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Abstract: This paper studied the nonlinear vibrations of top-tensioned cantilevered pipes conveying
pressurized steady two-phase flow under thermal loading. The coupled axial and transverse
governing partial differential equations of motion of the system were derived based on Hamilton’s
mechanics, with the centerline assumed to be extensible. Using the multiple-scale perturbation
technique, natural frequencies, mode shapes, and first order approximate solutions of the steady-state
response of the pipes were obtained. The multiple-scale assessment reveals that at some frequencies
the system is uncoupled, while at some frequencies a 1:2 coupling exists between the axial and the
transverse frequencies of the pipe. Nonlinear frequencies versus the amplitude displacement of
the cantilever pipe, conveying two-phase flow at super-critical mixture velocity for the uncoupled
scenario, exhibit a nonlinear hardening behavior; an increment in the void fractions of the two-phase
flow results in a reduction in the pipe’s transverse vibration frequencies and the coupled amplitude
of the system. However, increases in the temperature difference, pressure, and the presence of top
tension were observed to increase the pipe’s transverse vibration frequencies without a significant
change in the coupled amplitude of the system.

Keywords: Hamilton’s principle; nonlinear vibration; two-phase flow; critical mixture velocity;
cantilever pipes; perturbation method

1. Introduction

Two-phase flow is a common flow phenomenon in various industrial pipes: in nuclear heat
exchangers, pipes in process plants, thermal plants, subsea oil and gas explorations, and many
more. However, in spite of the vast occurrences of two-phase flow in pipes, most of the existing
publications on the flow-induced vibrations of pipes conveying fluids focus on the fluidelastic
instability of pipes conveying single-phase flow. Miwa et al. [1] did an in-depth review of the extent
of existing work on two-phase flow-induced vibrations, stating that there exist very few results on
the instability behavior of pipes due to internal two-phase flow. In the review, it was explained that
internal two-phase flow-induced vibration can be initiated by various hydrodynamic phenomena;
depending on the geometrical configurations of the flow channels and operating conditions, gas–liquid
two-phase flow may create vibrations with various modes of amplitude and frequency. Monette and
Pettigrew [2] presented an excellent experimental work on the fluidelastic instability of flexible tubes
subjected to two-phase flow which might be one of the premier papers on the dynamics of pipes
conveying two-phase flow and also reveals the relationship between the void fraction and the linear
dynamics of the pipe for a two-phase liquid–gas flow. The early studies on the nonlinear dynamics of
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cantilevered pipes conveying single-phase flow either studied only the transverse displacement of
the pipe or considered the longitudinal displacement using inextensible centerline assumptions [3–5].
However, the pioneering work by Ghayesh et al. [6] studied the nonlinear dynamics of a cantilevered
extensible pipe conveying fluid, with equations of motion of the coupled transverse and longitudinal
displacements derived using the Lagrange equations for a system containing non-material volumes,
and highlighted that, conversely to inextensible pipe, an extensible pipe elongates in the axial direction
as the flow velocity increases.

Luczko et al. [7] highlighted that the dynamic behavior of continuous systems, such as beams,
moving tapes, or pipes with flowing fluid is governed by non-linear partial differential equations
with appropriate boundary and initial conditions. As highlighted by Païdoussis [8], the nonlinear
problems of pipes conveying fluids cannot be resolved analytically, but recourse needs to be taken
to adopt specialized analytical methods like perturbation techniques, numerical time difference
methods, or a combined analytical–numerical method. The direct Lagrangian discretization method
(Galerkin method) to convert the partial differential equations (PDEs) to ordinary differential equations
(ODEs) and then resolve the resulting ODEs using numerical techniques has been adopted by some
publications, namely, Modarres and Païdoussis [9], Wang et al. [10], Sinir [11], Ritto et al. [12],
Chen et al. [13], Tian-Zhi et al. [14]. The usage of analytical methods like perturbation techniques is
highly common with researchers working on nonlinear problems, such as Nayfeh [15], Nayfeh [16],
Kesimli et al. [17], and Oz and Boyaci [18], where the solutions were sought using an asymptotic
expansion or by perturbing the original set of equations in terms of a small parameter which is
either present in the equation or introduced artificially. Some researchers working on the fluidelastic
instability of pipes conveying fluids have adopted this technique to resolve the nonlinear dynamics
of the pipes, including the works of Enz [19] on a simple supported straight pipe using perturbation
analysis with a multiple time-scaled method and comparison with measurements made by Coriolis
flowmeters; the study by Xiao-Dong et al. [20] on the dynamic stability simply-supported viscoelastic
pipe in transverse vibration for conveying pulsating fluid; the study on the transverse vibrations of
tension pipes conveying fluid with time-dependent velocity using the multiple-scale perturbation
technique by Oz and Pakdemirli [21]; and the study on the analysis of nonlinear vibrations of a pipe
conveying an ideal fluid by Sinir and Demir [22].

Most of these existing publications on the nonlinear dynamics of a cantilevered pipe conveying
fluid were focused on single-phase flow, resolving the governing equations using various methods
as highlighted in the review of literature. However, profound among authors who adopted the
perturbation approach is the study of the uncoupled problem, solving only the transverse vibrations
independent of the axial vibration. To the best of our knowledge, a perturbation approach for
the resolution of the coupled nonlinear dynamics of a top-tensioned cantilevered pipe conveying
pressurized two-phase flow under thermal loading is still a reserved topic with a possibly intriguing
outcome. In this paper, the governing equation of motion for the nonlinear coupled axial and transverse
vibrations of a cantilever pipe conveying two-phase flow is derived and resolved by imposing the
multiple-scale perturbation technique directly to the system equations (direct-perturbation method).

2. Problem Formulation and Modelling

Consider a system comprising a cantilever cylindrical pipe of length (L), having a cross-sectional
area (A), mass per unit length (mp) and flexural rigidity (EI), conveying multiphase flow, flowing
parallel to the pipe’s centerline. The centerline axis of the pipe in its undeformed state is assumed
to overlap with the Y-axis, and the cylinder is assumed to vibrate in the (Y, X) plane (see Figure 1).
To derive the system’s governing equations of motion, the following basic assumptions were made for
the cylinder and the fluid: (i) the mean flow velocity is constant; (ii) the cylinder is slender, so that the
Euler–Bernoulli beam theory is applicable; (iii) although the deflections of the cylinder may be large,
the strains are small; and (iv) the cylinder centerline is extensible.
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Figure 1. System Schematics. 

The centerline of the cantilever pipe is assumed to be extensible to account for possible 
expansion due to the high temperature of the fluid content. The strain expressions and the geometric 
relation of the centerline of an extensible pipe are derived as expressed by Semler et al. [3]. 

2.1. Derivation of the Equation of Motion 

The equations of motion are derived using the energy method. The energy method is based on 
Hamilton’s principle, which is defined as the variations of the time derivative of the Lagrangian. 
This can be mathematically expressed as 
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where  is the number of phases in the fluid, which will be 2 for a two-phase flow; 
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the kinetic and potential energies associated with the conveyed fluid, respectively. 
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2.1.1. Kinetic Energy 

The total kinetic energy of the system is the summation of the kinetic energy of the pipe and the 
kinetic energies of the phases/components of the flowing fluid. The velocity vector of the pipe’s 
centerline is expressed as = ̂ + ̂. (3) 

Therefore, the kinetic energy of the pipe is expressed as = 12 + . (4) 

Figure 1. System Schematics.

The centerline of the cantilever pipe is assumed to be extensible to account for possible expansion
due to the high temperature of the fluid content. The strain expressions and the geometric relation of
the centerline of an extensible pipe are derived as expressed by Semler et al. [3].

