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Abstract: The restarted CMRH method (changing minimal residual method based on the Hessenberg
process) using fewer operations and storage is an alternative method to the restarted generalized
minimal residual method (GMRES) method for linear systems. However, the traditional restarted
CMRH method, which completely ignores the history information in the previous cycles, presents
a slow speed of convergence. In this paper, we propose a heavy ball restarted CMRH method
to remedy the slow convergence by bringing the previous approximation into the current search
subspace. Numerical examples illustrate the effectiveness of the heavy ball restarted CMRH method.
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1. Introduction

In this paper, we are concerned with the CMRH method (changing minimal residual method
based on the Hessenberg process) introduced in [1,2] for the solution of n× n linear system Ax = b.
Given an initial approximation x0, and letting the initial residual r0 = b− Ax0, the CMRH method is a
Krylov subspace method based on the m-dimensional Krylov subspace

Km(A, r0) = span{r0, Ar0, . . . , Am−1r0}. (1)

It can also be considered as an alternative method of the generalized minimal residual method
(GMRES) [3]. Nevertheless, they generate different basis vectors in different ways. The GMRES
method uses the Arnoldi process to construct an orthonormal basis matrix of the m-dimensional Krylov
subspace (1), while the CMRH method is based on the Hessenberg process [4], which requires half
as much arithmetic work and less storage than the GMRES method. The corresponding convergence
analysis of the CMRH method and its relation to the GMRES method can be found in [5,6]. There
are a great deal of past and recent works and interests in developing the Hessenberg process and
CMRH method for linear systems [7–13]. Specifically, in [7,8], Duminil presents an implementation for
parallel architectures and an implementation of the left preconditioned CMRH method. A polynomial
preconditioner and flexible right preconditioner for CMRH methods are considered in [9] and [10],
respectively. In [12,13], the variants of the Hessenberg and CMRH methods are introduced for solving
multi-shifted non-Hermitian linear systems.

Although the CMRH method is less expensive and needs less storage than the GMRES method
per iteration, for large-scale linear systems, it is still very expensive for large m. In addition, the
number of vectors requiring storage also increases as m increases. Hence, the method must be
restarted. The restarted CMRH method denoted by CMRH(m) [1] is naturally developed to alleviate
the possibly heavy memory burden and arithmetic operations cost. However, the price to pay for
the restart is usually slower speed of the convergence. In the restarted GMRES methods, in order to
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overcome the slow convergence, there are many other effectiveness restarting technologies [14–17]
which are designed to improve the simplest version of the restarted GMRES methods. Nevertheless,
the research on the restarted CMRH method is rather scarce. One of the reasons is because the
basis vectors generated by the Hessenberg process are not orthonormal. This leads to the CMRH
residual vector being not orthogonal to the subspace Km(A, r0) or A×Km(A, r0). Thus, the whole
augmented subspace containing the smaller Krylov subspace with Ritz vectors or harmonic Ritz
vectors is not still a Krylov subspace. (See the subspace (2.4) of [17] for more details on this augmented
subspace.) This means that the restarting strategy by including eigenvectors associated with the
few smallest eigenvalues into the Krylov subspace [15–17] is not available in the restarted CMRH
methods. In this paper, inspired by the locally optimal conjugate gradient (LOCG) methods for
the eigenvalue problem [18–23] and the locally optimal and heavy ball GMRES methods for linear
systems [14], we propose a heavy ball restarted CMRH method to keep the benefit and remedy the
lost convergence speed of the traditional restarted CMRH method. For traditional restarted CMRH
method (i.e., CMRH(m)), each CMRH cycle builds a Krylov subspace for computing the approximate
solution of the cycle, which is used as the initial guess for the next cycle. As soon as the approximation
is computed, the built Krylov subspace is thrown away. Nevertheless, in the heavy ball restarted
CMRH method proposed in this paper, for salvaging the loss of the previous search space, we take the
previous approximation into the current search to bring sufficient history information of the previous
Krylov subspace.

The rest of this paper is organized as follows. In Section 2, we briefly review the
Hessenberg process and the restarted CMRH method, then introduce the algorithmic framework
and implementation details of the heavy ball restarted CMRH method. Numerical examples are
given in Section 3 to show the convergence behavior of the improved method. Finally, we give our
concluding remarks in Section 4.

Notation. Throughout this paper, Rn×m is the set of all n × m real matrices, Rn = Rn×1 and
R = R1. In is the n × n identity matrix, and e(n)j is its jth column. The superscript “.T” takes the
transpose only of a matrix or vector. For a vector u and a matrix A, u(j) is u’s jth entry, u(i : j) is the
vector of components u(i), . . . , u(j), and A(i, j) is A’s (i, j)th entry. Notations ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞

are the 1-norm, 2-norm, and ∞-norm of a vector or matrix, respectively.

