
formally, and set ε = 1 afterwards.

As we have (7), then

K = eε{W3,·}H,
= [I + ε{W3, ·}+ ε2

2 [W3, {W3, ·}}]H,
= H2 + ε(H3 + {W3, H2}) +O(ε2),

where K is the transformed Hamiltonian. It is easy to see that the monomials of degree three of K can
be obtained using generating function W3 by

H̄3 = H3 + {W3, H2}.

We choose the coefficients of W3 such that H̄3 is zero.
Note that if we assume x = (x1, x2, ..., xn) and k = (k1, ..., kn) ∈ Nn,and we define

xk = xk1
1 ...xkn

n and |k| = k1 + ... + kn,

hence H3 and W3 can be written as

H3(q, p) = ∑
|kq |+|kp |=3

hkqkp qkq pkp ,

W3(q, p) = ∑
|kq |+|kp |=3

wkqkp qkq pkp .

We determine the coefficients such that {W3, H2} = −H3. Note that {H2, ·} is a linear operator
and takes the diagonal form, due to

{H2, qkq pkp} = i〈kp − kq, ω〉qkq pkp .

Hence, it is easy to find W3 such that

W3(q, p) = ∑
|kq |+|kp |=3

=
−hkqkp

i〈kp − kq, ω〉 q
kq pkp .

However, 〈k, ω〉 do not vanish for any k ∈ Z − {0}. If the components of frequency vector
ω = (ω1, ω2, ..., ωl) are linearly independent and |kq| + |kp| = 3, then this condition is satisfied.
Once W3 has been calculated, we can compute the new coordinates as a function of the old ones and
vice versa [9,12,13].
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We rewrite the transformed Hamiltonian as function of H such that

H(q, p) = H2(q, p) + H4(q, p) + H5(q, p) + ... .

The following step is calculating the generating function W4 to get rid of the monomials of degree
four from H. In general, this cannot be applied because {H2, ·} has some zero eigenvalues:

{H2, qk pk} = 0.

Thus, we can only solve the equation {W4, H2} = −H4, if the form of H4 is qkq pkp , with kq 6= kp:

W4(q, p) = ∑
|kq |+|kp |=4

=
−hkqkp

i〈kp − kq, ω〉 q
kq pkp .

The presented method is formal without looking at the convergence of the variables. There are
many applications presented in the series divergence. The important part of the method process is
the first orders of the transformed system, which provide interesting information due to the linear
approximation around the equilibrium. The process can be studied up to any existing order (ε) for
a good approximation [16,17]. In other words, the first order terms consist of useful information to
reduce the transformed system without being affected by the divergent character, where the general
perturbation theorem takes place.

To summarize, once the generating function W is calculated, we can derive the new coordinates as
functions of the old ones and vice versa. Additionally, the generating function W and the calculations
of Poisson brackets can be used to see the coordinates changing back to the old ones without any
additional calculations. There are some interesting examples in physics and engineering for the idea of
Hamiltonians normal forms and generating functions which can be found in the book by Sanders and
Verhulst [18]. An example follows the theoretical part for clarification.

3. Example

Let us consider the Hamiltonian function that is defined as

H =
1
2
(p2

x + p2
y)−

1
2

ω2
b x2 +

1
2

ω2
yy2 + ax3 + bxy2. (8)

Firstly, we rescale px, py, x and y such that

q1 =
x

ωb
, q2 =

y
ωy

, p1 = ωb px, p2 = ωy py.

This rescaling is canonical and easy to check. It is also easy to see that

dq1 =
1

ωb
dx, dp1 = ωbdpx.

According to the properties of the exterior product, the following equation holds:

dq1 ∧ dp1 = dx ∧ dpx.

The same can be done for all other rescalings. As a result, the Hamiltonian function becomes

H =
1
2

ωb(p2
1 − q2

1) +
1
2

ωy(p2
1 + q2

1) + aω3
bq3

1 + bωbω2
yq1q2

2. (9)
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Expression (9) can be written in a much simpler form by introducing the coordinates

Q1 =
1√
2
(p1 + q1), P1 =

1√
2
(p1 − q1),

Q2 =
1√
2
(q2 − ip2), P2 =

1√
2
(p2 − iq2).

The same as before, these transformations are canonical and easy to verify

dP1 =
−1√

2
dq1 +

1√
2

dp1, dQ1 =
1√
2

dp1 +
1√
2

dq1,

dP1 ∧ dQ1 =
−1
2

dq1 ∧ dp1 +
−1
2

dq1 ∧ dq1 +
1
2

dp1 ∧ dp1 +
1
2

dp1 ∧ dq1 = dp1 ∧ dq1.

According to the normal form process (more details can be found in [9,12,13]), the Hamiltonian
function is defined as follows

H(Q, P) = H2(Q, P) + εH3(Q, P) + ... ,

thus
H2(Q, P) = ωbQ1P1 + iωyQ2P2.

Next, we calculate H3 terms in the new coordinates Q1, Q2, P1, P2.
From the canonical transformation, we have

q1 =
1√
2
(Q1 − P1), q2 =

1√
2
(Q2 + iP2).

Hence

H3 =
aω3

b
2
√

2
(Q3

1 − 3Q2
1P1 + 3Q1P2

1 − P3
1 )

+
bωbω2

y

2
√

2
(Q1Q2

2 + 2iQ1Q2P2 −Q1P2
2 − P1Q2

2 − 2iP1Q2P2 + P1P2
2 ) .

Now, the generating function W3 of order three associated with H3 is as follows:

W3 = a1Q3
1 + a2Q1Q2

2 + a3P3
1 + a4P1P2

2 + a5Q2
1P1 + a6Q1P2

1
+a7Q1P2

2 + a8P1Q2
2 + a9Q1Q2P2 + a10P1Q2P2 .

The coefficients (a1, ..., a10) can be determined by setting

H3 + {W3, H2} = 0.

The coefficients have been calculated, and hence, we get

a1 =
−aω2

b

6
√

2
, a2 =

−bωbω2
y

2
√

2(ωb + 2iωy)
, a3 =

aω2
b

6
√

2
,

a4 =
bωbω2

y

2
√

2(ωb + 2iωy)
, a5 =

3bω2
y

2
√

2
, a6 =

3bωb

2
√

2
,

a7 =
bωbω2

y

2
√

2(ωb − 2iωy)
, a8 =

bωbω2
y

2
√

2(2iωy −ωb)
,
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a9 =
−ibω2

y√
2

, a10 =
ibω2

y√
2

.

Thus, the normal form in our example is H2 with respect to the generating function W3, whose
coefficients are presented above.

4. Conclusions

In this paper, we presented a general calculation of normal forms of Hamiltonian systems that
is quadratic polynomial in the positions only. Previously, in Section 2, we provided the Hamiltonian
normal forms theory that led to a reduced Hamiltonian number of degrees of freedom. More precisely,
the generalization of Hamiltonian normal forms theory contains a very important step—the so-called
generating function W. This function plays an important role in transforming the old Hamiltonian H
into an equivalent Hamiltonian K up to an existing order of approximation and taking into account that
the Poisson bracket of each term of the transformed Hamiltonian system K and the generating function
W will vanish. This procedure guarantees that the transformed Hamiltonian system, especially
in the first orders of the transformed system, provides interesting information due to the linear
approximation around the equilibrium. An example was provided to illustrate the theory part.
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