2.1. Derivation of the Equation of Motion

The equations of motion are derived using the energy method. The energy method is based
on Hamilton’s principle, which is defined as the variations of the time derivative of the Lagrangian.
This can be mathematically expressed as

δ
∫ t2

t1
L dt =

∫ t2

t1

n

∑
j=1

MjUj

(
.
rL +

n

∑
j=1

UjτL

)
δrL dt (1)

where n is the number of phases in the fluid, which will be 2 for a two-phase flow;

Mj is the mass of the phases in the fluid;

Uj is the flow velocity of the phases in the fluid; and

L is the Lagrangian operator expressed in Equation (2):

L = T f + Tp − V f − Vp (2)

where Tp and Vp are the kinetic and potential energies of the pipe, respectively, and T f and V f are the
kinetic and potential energies associated with the conveyed fluid, respectively.

The following expressions hold:
.
rL =

.
uLi +

.
vLk and τL = u′Li + v′Lk.

2.1.1. Kinetic Energy

The total kinetic energy of the system is the summation of the kinetic energy of the pipe and
the kinetic energies of the phases/components of the flowing fluid. The velocity vector of the pipe’s
centerline is expressed as

→
V p =

∂u
∂t

l̂ +
∂v
∂t

Ĵ. (3)
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Therefore, the kinetic energy of the pipe is expressed as

Tp =
1
2

mp

∫ L

0

[(
∂u
∂t

)2
+

(
∂v
∂t

)2
]

dx. (4)

As illustrated by Semler, the axial elongation of the pipe is complemented by a lateral contraction,
due to the Poisson effect. This will impact the flow velocity of the fluid phases/components such that

n

∑
j=1

Uj = [(1 + ε)/(1 + aε)]
n

∑
j=1

U0 j (5)

where U0 j and Uj are the flow velocities before and after elongation, the subscript (j) is used to identify
the various phases/components of the conveyed fluid, (ε) is the axial strain, and (a) relates to the
Poisson ratio (v) as a = 1− 2v; for an extreme case, v = 0.5 and a becomes zero, as in Ghayesh et al. [6].

The flow velocity relative to the centerline axis of the pipe is expressed as

→
V f =

{
∂u
∂t

+
n

∑
j=1

Uj(1− aε)

(
1 +

∂u
∂x

)}
l̂ +

{
∂v
∂t

+
n

∑
j=1

Uj(1− aε)

(
∂v
∂x

)}
Ĵ. (6)

Therefore, the Kinetic energy of the conveyed fluid is expressed as

T f =
1
2

n
∑

j=1
Mj
∫ L

0

{(
∂u
∂t

)2
+
(

∂v
∂t

)2

+ Uj
2
[

1 + 2 ∂u
∂x +

(
∂u
∂x

)2
− 2a

(
∂u
∂x + 1

2

(
∂v
∂x

)2
)
+
(

∂v
∂x

)2
]

+ 2Uj

[
∂u
∂t

(
1 + ∂u

∂x

)
+ ∂v

∂t
∂v
∂x

]}
dx.

(7)

2.1.2. Potential Energy

Semler highlighted that the potential energy is a result of the elastic deformation of the pipe and
the effect of gravity, and the deformation from elastic behavior of the pipe can be linked to the strain
energy. This is expressed as

Vp =
1
2

EA
∫ L

0
ε2dx +

1
2

EI
∫ L

0
(1 + ε)2k2dx. (8)

This is clearly the combination of the axial strain effect and the bending strain effect where (E)
denotes the Young’s modulus, (I) denotes the pipe moment of inertia, (A) denotes the cross-sectional
area, (ε) is the axial strain, and (k) is the curvature term as expressed by Semler.

The thermal effect can be introduced by considering the linear strain tensor as a sum of the
strain contributions from the mechanical stress and the thermal effect. Semler further decomposed
the axial strain into a steady strain component due to externally applied tension (T0), a pressure
force component (P = pA), and an oscillatory strain component due to the oscillations of the pipe.
These can be expressed as

εij = εij
σ + εij

∆ +
T0 − P

EA
(9)

while the stress-contributing strain component is as expressed by Semler as

εij
σ =

∂u
∂x
− 1

2

(
∂u
∂x

)(
∂v
∂x

)2
+

1
2

(
∂v
∂x

)2
− 1

8

(
∂v
∂x

)4
. (10)
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We note that the gradient of the transverse displacement of the pipe is far greater than the gradient
of the longitudinal displacement

(
∂v
∂x > ∂u

∂x

)
. Also, the thermal contributing strain component can be

expressed in terms of the thermal expansivity (α) and the difference in temperatures (∆T) as

εij
∆ = (−α∆T). (11)

Substituting Equations (10) and (11) into Equation (9), and then substituting Equation (9) into
Equation (8), the resulting expression is

Vp = 1
2 EA

∫ L
0

[(
u′ − 1

2 u′v′2 + 1
2 v′2 − 1

8 v′4
)
+ T0−P

EA + (−α∆T)
]2

dx

+ 1
2 EI

∫ L
0

[
v′′2 − 2v′′2u′ − 2v′′2u′′2 − 2v′v′′u′′

]
dx.

(12)

With the reference plane in the same direction as the gravitational acceleration, the effect of gravity
can be expressed as

Vg = g

(
n

∑
j=1

Mj + m

) ∫ L

0
(x + u)dx. (13)

The variations of the time derivative of the algebraic sum of the kinetic energy and the potential
energy of the systems gives the expression on the left-hand side term of Hamilton’s equation.

2.1.3. Non-Conservative Work Done

As detailed by Semler for a single-phase flow, the right-hand side term of Hamilton’s equation
can be expressed for a multiphase flow as

EIv′′′ L =
n

∑
j=1

MjU2
j

∫ t2

t1
v′Lδvdt. (14)

Physically, this implies a non-classical boundary condition at the free end for a discharging
cantilever pipe. Therefore, a force is imposed at the free end if the velocity of the exiting fluid is not
tangential to the pipe. However, this study assumes that the exiting flow remains tangential to the
pipe at the free end, and therefore the classical boundary condition holds at the free end.

2.2. Equation of Motion for Multiphase Flow

The equation of motion for an extensible cantilever pipe conveying pressurized unsteady
multiphase flow under thermal loading can be expressed as(

m +
n
∑

j=1
Mj

)
..
u +

n
∑

j=1
Mj

.
Uj +

n
∑

j=1
2MjUj

.
u′ +

n
∑

j=1
MjUj

2u′′ +
n
∑

j=1
Mj

.
Uju′ − EAu′′

− EI(v′′′′v′ + v′′ v′′′ ) + (T0 − P− EA(α∆T)− EA)v′v′′

− (T0 − P− EA(α∆T))′ +

(
m +

n
∑

j=1
Mj

)
g = 0,

(15)

(
m +

n
∑

j=1
Mj

)
..
v +

n
∑

j=1
2MjUj

.
v′ +

n
∑

j=1
MjUj

2v′′ −
n
∑

j=1
aMjUj

2v′′ +
n
∑

j=1
Mj

.
Ujv′ + EIv′′′′

− (T0 − P− EA(α∆T))v′′

− EI
(

3u′′′ v′′ + 4v′′′ u′′ + 2u′v′′′′ + 2v′2v′′′′ + 8v′v′′ v′′′ + 2v′′ 3
)

+ (T0 − P− EA(α∆T)− EA)
(

u′v′′ + v′u′′ + 3
2 v′2v′′

)
= 0.