2. The Heavy Ball Restarted CMRH Method

2.1. The Hessenberg Process with Pivoting

The CMRH method [1] for the linear systems Ax = b is based on the Hessenberg process with
pivoting as given in Algorithm 1 to construct a basis of the Krylov subspace Km(A, r0). Given an
initial guess x0 ∈ Rn, the recursively computed basis matrix Lm = [`1, . . . , `m] ∈ Rn×m and the upper
Hessenberg matrix Hm ∈ Rm×m by Algorithm 1 satisfy

ALm = Lm+1Hm = LmHm + hm+1,m`m+1(e
(m)
m )

T
,

where Hm =

[
Hm

hm+1,m(e
(m)
m )T

]
and PLm is a unit lower trapezoidal matrix with PT = [e(n)p(1), . . . , e(n)p(n)].

In particular, the initial residual vector r0 = β0 × `1 = β0 × Lm+1e(m+1)
1 , where β0 = r0(i0) as defined

in Line 2 of Algorithm 1.
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Algorithm 1 Hessenberg process with pivoting

1: Choose an initial guess x0 ∈ Rn and an integer m ≥ 1.
2: Let r0 = b − Ax0. Set p = [1, . . . , n] and determine i0 such that |r0(i0)| = ‖r0‖∞, β0 = r0(i0),

`1 = r0/β0, and p(1)↔ p(i0) where “↔” means swap contents.
3: for j = 1, 2, . . . , m do
4: u = A`j.
5: for i = 1, 2, . . . , j do
6: hi,j = u(p(i)), u = u− hi,j`i.
7: end for
8: if (j < n and u 6= 0) then
9: Determine j0 ∈ {j + 1, . . . , n} such that |u(p(j0))| = ‖u (p(j + 1 : n)) ‖∞.

10: hj+1,j = u(p(j0)), `j+1 = u/hj+1,j and p(j + 1)↔ p(j0).
11: else
12: hj+1,j = 0. Stop.
13: end if
14: end for

The CMRH approximate solution xm is obtained as x0 + zm, where zm solves

min
z∈Km(A,r0)

‖L†
m+1 (b− A(x0 + z)) ‖2.

Here, L†
m+1 is the pseudo-inverse of Lm+1. In fact, any left inverse of Lm+1 will work, but we use

the pseudo-inverse here for simplicity. We can state equivalently that xm = x0 + Lmym, where
ym = arg min

y∈Rm
‖β0e(m+1)

1 − Hmy‖2. Like the quasi-minimal residual (QMR) method [24], the CMRH

method is a quasi-residual minimization method.

2.2. The Heavy Ball Restarted CMRH (HBCMRH) Method

To alleviate a heavy demand on memory, the restarted CMRH method (or CMRH(m) for short)
is implemented by fixing m and repeating the m-step CMRH method with the current initial guess
x(k)0 being the previous approximation solution x(k−1)

m , where the kth and (k− 1)th CMRH cycles are
indexed by the superscript “(k)” and “(k− 1)”, respectively. By limiting the number m in the Hessenberg
process, although CMRH(m) successfully remedies possibly heavy memory burden and computational
cost, at the same time it sometimes converges slowly. One of the reasons is that all the Krylov subspaces
built in the previous cycles are completely ignored. Motivated by the locally optimal and heavy ball
CMRES method [14] which is proposed by including the approximation before the last to bring in
more information in the previous cycles, we naturally develop a heavy ball restarted CMRH method
denoted by HBCMRH(m) to make up the loss of previous search spaces. For each cycle, HBCMRH(m)
starts an approximation x(k)0 being the previous cycle approximation solution x(k−1)

m and seeks the next

approximation solution x(k)m = x(k)0 + z(k)m , where z(k)m ∈ Km(A, r(k)0 ) + span{x(k)0 − x(k−1)
0 }. The actual

implementation is as follows.
Let the vector d = x(k)0 − x(k−1)

0 . Recall that we have Lm, Hm, and p by the Hessenberg process

satisfying ALm = Lm+1Hm, where PLm is unit lower trapezoidal with PT = [e(n)p(1), . . . , e(n)p(n)]. Now
we let d subtract multiples `1, . . . , `m to annihilate the m components p(1), . . . , p(m) of the vector
d to obtain a new vector dnew as in Lines 8–10 in Algorithm 2. Suppose dnew 6= 0. We determine
j0 ∈ {m + 1, . . . , n} such that |dnew(p(j0))| = ‖dnew(p(m + 1 : n))‖∞. Let

ˆ̀m+1 = dnew/dnew(p(j0)), L̂m+1 = [Lm, ˆ̀m+1], p(m + 1)↔ p(j0).