(16)
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The associated boundary conditions are

v(0) = v′(0) and v′′ (L) = v′′′ (L) = 0, (17)

u(0) = u′(L) = 0. (18)

Dimensionless Equation of Motion for Two-Phase Flow

The equation of motion may be rendered dimensionless to make the analysis of the
system more robust and not constrained to one specific system by introducing the following
non-dimensional quantities:

u =
u
L

, v =
v
L

, t =

[
EI

∑ Mj + m

] 1
2 t

L2 , U j =

[Mj

EI

] 1
2

UL , γ =
∑ Mj + m

EI
L3g,

β j =
Mj

∑ Mj + m
, Ψj =

Mj

∑ Mj
, Damping term : µ =

CL2√
∑
(

Mj + m
)
EI

Tension : Π0 =
ToL2

EI
, Flexibility : Π1 =

EAL2

EI
, Pressure : Π2 =

PL2

EI
.

The dimensionless governing equation can be reduced to that of a two-phase as follows:

..
u +

.
U1
√

Ψ1
√

β1 +
.

U2
√

Ψ2
√

β2 + 2U1
√

Ψ1
√

β1
.
u
′
+ 2U2

√
Ψ2
√

β2
.
u
′
+ Ψ1U1

2u′′

+ Ψ2U2
2u′′ +

.
U1
√

Ψ1
√

β1u′ +
.

U2
√

Ψ2
√

β2u′ −Π1u′′

−
(
v′′′′ v′ + v′′ v′′′

)
+ (Π0 −Π2 −Π1(α∆T)−Π1)v′v′′

− (Π0 −Π2 −Π1(α∆T))′ + γ = 0,

(19)

..
v + 2U1

√
Ψ1
√

β1
.
v
′

+ 2U2
√

Ψ2
√

β2
.
v
′
+ Ψ1U1

2v′′ + Ψ2U2
2v′′ − aΨ1U1

2v′′ − aΨ2U2
2v′′

+
.

U1
√

Ψ1
√

β1v′ +
.

U2
√

Ψ2
√

β2v′ − (Π0 −Π2 −Π1(α∆T))v′′ + v′′′′

−
(
3u′′′ v′′ + 4v′′′ u′′ + 2u′v′′′′ + 2v′2v′′′′ + 8v′v′′ v′′′ + 2v′′ 3

)
+ (Π0 −Π2 −Π1(α∆T)−Π1)

(
u′v′′ + v′u′′ + 3

2 v′2v′′
)
= 0.

(20)

For a steady flow, velocities are not changing with time, therefore

.
U1 =

.
U2 = 0. (21)

We define the following notation:

C11 =
√

Ψ1
√

β1, C12 =
√

Ψ2
√

β2, C21 = 2
√

Ψ1
√

β1,

C22 = 2
√

Ψ2
√

β2, C31 = Ψ1, C32 = Ψ2, C5 = Π1,

C6 = (Π0 −Π2 −Π1(α∆T)−Π1), C7 = Π0 −Π2 −Π1(α∆T).

The governing equation for a cantilevered pipe conveying steady two-phase flow can be
expressed as

..
u + U1C21

.
u
′
+ U2C22

.
u
′
+ C31U1

2u′′ + C32U2
2u′′ − C5u′′ −

(
v′′′′ v′ + v′′ v

′′ ′
)
+ C6v′v′′ − C7′ + γ) = 0, (22)

..
v + U1C21

.
v
′
+ U2C22

.
v
′
+ C31U1

2v′′ + C32U2
2v′′ − aC31U1

2v′′ − aC32U2
2v′′ − C7v′′ + v′′′′

−
(
3u′′′ v′′ + 4v′′′ u′′ + 2u′v′′′′ + 2v′2v′′′′ + 8v′v′′ v′′′ + 2v′′ 3

)
+ C6

(
u′v′′ + v′u′′ + 3

2 v′2v′′
)
= 0.

(23)
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The dimensionless boundary conditions are

v(0) = v′(0) and v′′ (L) = v′′′ (L) = 0, (24)

u(0) = u′(L) = 0. (25)

In these equations, u and v are, respectively, the dimensionless displacements in the longitudinal
and transverse direction; (U j) is the flow velocities of the constituent phases/components used in the
parametric studies of the dynamics of the system; (β j) is the same mass ratio as in single-phase flows
as derived by Semler and Paidoussis [8]; (Ψj ) is another mass ratio which is unique to multiphase flow
relating the fluid mass independent of the mass of the pipe; (γ) is the gravity term; and (Π0, Π1, Π2)
represent the Tension term, Flexibility term, and the Pressurization term, respectively.

2.3. Empirical Gas–Liquid Two-Phase Flow Model

Adopting the Chisholm empirical relations as presented in [23], the void fraction is expressed as

v f =

[
1 +

√
1− x

(
1− ρl

ρg

)(
1− x

x

)(
ρg

ρl

)]−1

=
Volume of gas

Volume of gas + Volume of Liquid
. (26)

The Slip Ratio is expressed as

S =
Vg

Vl
=

[
1− x

(
1− ρl

ρg

)]1/2
(27)

where x is the vapor density; and ρl , ρg are the densities of the liquid and gas phases, respectively.
Mixture Velocity is expressed as

VT = Ugv f + Ul(1− v f ) (28)

where Ug and Ul are the superficial flow velocities.
Individual Velocities for the two phases can be expressed as

Vl =
VT

S + 1
, Vg =

SVT
S + 1

. (29)

For various void fractions (0.3, 0.4, and 0.5) and a series of mixture velocities, the corresponding
slip ratio and individual velocities are estimated and used for numerical calculations.

3. Method of Solution

Exact solutions of nonlinear equations are almost always not available; an approximate solution
will be sought by utilizing the multiple time-scale perturbation technique. This approach is applied
directly to the partial differential Equations (22) and (23), given that the common method of discretizing
the equations first and then applying the perturbation method yields less accurate results for finite
mode truncations and higher order perturbation schemes [15–18].

Adopting perturbation techniques, it is necessary to decide the terms to be considered small or
weak. This study considers the contributions of the nonlinear terms, gradient term and gravity term to
be small compared to the linear terms.

..
u + U1C21

.
u
′
+ U2C22

.
u
′
+ C31U1

2u′′ + C32U2
2u′′ − C5u′′

+ ε
(
−
(
v′′′′ v′ + v′′ v′′′

)
+ C6v′v′′ − C7′ + γj

)
= 0,

(30)
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..
v + U1C21

.
v
′
+ U2C22

.
v
′
+ C31U1

2v′′ + C32U2
2v′′ − aC31U1

2v′′ − aC32U2
2v′′ − C7v′′ + v′′′′

+ ε
(
−
(
3u′′′ v′′ + 4v′′′ u′′ + 2u′v′′′′ + 2v′2v′′′′ + 8v′v′′ v′′′ + 2v′′ 3

)
+ C6

(
u′v′′ + v′u′′ + 3

2 v′2v′′
))

= 0.
(31)

We seek an approximate solution for u and v in the form

u = u0(T0, T1) + εu1(T0, T1) + ε2u2(T0, T1) + O(ε), (32)

v = v0(T0, T1) + εv1(T0, T1) + ε2v2(T0, T1) + O(ε). (33)

where ε is a small dimensionless measure of the amplitude of u and v, used as a book-keeping
parameter. Two time scales are needed: T0 = t and T1 = εt. Then, the time derivatives are

d
dt

= D0 + εD1 + ε
2D2 + O(ε), (34)

d2

dt2 = D0
2 + 2εD0D1 + ε

2(D1
2 + 2D0D2) + O(ε) (35)

where Dn = ∂
∂Tn

.
Substituting Equations (32)–(35) into Equations (30) and (31) and equating the coefficients of (ε)

to zero and one, respectively, we get the following:
U-Equation:

O
(
ε0
)

. D0
2u0 + C21D0u0

′U1 + C22D0u0
′′U2 + C31u0

′′U1
2 + C32u0

′′U2
2 − C5u0

′′ = 0, (36)

O
(
ε1). D0

2u1 + C21D0u1
′U1 + C22D0u1

′U2 + 2D1D0u0 + C31u1
′′U1

2 + C32u1
′′U2

2

+ C21D0u0
′U1 + C22D0u0

′U2 − C5u1
′′ − v0 ′′′′ v0

′ − C7′ + γ

− v0 ′′ v0 ′′′ + C6v0
′v0 ′′ = 0.