It is clear that L̂m+1 is a basis matrix of subspace Km(A, r(k)0 ) + span{d}.
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Next, we run the similar procedure to annihilate the m + 1 components p(1), . . . , p(m + 1) of
the vector A ˆ̀m+1, and then obtain ˜̀m+2 and Hm+1 ∈ R(m+2)×(m+1) as Lines 14–20 in Algorithm 2.
Let L̃m+2 = [Lm+1, ˜̀m+2]. We have the relationship

AL̂m+1 = L̃m+2Hm+1. (2)

At the same time, PL̃m+2 keeps the structure of unit lower trapezoid.
The new approximation solution of HBCMRH(m) is x(k)m = x(k)0 + z(k)m , where z(k)m is computed

by solving
min

z∈Km(A,r(k)0 )+span{d}

∥∥∥L̃†
m+2

(
b− A(x(k)0 + z)

)∥∥∥
2

.

Here, L̃†
m+2 is the pseudo-inverse of L̃m+2. For any z ∈ Km(A, r(k)0 ) + span{d} can be expressed by

z = L̂m+1y for some y ∈ Rm+1. It is followed by (2) that

b− Ax(k)m = b− Ax(k)0 − AL̂m+1y = r(k)0 − L̃m+2Hm+1y

= β0 L̃m+2e(m+2)
1 − L̃m+2Hm+1y

= L̃m+2

(
β0e(m+2)

1 − Hm+1y
)

.

Thus, the new HBCMRH(m) approximation solution x(k)m is obtained as x(k)0 + L̂m+1y(k)m , where

y(k)m = arg min
y∈Rm+1

‖β0e(m+2)
1 − Hm+1y‖2. We summarize the HBCMRH(m) method mentioned in

this subsection in Algorithm 2. A few remarks regarding Algorithm 2 are in order:

1. In Algorithm 2, we only simply consider the case d 6= 0 and u 6= 0 in Line 11 and 18, respectively.
In fact, in the case d 6= 0 and u = 0, by a simple modification of the above process, the
new approximation x(k)m = x(k)0 + L̂m+1y(k)m with y(k)m = arg min

y∈Rm+1
‖β0e(m+1)

1 − Hm+1y‖2 where

Hm+1 ∈ R(m+1)×(m+1) is obtained by deleting the last row of Hm+1. Similarly, if d = 0, then y(k)m

is the optimal argument of min
y∈Rm

‖β0e(m+1)
1 − Hmy‖2.

2. In comparison with the CMRH(m) method, the HBCMRH(m) method only requires one extra
matrix-vector multiplication with A, but it represents a significant improvement in the speed of
convergence, as shown in our numerical examples.
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Algorithm 2 Heavy ball restarted CMRH method (HBCMRH(m))

1: Choose an initial guess x(1)0 ∈ Rn and an integer m ≥ 1.
2: for k = 1, 2, . . . until convergence do
3: call Algorithm 1 to get p, Lm+1, and Hm.
4: if k = 1 then
5: Compute x(k)m = x(k)0 + Lmy(k)m , where y(k)m = arg min

y∈Rm
‖β0e(m+1)

1 − Hmy‖2, and x(k+1)
0 = x(k)m .

6: else
7: d = x(k)0 − x(k−1)

0 .
8: for i = 1, 2, . . . , m do
9: d = d− d(p(i))`i.

10: end for
11: if d 6= 0 then
12: Determine j0 ∈ {m + 1, . . . , n} such that |d(p(j0))| = ‖d (p(m + 1 : n)) ‖∞, ˆ̀m+1 =

d/d(p(j0)) and p(m + 1)↔ p(j0).
13: end if
14: Compute u = A ˆ̀m+1.
15: for i = 1, 2, . . . , (m + 1) do
16: hi,m+1 = u(p(i)), u = u− hi,m+1`i.
17: end for
18: if u 6= 0 then
19: Determine j0 ∈ {m + 2, . . . , n} such that |u(p(j0))| = ‖u (p(m + 2 : n)) ‖∞, hm+2,m+1 =

u(p(j0)), ˜̀m+2 = u/hm+2,m+1 and p(m + 2)↔ p(j0).
20: end if
21: Let L̂m+1 = [Lm, ˆ̀m+1]. Compute x(k)m = x(k)0 + L̂m+1y(k)m where y(k)m = arg min

y∈Rm+1
‖β0e(m+2)

1 −

Hm+1y‖2, and x(k+1)
0 = x(k)m .