(37)

V-Equation:

O
(
ε0). D0

2v0 − C7v0 ′′ + v0 ′′′′ + C21D0v0
′U1 + C22D0v0

′U2 + C31v0 ′′U1
2

+ C32v0 ′′U2
2 − aC31v0 ′′U1

2 − aC32v0 ′′U2
2 = 0,

(38)

O
(
ε1). D0

2v1 − C7v1
′′ + v1

′′′′ − 2u0
′v0 ′′′′ − 4u0 ′′ v0 ′′′ − 3v0 ′′ v0 ′′′ − 2v0

3 ′′

+ 2D0D1v0 + C31v1
′′U1

2 + C32v1
′′U2

2 − 8v0
′v0 ′′ v0 ′′′ + C6u0

′v0 ′′

+ C6u0 ′′ v0
′ + 3

2 C6v0
2′v0 ′′ + C21D0v0

′U1 + C22D0v0
′U2

+ C21D1v0
′U1 + C22D1v0

′U2 − aC31v1
′′U1

2 − aC32v1
′′U2

2 = 0.

(39)

The order zero problems for both the axial and transverse vibration of the cantilever pipe have
the form of an undamped and unforced flow-induced vibration problem; this will be used to estimate
the linear natural frequencies and mode shapes, while the order one problem will be solved to obtain
the amplitude of the nonlinear response of the pipe.

3.1. Linear Analysis

The leading order equations present a set of linear equations which relates the flow
velocity-generated forces (Coriolis and Centrifugal forces) to the stiffness of the pipe without neglecting
the mass ratios. This set of linear equations exhibits the form of an eigenvalue problem, which upon
resolution will produce the natural frequency and mode shapes, and also predict the stability of
the system.
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3.1.1. Natural Frequencies and Modal Functions

Estimation of the natural frequencies and modal function is an order zero problem that can be
determined by resolving Equations (36) and (38).

The homogeneous solution of the leading order Equations (36) and (38) can be expressed as

u(x, T0, T1)0 = φ(x)nexp(iωnT0) + CC, (40)

v(x, T0, T1)0 = η(x)nexp(iλnT0) + CC (41)

where (CC) is the complex conjugate, φ(x)n and η(x)n are the complex modal functions for the axial
and transverse vibrations for each mode (n), and ωn and λn are the eigenvalues for the axial and
transverse vibrations for each mode (n).

The eigenvalues are complex values with a complex conjugate pair of solutions which can be
expressed as

ωn = Re(ωn) + iIm(ωn) and ωn = Re(ωn)− iIm(ωn),

λn = Re(ωn) + iIm(λn) and λn = Re(λn)− iIm(λn).

The real parts of the eigenvalues are associated with the natural frequency of oscillation, and the
imaginary parts with the damping.

Substituting Equations (40) and (41) into Equations (36) and (38), respectively, results in(
C31U1

2 + C32U2
2 − C5

)
φ(x)n

′′ +
(
C21U1 + C22U2

)
iωnφ(x)n

′ − φ(x)nωn
2 = 0, (42)

η(x)n
′′′′ +

(
C31U1

2 + C32U2
2 − C7− aC31U1

2 − aC32U2
2)η(x)n

′′

+
(
C21U1 + C22U2

)
iλnη(x)n

′ − η(x)nλn
2 = 0.

(43)

The general solution to the ordinary differential Equations (42) and (43) is expressed as

φ(x)n = G1nexp(ik1x) + G2nexp(ik2x), (44)

η(x)n = H1(exp(iz1x) + H2exp(iz2x) + H3exp(iz3x) + H4exp(iz4x)). (45)

3.1.2. Solution to Axial Vibration Problem

Substituting Equation (44) into Equation (42) gives a quadratic relation of the form(
C5− C31U1

2 − C32U2
2
)

k j
2 −

(
C21U1 + C22U2

)
iωnk j −ωn

2 = 0. (46)

We solve the quadratic Equation (46) for the wave numbers (k j) as a function of the
eigenvalue (ωn):

k1 = a(ωn), (47)

k2 = b(ωn) (48)

In order to obtain the eigenvalue, Equation (51) is substituted into the boundary conditions in
Equation (25):

G1 + G2 = 0 (49)

and
G1k1iexp(iLk1) + G2k2iexp(iLk2) = 0. (50)

In matrix form:
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(
1 1

ik1exp(iLk1) ik2exp(iLk2)

)
︸ ︷︷ ︸

D

(
G1
G2

)
= 0. (51)

For a non-trivial solution, the determinant of (D) must varnish:

− ik1exp(iLk1) + ik2exp(iLk2) = 0. (52)

We substitute Equations (47) and (48) into Equation (52) and solve for the eigenvalue:

ωn =
2πn− i·ln

(
b
a

)
(a− b)L

, n = 1, 2, 3, . . . (53)

where

a =
C21U1

2 + C22U2
2 +

√
C212U1

2 + 2C21C22U1U2 + C222U2
2 − 4C31U1

2 − 4C32U2
2 + 4C5

2

C5− C31U1
2 − C32U22

,

b =
C21U1

2 + C22U2
2 −

√
C212U1

2 + 2C21C22U1U2 + C222U2
2 − 4C31U1

2−4C32U2
2 + 4C5

2

C5− C31U1
2 − C32U22

.

Equation (53) is the pipe’s axial vibration eigenvalue. Solving Equations (49) and (50) gives the
constants G1 and G2. Therefore, the modal function for the axial vibration of the pipe is expressed as

φ(x)n = G1nexp(ik1x) + G2nexp(ik2x). (54)

Substituting Equation (44) into Equation (40) yields

u(x, T0)0 =
2
∑

j=1
Gjnexp

(
ik jnx

)
exp(iωnT0)

=
2
∑

j=1
Gjnexp

(
−Im

(
k jnx

)
− Im(ωnT0)

)
exp
(
i
(

Re
(
k jnx

)
+ Re(ωnT0)

))
.

(55)

It can be observed from Equation (55) that the real part is the natural frequency and the imaginary
part is the amplitude. However, as the mixture velocity is varied, a critical value of the mixture velocity
is attained when the imaginary parts of any of the eigenvalues (ωn) take on a negative value which
will cause the axial displacement (u) to grow exponentially in time and linearly signifies the onset of
the system’s oscillatory instability.

3.1.3. Solution to Transverse Vibration Problem

Substituting Equation (45) into Equation (43) gives a quartic relation:

z4
jn +

(
C7− C31U1

2 − C32U2
2 + aC31U1

2 + aC32U2
2)z2

jn −
(
C21U1 + C22U2

)
zjnλn − λ2

n = 0 (56)

for j = 1, 2, 3, 4 and n = 1, 2, 3, 4, 5, . . .
In order to obtain the eigenvalue, Equation (45) is substituted into the boundary conditions in

Equation (24).
This gives four algebraic equations which can be expressed in matrix form as
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1 1 1 1

z1n z2n z3n z4n

(z1n)
2· exp(i·z1n) (z2n)

2· exp(i·z2n) (z3n)
2· exp(i·z3n) (z4n)

2· exp(i·z4n)

(z1n)
3· exp(i·z1n) (z2n)

3· exp(i·z2n) (z3n)
3· exp(i·z3n) (z4n)

3· exp(i·z4n)


︸ ︷︷ ︸

G

·


1

H2n

H3n

H4n

·H1n =


0
0
0
0

. (57)

For a non-trivial solution, the determinant of (G) must varnish, that is

DET(G) = 0. (58)

In order to find modal solutions of (λn), Equations (57) and (58) must be solved simultaneously;
this can be solved numerically using a nonlinear numerical routine.

The mode function of the transverse vibration corresponding to the nth eigenvalue is expressed as

η(x)n = H1n·
[
ex · z1n · i − (A + B + C + D)− E

]
, (59)

A =
ex · z4n · i· [e z1n · i· (z1n)

3· z2n − e z1n · i·(z1n)
3· z3n − e z1n · i · z4n·(z1n)

2 · z2n

(z2n − z4n)· (z3n − z4n) ·
[
e z2n · i·(z2n)

2 − e z3n · i · (z3n)
2
] ,

B =
ex · z4n · i· [e z1n · i· z4n·(z1n)

2· z3n − e z2n · i·z1n·(z2n)
3 + e z2n · i · z4n· z1n·(z2n)

2

(z2n − z4n)· (z3n − z4n) ·
[
e z2n · i·(z2n)

2 − e z3n · i · (z3n)
2
] ,

C =
ex · z4n · i· [e z3 · i· z1n·(z3n)

3 − e z3 · i·z4n·z1n·(z3n)
2 + e z2n · i ·(z2n)

3· z3n

(z2n − z4n)· (z3n − z4n) ·
[
e z2n · i·(z2n)

2 − e z3n · i · (z3n)
2
] ,

D =
ex · z4n · i· [−e z2n · i· z4n ·(z2n)

2·z3n − e z3 · i·z2n·(z3n)
3 + e z3 · i ·z4n· z2n·(z3n)

2

(z2n − z4n)· (z3n − z4n) ·
[
e z2n · i·(z2n)

2 − e z3n · i · (z3n)
2
] ,

E =
ex · z2n · i · (z1n− z4n)· [e z1 · i · (z1n)

2− e z3 · i ·(z3n)
2]

(z2n− z4n)· [e z2 · i ·(z2n)
2− e z3 · i · (z3n)

2]

+
ex · z3 · i · (z1n− z4n)· [e z1n · i · (z1n)

2− ez2 i ·(z2n)
2]

(z3n− z4n)· [e z2 · i ·(z2n)
2− e z3 · i · (z3n)

2]
·

Substituting Equation (45) into Equation (41) yields

v(x, T0)0 =
4
∑

j=1
Hjnexp

(
izjnx

)
exp(iλnT0)

=
4
∑

j=1
Hjnexp

(
−Im

(
zjnx

)
− Im(λnT0)

)
exp
(
i
(

Re
(
zjnx

)
+ Re(λnT0)

))
.

(60)

It can be observed from Equation (60) that the real part is the natural frequency and the imaginary
part is the amplitude. However, as the mixture velocity is varied, a critical value of the mixture velocity
is attained when the imaginary parts of any of the eigenvalues (λn) take on a negative value which
will cause the transverse displacement (v) to grow exponentially in time and linearly signifies the
onset of the system’s flutter instability.

3.2. Nonlinear Analysis

Linear analysis of the system is sufficient for the prediction of the critical velocity at which
instability will occur, but cannot predict the post-buckling behavior. Linear theory has shown
that buckling amplitudes will grow unboundedly with time after the critical velocity, however, as
amplitudes grow, the effect of nonlinearities comes into play. This predictably limits the growth to
some finite value [24–26].
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3.2.1. Nonlinear Axial and Transverse Vibration Problem

We solve the nonlinear axial and transverse vibration problem by seeking an approximate solution
for u and v of the form

u = u0(T0, T1) + εu1(T0, T1) + ε2u2(T0, T1) + O(ε), (61)

v = v0(T0, T1) + εv1(T0, T1) + ε2v2(T0, T1) + O(ε). (62)

The zero order solutions produce the undamped and uncoupled linear solution of the axial and
transverse vibrations, respectively:

u(x, T0, T1)0 = φ(x)X(T1)exp(iωT0) + CC, (63)

v(x, T0, T1)0 = η(x)Y(T1)exp(iλT0) + CC (64)

where X and Y are unknown complex-valued functions of the slow time scale T1, (CC) is the
complex conjugate, φ(x) and η(x) are the modal functions for the axial and transverse vibrations,
and ω = Re(ω) and λ = Re(λ). (the real parts of the complex frequencies) are the natural frequencies
for the axial and transverse vibrations.

Substituting Equations (63) and (64) into Equations (37) and (39) gives

D0
2u1 − C5u1

′′ + C21D0u1
′U1 + C22D0u1

′U2 + C31u1
′′U1

2 + C32u1
′′U2

2

= −Q1·
[

∂X(T1)
∂T1

]
exp(iωT0) + Q2·

[
Y(T1)2

]
exp(2iλT0) + NST + CC = 0,

(65)

D0
2v1 − C7v1

′′ + v1
′′′′+C21D0v1

′U1 + C22D0v1
′U2 + C31v1

′′U1
2 + C32v1

′′U2
2 − aC31v1

′′U1
2

− aC32v1
′′U2

2

=
(

Q3·
[

∂Y(T1)
∂T1

]
+ Q4·

[
Y(T1)2Y(T1)

])
exp(iλT0)

+ Q5·
[

X(T1)Y(T1)
]
exp(iωT0)exp(−iλT0) + Q6·

[
Y(T1)2

]
exp(2iλT0) + NST + CC

= 0,

(66)

where

Q1 = C21 ∂φ(x)
∂x U1 + C22 ∂φ(x)

∂x U2 + 2iφ(x)ω,

Q2 = ∂η(x)
∂x

∂4η(x)
∂x4 + ∂2η(x)

∂x2
∂3η(x)

∂x3 − C6 ∂η(x)
∂x

∂2η(x)
∂x2 ,

Q3 = C21 ∂η(x)
∂x U1 + C22 ∂η(x)

∂x U2 + 2iη(x)λ,

Q4 = 6
(

∂η(x)
∂x

)2 ∂η(x)
∂x + 2

(
∂η(x)

∂x

)2 ∂4η(x)
∂x4 + 4 ∂η(x)

∂x
∂η(x)

∂x
∂4η(x)

∂x4 + 8 ∂η(x)
∂x

∂2η(x)
∂x2

∂3η(x)
∂x3

+ 8 ∂η(x)
∂x

∂2η(x)
∂x2

∂3η(x)
∂x3 − 3C6 ∂η(x)

∂x
∂η(x)

∂x
∂2η(x)

∂x2

+ 8 ∂η(x)
∂x

∂2η(x)
∂x2

∂3η(x)
∂x3 − 3

2 C6
(

∂η(x)
∂x

)2 ∂2η(x)
∂x2 ,

Q5 = 2 ∂Φ(x)
∂x

∂4η(x)
∂x4 + 4 ∂2Φ(x)

∂x2
∂3η(x)

∂3 − C6 ∂Φ(x)
∂x

∂2η(x)
∂x2 − C6 ∂η(x)

∂x
∂2Φ(x)

∂x2 ,

Q6 = 3 ∂2η(x)
∂x2

∂3η(x)
∂x3 ,

where CC and NST denote complex conjugates and non-secular terms, respectively.
The next task is to determine the requirements for X(T1) and Y(T1) that permit the solutions of u1.

and v1. to be independent of secular terms. However, examining Equations (65) and (66), it can be
observed that two scenarios exist: ω 6= 2λ and ω = 2λ.
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3.2.2. When ω Is Far from 2λ

If ω is far from 2λ, then none of the coupled nonlinear terms will generate secular terms, therefore
resulting to an uncoupled response.