22: end if
23: end for

3. Numerical Examples

In this section, we present some numerical examples to illustrate the convergence behavior of
the HBCMRH(m) method (i.e., Algorithm 2) with the initial vector x0 = [0, . . . , 0]T and m = 30. In
demonstrating the quality of computed approximations, we monitor the normalized residual norms

‖b− Ax‖2

‖A‖1‖x‖2 + ‖b‖2

against the number of cycles. All our experiments were performed on a Windows 10 (64 bit) PC-Intel(R)
Core(TM) i7-6700 CPU 3.40 GHz, 16 GB of RAM using MATLAB version 8.5 (R2015a) with machine
epsilon 10−16 in double precision floating point arithmetic.

Example 1. We first consider a n× n dense matrix

A =


1 1 1 . . . 1 1
α1 1 1 . . . 1 1
α1 α2 1 . . . 1 1
...

...
...

...
...

α1 α2 α3 . . . αn−1 1


appearing in [1] and [25] with n = 100, ai = 1 + i× ε, and ε = 10−2. The right hand side b = rand(n, 1)
where rand is a MATLAB built-in function. In order to be fair in comparing algorithms, we tested
the HBCMRH(m) method and the CMRH(m + 1) method. Recalling the remark of Algorithm 2, we
know the CMRH(m + 1) method requires the same matrix-vector multiplications as HBCMRH(m),
and it presents a better convergence behavior than CMRH(m). The normalized residual norms against
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the number of cycles of these two methods are collected in Figure 1, which clearly shows that the
HBCMRH(m) method converges much faster than CMRH(m+ 1). In fact, as shown in Figure 1, to reach
about 10−8 in normalized residual norms on this example, the HBCMRH(m) method takes 34 cycles,
while the CMRH(m + 1) method is seen to need much more cycles to get there.

Number of cycles
0 5 10 15 20 25 30 35

No
rm

ali
ze

d 
re

sid
ua

l n
or

m
s

10-10

10-8

10-6

10-4

10-2

100

HBCMRH(m)
CMRH(m+1)

Figure 1. Convergence behavior of the heavy ball restarted changing minimal residual method
(HBCMRH)(m) and CMRH(m + 1) method.

Example 2. In this example, we consider a sparse matrix A and right hand side b which are extracted
from raefsky1 taken from the University of Florida sparse matrix collection [26]. In such a problem,
A is not symmetric with order n = 3242 and contains 293,409 nonzero entries. Similarly, we compare
the normalized residual norms of the HBCMRH(m) method with the CMRH(m+ 1) method in Figure 2.
Similar comments to the ones we made at the end of Example 1 are valid here as well.

Number of cycles
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rm

ali
ze

d 
re

sid
ua

l n
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m
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10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

HBCMRH(m)
CMRH(m+1)

Figure 2. Convergence behavior of the HBCMRH(m) and CMRH(m + 1) method.

Example 3. In this example, we use the symmetric Hankle matrix appearing in [8] with elements

A(i, j) =
0.5

n− i− j + 1.5

and n = 1000. Let the right rand side b = A× ones(n, 1), where ones is a MATLAB built-in function.
We compare the HBCMRH(m) method with the heavy ball restarted GMRES method denoted by
HBGMRES(m) and compute the associated normalized residual norms in Figure 3. As shown in
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Figure 3, in such a case, the HBCMRH(m) and HBGMRES(m) method are competitive in the number
of cycles, but less computation cost and storage requirement are needed in the HBCMRH(m) method.

Number of cycles
1 2 3 4 5 6 7 8 9 10
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l n
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m
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10-20

10-15

10-10

10-5

100

HBCMRH(m)
HBGMRES(m)

Figure 3. Convergence behavior of the HBCMRH(m) and heavy ball restarted generalized minimal
residual (HBGMRES)(m) method.

4. Conclusions

In this paper, we proposed a heavy ball restarted CMRH method (HBCMRH(m) for short;
i.e., Algorithm 2) for a linear system Ax = b. Compared to the traditional restarted CMRH method
(i.e., CMRH(m)), x(k−1)

0 is built in the search space of the HBCMRH(m) method to compute the

next approximation x(k)m for alleviating the loss of previous Krylov subspace. Therefore, one more
matrix-vector multiplication of A is required in the HBCMRH(m) method. However, as shown in our
numerical examples, HBCMRH(m) presents a better convergence behavior than CMRH(m + 1).

We have focused on the heavy ball restarted CMRH method. In fact, we can easily give the locally
optimal restarted CMRH method as the locally optimal restarted GMRES method. We omit the details.
In addition, while the HBCMRH(m) method has been developed for real linear systems, the algorithm
can be rewritten to work for complex linear systems. This is done by simply replacing all R by C and
each matrix/vector transpose by complex conjugate transpose.
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