Equations (65) and (66) will have bounded solutions only if the solvability condition holds.
The solvability condition demands that the coefficients of exp(iωT0) and exp(iλT0)—that is, X(T1) and
Y(T1)—should satisfy the following relation:

−Q1·
[

∂X(T1)
∂T1

]
= 0, (67)

Q3·
[

∂Y(T1)
∂T1

]
+ Q4·

[
Y(T1)2Y(T1)

]
= 0. (68)

The inner product for complex functions on [0, 1] is defined as

〈 f , g〉 =
1∫

0

f gdx. (69)

Equations (67) and (68) can be cast as

∂X(T1)
∂T1

= 0, (70)

∂Y(T1)
∂T1

+ P
[
Y(T1)2Y(T1)

]
= 0, (71)

where

P =

∫ 1
0 [Q4]η(x)dx∫ 1
0 [Q3]η(x)dx

.

Solving Equation (70) for X(T1) gives a constant amplitude solution up to the 1st order of
approximation:

X(T1) = αx0. (72)

To determine Y(T1), the solution of Equation (71) is expressed in polar form as

Y(T1) =
1
2

αy(T1)eiβy(T1) and Y(T1) =
1
2

αy(T1)e−iβy(T1) (73)

where P is a complex number such that

P = PR + iPI .

We substitute Equation (73) into Equation (71) and sort the outcome into real and imaginary parts,
resolving for αy and βy.

Real Part:
dαy(T1)

dT1
= −Re(P)αy(T1)3

4
, (74)

αy(T1) =

√
2

(αy0Re(P) + Re(P)T1)
. (75)

Imaginary Part:

αy(T1)
dβy(T1)

dT1
=

Im(P)αy(T1)3

4
, . (76)
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βy(T1) = −
[

Im(P)
2Re(P)

(ln|Re(P)T1 + αy0Re(P)|)
]
+

[
βy0 −

Im(P)
2Re(P)

ln(2)
]

. (77)

Substituting Equations (75) and (77) into Equation (73) gives

Y(T1) =
1√

2(Re(P)T1 + K0)
exp
(
−i
(

Im(P)
2Re(P)

(ln|Re(P)T1 + K0|)
)
+ K1

)
(78)

where K0 and K1 are constants expressed as

K0 = αy0Re(P),

K1 = −i
[

βy0 −
Im(P)
2Re(P)

ln(2)
]

,

where αy0 and βy0 are arbitrary constants of integration representing the initial conditions.
Substituting Equations (72) and (78) into Equations (63) and (64), respectively, the corresponding

first order nonlinear frequencies can be expressed as

ωnl = ω, (79)

λnl = λ + ε
Im(P)
2Re(P)

(
αy0

3 + 4αy0
2 + 6αy0

)
. (80)

Therefore, considering the nth values of αx(T1), αy(T1), βx(T1), and βy(T1) corresponding to the
nth modal functions and the nth natural frequencies, the first order nth solution of the uncoupled
problem is expressed as

u(x, t)n = αx(T1)nφ(x)ncos(ωnT0) + O(ε), (81)

v(x, t)n = αy(T1)nη(x)ncos(λnT0 + βy(T1)n) + O(ε). (82)

Substituting T0 = t , T1 = εt, the first order approximate solution is expressed as

u(x, t) =
∞

∑
n=1

αxn|φ(x)n|cos(ωnt + ϕxn) + O(ε), (83)

v(x, t) =
∞

∑
n=1

αyn|η(x)n|cos(λnt + βy(T1)n + ϕyn) + O(ε), (84)

where the phase angles ϕxn and ϕyn are given by

tan(ϕxn) =
Im{φ(x)n}
Re{φ(x)n}

, tan(ϕyn) =
Im{η(x)n}
Re{η(x)n}

.

3.2.3. When ω Is Close to 2λ

In order to examine the coupled nonlinear dynamics of the system, which is the scenario when
ω = 2λ, a detuning parameter σ is introduced.

ω = 2λ + εσ (85)

2λT0 = ωT0− σT1 and (ω− λ)T0 = λT0 + σT1 (86)

The two Equations (65) and (66) will have bounded solutions only if the solvability condition
holds. The solvability condition demands that the coefficient of epe(iωT0) and exp(iλT0) vanishes.
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That is, X(T1) and Y(T1) should satisfy the following relation:

−Q1·
[

∂X(T1)
∂T1

]
+ Q2·

[
Y(T1)2

]
exp(−iσT1) = 0, (87)

Q3·
[

∂Y(T1)
∂T1

]
+ Q4·

[
Y(T1)2Y(T1)

]
+ Q5·

[
X(T1)Y(T1)

]
exp(i(σT1)) + Q6·

[
Y(T1)2

]
exp(i(−σT1)) = 0. (88)

With the inner product defined for complex functions on [0, 1] as expressed in Equation (77), the
Equations (87) and (88) can be cast as

− ∂X(T1)
∂T1

+ J2Y(T1)2exp(−iσT1) = 0, (89)

∂Y(T1)
∂T1

+ K3
(

Y(T1)2Y(T1)
)
+ K4

(
X(T)Y(T1)exp(iσT1)

)
+ K5

(
Y(T1)2exp(−iσT1)

)
= 0, (90)

where

J2 =

∫ 1
0 [Q2]φ(x)dx∫ 1
0 [Q1]φ(x)dx

, K3 =

∫ 1
0 [Q4]η(x)dx∫ 1
0 [Q3]η(x)dx

, K4 =

∫ 1
0 [Q5]η(x)dx∫ 1
0 [Q3]η(x)dx

, K5 =

∫ 1
0 [Q6]η(x)dx∫ 1
0 [Q3]η(x)dx

.

To determine X(T1) and Y(T1), the solution of Equations (89) and (90) is expressed in polar form:

Y(T1) =
1
2

αy(T1)eiβy(T1) and Y(T1) =
1
2

αy(T1)e−iβy(T1), (91)

X(T1) =
1
2

αx(T1)eiβx(T1) and Y(T1) =
1
2

αx(T1)e−iβx(T1). (92)

We substitute the polar expressions into the solvability condition and separate the real and
imaginary parts. The following set of modulation equations is formed:

0 =
J2Rαy(T1)2

2
cos(ψ1)− dαx(T1)

dT1
− J2Iαy(T1)2

2
sin(ψ1),

0 = dαy(T1)
dT1 + K3Rαy(T1)3

4 − K5Rαy(T1)2

2 cos(ψ2)

− K5Iαy(T1)2

2 sin(ψ2)− K4Rαy(T1)αx(T1)
2 cos(ψ1)− K4Iαy(T1)αx(T1)

2 sin(ψ1),
(93)

0 =
J2Rαy(T1)2

2
sin(ψ1)− αx(T1)

dβx(T1)
dT1

+
J2Iαy(T1)2

2
cos(ψ1),

0 = αy(T1) dβx(T1)
dT1 + K5Rαy(T1)2

2 sin(ψ2) + K3Iαy(T1)3

4 − K5Iαy(T1)2

2 cos(ψ2)

− K4Iαy(T1)αx(T1)
2 cos(ψ1) + K4Rαy(T1)αx(T1)

2 sin(ψ1),

where
ψ1 = βx(T1)− 2βy(T1) + σT1 and ψ2 = βy(T1)− σT1, (94)

J2R, K3R, K4R, and K5R are the real parts of J2, K3, K4, and K5,

J2I, K3I, K4I, and K5I are the imaginary part of J2, K3, K4, and K5.

We seek stationary solutions; setting αx(T1)′ = αy(T1)′ = ψ1′ = ψ2′ = 0 in the modulation
equations, the linear solutions can be obtained by setting the coefficient of the nonlinear terms to zero.

The linear solution is obtained with the equation

αx(T1) = αy(T1) = 0. (95)
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The first order nonlinear solutions can be obtained by solving for αx(T1) and αy(T1) completely.
We define the following notation: CS = cos(ψ1) and SS = sin(ψ1). Now αy(T1) can be obtained by
resolving the quartic frequency amplitude relation:

A·αy(T1)4 + B·αy(T1)2 + C = 0, (96)

where
A = σ2K3I2 + σ2K3R2 + CS2 J2I2K4I2 + CS2 J2I2K4R2 + CS2 J2R2K4I2

+ CS2 J2R2K4R2 + J2I2K4I2SS2 + J2I2K4R2SS2 + J2R2K4I2SS2

+ J2R2K4R2SS2 − 2CS· σ·K3I·K4I
√

J2I2 + J2R2

− 2CS· σ·K3R·K4R
√

J2I2 + J2R2 + 2 σ·K3I·K4R·SS
√

J2I2 + J2R2

− 2 σ·K4I·K3R·SS
√

J2I2 + J2R2,

B = −
[
4 σ2K5I2 + 4 σ2K5R2 − 8 σ3K3I + 8CS· σ2·K4I

√
J2I2 + J2R2

− 8 σ2·K4R·SS·σ
√

J2I2 + J2R2
]
,

C = 16 σ4.

The solution of the quartic Equation (96) will produce four roots of αy(T1):

αy(T1) = ±

√√√√
−

(
B−
√

B2 − 4AC
)

2A
or αy(T1) = ±

√√√√
−

(
B +
√

B2 − 4AC
)

2A
. (97)

However, the acceptable solution for αy(T1) is the root of the quartic Equation (96) that is real
and positive [27–29]. The expression for estimating αx(T1) is defined in terms of αy(T1) as

αx(T1) =
1
σ


√√√√( J2Rαy(T1)2

2

)2

+

(
J2Iαy(T1)2

2

)2
. (98)

Considering the nth values of (T1), αy(T1), βx(T1), and βy(T1) corresponding to the nth modal
functions and the nth natural frequencies, the nth solution of the coupled problem is expressed as

u(x, t)n = αx(T1)nφ(x)n cos(ωnT0 + βx(T1)n) + O(ε), (99)

v(x, t)n = αy(T1)nη(x)n cos(λnT0 + βy(T1)n) + O(ε). (100)

We make the following substitutions:

T0 = t , T1 = εt, αx(T1)n = αxn, αy(T1)n = αyn, βx(T1)n = ψ1n + 2βy(T1)n − σnT1, βy(T1)n
= ψ2n + σnT1, and σnT1 = ωnT0− 2λnT0.

The first order approximate solution is expressed as

u(x, t) =
∞

∑
n=1

αxn|φ(x)n| cos(ψ1n + 2ψ2n + 2tωn − 2tλn + ϕxn) + O(ε), (101)

v(x, t) =
∞

∑
n=1

αyn|η(x)n| cos(ψ2n + tωn − tλn + ϕyn) + O(ε), (102)
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where the phase angles ϕxn and ϕyn are given by

tan(ϕxn) =
Im{φ(x)n}
Re{φ(x)n}

, tan(ϕyn) =
Im{η(x)n}
Re{η(x)n}

.

4. Numerical Results

This section presents the numerical solutions of the nonlinear dynamics of a cantilever pipe
conveying a steady pressurized air/water two-phase flow, summary of the pipe and flow parameters
are presented in Table 1. The axial linear natural frequencies for different flow velocities are estimated
analytically from Equation (53), while the transverse linear natural frequencies are estimated by solving
Equations (57) and (58) simultaneously with a numeric code written in Matlab.

Table 1. Summary of pipe and flow parameters.

Parameter Name Parameter Unit Parameter Values

External Diameter Do (m) 0.0113772
Internal Diameter Di (m) 0.00925

Length L (m) 0.1467
Pipe density ρpipe (kg/m3) 7800
Gas density ρGas (kg/m3) 1.225

Water density ρWater (kg/m3) 1000
Tensile and compressive stiffness EA (N) 7.24 × 106

Bending stiffness EI (N) 1.56 × 103

Considering a simple system with β = 0.2 and Π1 = 100, Π0 = Π2 = 0, a = α∆T = 0 for a single-phase
flow through the pipe, the natural frequencies Argand diagram plots for the axial and transverse
vibrations are presented in Figures 2 and 3.
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The Argand diagram of the axial vibrations shows that, as the fluid mixture velocity tends towards
the critical velocity, all paths move towards the origin of the Argand diagram; for the transverse
vibration it can be seen that, as the mixture velocity attains higher values, the Im(λ) in the second
mode of the system starts to diminish and, in time, becomes negative; Therefore, a Hopf bifurcation
occurs at an approximate dimensionless velocity of 5.65, which is the critical velocity at which the
systems becomes transversely unstable, summary of the results are presented in Table 2.

Table 2. Summary of the linear single-phase solution’s critical flow velocity.

Fluid Void Fraction β Liquid β Gas Ψ Liquid Ψ Gas
Critical Velocity

Transverse Axial

Single Phase NA 0.2 0.0 1.0 0.0 5.653 14.149

The nonlinear behavior of the pipe will be examined for the scenario when there is coupling of the
axial and transverse vibration and for the scenario when both are uncoupled. The uncoupled nonlinear
transverse frequency presented in Equation (80) demonstrates a cubic nonlinear dependence of the
uncoupled transverse frequencies on the amplitudes. The quartic expression presented in Equation (96)
relates the frequency and the detuning parameter of the coupled axial and transverse vibration with
the amplitude. These expressions will be used to plot the frequency response curves for both the
uncoupled and coupled scenarios and the nonlinear behavior of the pipe as it conveys two-phase flow
at a supercritical mixture velocity—“flow velocity larger than the critical velocity”.

4.1. Effects of Two-Phase Flow on the Dynamic Behavior of the Pipe

The effect of two-phase flow is studied by considering the nonlinear response of the cantilever
pipe as the void fraction of the two-phase flow changes. Similar to the single-phase flow, the Argand
diagram of the eigen-frequencies is used to find the critical velocities of the two-phase flow for the
various void fractions (0.3, 0.4, and 0.5); with the corresponding slip ratios estimated from the Chisholm
empirical relations presented in Equations (26) to (29), summary of the flow parameters are presented
in Table 3.

Considering a supercritical mixture velocity of 15 and book-keeping parameter (ε) of 0.1, the
nonlinear frequency amplitude variations and coupled frequency response of the second mode, which
is the stability-determining mode in the linear sense, are plotted for various void fractions.

It can be seen in Figure 4 that, as the void fraction increases, the natural frequency reduces.
A nonlinear hardening behavior is observed in the dynamic response of the pipe for all the examined
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void fractions. As seen in Figure 5, as the detuning parameter is increasing, bifurcation is observed
for the various void fractions examined. Also, it can be observed that the amplitude of the coupled
transverse vibration is reducing as the void fraction increases.

Table 3. Summary of the linear two-phase solution of critical flow velocities.

Fluid Void Fraction β Liquid β Gas Ψ Liquid Ψ Gas
Critical Mixture Velocity

Transverse * Axial

Two-Phase 0.3 0.19998 0.00010 0.99948 0.00052 12.505 31.634
Two-Phase 0.4 0.19997 0.00016 0.99918 0.00082 13.349 33.750
Two-Phase 0.5 0.19995 0.00024 0.99878 0.00122 14.613 36.966

* Critical mixture velocity based on Hopf bifurcation of the 2nd mode.Math. Comput. Appl. 2017, 22, 44  19 of 28 
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4.1.1. Effects of Temperature Difference on the Dynamic Behavior

The effect of temperature differences on a cantilever pipe conveying two-phase flow is studied
by considering the nonlinear response of the cantilever pipe as the temperature difference of the
two-phase flow with void fraction of 0.3 changes. Similar to the single-phase flow, the Argand diagram
of the eigen-frequencies is used to find the critical velocities of the two-phase flow for the various
temperature differences (0, 40, and 50); with the corresponding slip ratios estimated from the Chisholm
empirical relations presented in Equations (26)–(29), summary of the flow parameters are presented in
Table 4.
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Table 4. Summary of the linear two-phase solution of critical flow velocities for varying
temperature difference.

Parameter Void Fraction Thermal Expansivity α
Critical Mixture Velocity

Transverse * Axial

DT = 0 0.3 0.002 12.505 31.634
DT = 40 0.3 0.002 9.253 31.634
DT = 50 0.3 0.002 8.237 31.634

* Critical mixture velocity based on Hopf bifurcation of 2nd mode.

Considering a supercritical mixture velocity of 15 and book-keeping parameter (ε) of 0.1,
the nonlinear frequency amplitude variations and coupled frequency response of the second
mode, which is the stability-determining mode in the linear sense, is plotted for various
temperature differences.

It can be seen in Figure 6 that, as the temperature difference increases, the natural frequency
increases. A nonlinear hardening behavior is observed in the dynamic response of the pipe for all
the examined temperature differences. As seen in Figure 7, as the detuning parameter is increasing,
bifurcation is observed for the various temperature differences examined. Also, it can be observed
that the increase in temperature difference did not create significant changes in the amplitude of the
coupled transverse vibration.
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4.1.2. Effects of Flow Pressure on the Dynamic Behavior

The effect of pressurization on a cantilever pipe conveying two-phase flow is studied by
considering the nonlinear response of the cantilever pipe as the pressurization of the two-phase
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flow with void fraction of 0.3 changes. Similar to the single-phase flow, the Argand diagram of the
eigen-frequencies is used to find the critical velocities of the two-phase flow for the various pressures
(0, 5, and 10); with the corresponding slip ratios estimated from the Chisholm empirical relations
presented in Equations (26)–(29), summary of the flow parameters are presented in Table 5.

Table 5. Summary of the linear two-phase solution of critical flow velocities for varying pressurization.

Parameter Void Fraction
Critical Mixture Velocity

Transverse * Axial

Π2 = 0 0.3 12.505 31.634
Π2 = 5 0.3 10.596 31.634

Π2 = 10 0.3 8.237 31.634

* Critical mixture velocity based on Hopf bifurcation of the 2nd mode.

Considering a supercritical mixture velocity of 15 and book-keeping parameter (ε) of 0.1,
the nonlinear frequency amplitude variations and coupled frequency response of the second mode,
which is the stability-determining mode in the linear sense, is plotted for various pressures.

It can be seen in Figure 8 that, as the pressure increases, the natural frequency increases.
A nonlinear hardening behavior is observed in the dynamic response of the pipe for all the examined
pressures. As seen in Figure 9, as the detuning parameter is increasing, bifurcation is observed for
the various pressures examined. Also, it can be observed that increasing the pressure did not create
significant changes in the amplitude of the coupled transverse vibration.
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4.1.3. Effects of Top Tension on the Dynamic Behavior

The effect of top tension on a cantilever pipe conveying two-phase flow is studied by considering
the nonlinear response of the cantilever pipe for a situation with no top tension, a tensioning value
of 5, and a compressing value of 5, with a two-phase flow and void fraction of 0.3. Similar to the
single-phase flow, the Argand diagram of the eigen-frequencies is used to find the critical velocities of
the two-phase flow for the various tensioning values, and the corresponding slip ratios are estimated
from the Chisholm empirical relations presented in Equations (26)–(29), summary of the simulated
parameters are presented in Table 6.

Considering a supercritical mixture velocity of 15 and book-keeping parameter (ε) of 0.1,
the nonlinear frequency amplitude variations and coupled frequency response of the second mode,
which is the stability-determining mode in the linear sense, is plotted for the top tensions.

Table 6. Summary of the linear two-phase solution of critical flow velocities for varying top tensions.

Parameter Void Fraction
Critical Velocity

Transverse * Axial

Π0 = 0 0.3 12.505 31.634
Π0 = 5 0.3 14.155 31.634

Π0 = −5 0.3 10.596 31.634

* Critical mixture velocity based on Hopf bifurcation of 2nd mode.

It can be seen in Figure 10 that the tensioning top load reduces the natural frequency increase,
while a compressing top load increases the natural frequency. A nonlinear hardening behavior is
observed in the dynamic response of the pipe for all the examined cases. As seen in Figure 11,
as the detuning parameter is increasing, bifurcation is observed for the various pressures examined.
Also, it can be observed that the top tensions did not create significant changes in the amplitude of the
coupled transverse vibration.
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4.2. Time History and Phase Plots

Equations (83), (84), (101) and (102) are the first order approximate solutions of the transverse and
axial displacement of the uncoupled and coupled vibrations of the pipe. The time trace/history and
phase plots of the 2nd mode of the uncoupled and coupled vibrations are studied for various void
fractions (0.3, 0.4, and 0.5) considering a post-critical flow mixture velocity of 15.

The uncoupled response of the transverse vibrations—as shown in Figures 12–14 for the
various void fractions—looks similar; they all reveal that the uncoupled transverse vibrations exhibit
an oscillation that converges to a limit cycle with time. The initial amplitudes are greater than the
amplitudes of the limit cycles; hence, a positive initial damping is observed and the amplitudes decay
until they attain the limit cycles, as shown in the phase plot with a set of concentric circles inside the
phase trajectories. Contrary to this, the uncoupled axial vibration—as shown in Figures 15–17—is
observed to exhibit uniform periodic oscillations, which traces out as a closed orbit in the phase plots.
The amplitudes of the displacements are observed to reduce as the void fraction increases.

As a result of the coupling between the axial and the transverse vibration, both the coupled
transverse and axial solutions—as shown in Figures 18–23—exhibit uniform periodic oscillations,
which trace out as a closed orbit in the phase plots. The amplitudes of the coupled displacements are
observed to reduce as the void fraction increases.
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5. Conclusions

This study examines the dynamic behavior of a cantilever pipe conveying two-phase flow. Taking
into consideration the extensible theory, nonlinear equations of motion and boundary conditions were
obtained using Hamilton’s principle. The equations were made to be non-dimensional so as to remove
the dependence on geometric and dimensional parameters. Using the multiple-scale perturbation
technique, natural frequencies, mode shapes, and first order approximate solutions of the steady state
response of the pipes were obtained. From the multiple-scale assessment, it was observed that a 1:2
coupling exists between the axial and the transverse vibrations of the pipe.

The critical flow mixture velocities for various void fractions were obtained from the Argand
diagram plot of the eigen-frequencies; it was observed that the critical velocity increases as the void
fraction increases. The investigation on the uncoupled nonlinear dynamic behavior of the pipe as it
conveys two-phase flow at a super-critical mixture velocity reveals that the system exhibits a nonlinear
hardening behavior. As a result of the dynamic analysis, it has been observed that for a two-phase
flow, an increase in the void fraction reduces the natural frequency and the coupled amplitude of
the system. Also, an increase in temperature difference, an increase in pressure, and the presence
of top tension were observed to increase the natural frequencies without a significant alteration in
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the coupled amplitude of the system, while compression load at the top was observed to reduce the
natural frequencies without a significant change in the coupled amplitude of the system.
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