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Abstract: Road traffic injuries are a serious concern in emerging economies. Their death toll and
economic impact are shocking, with 9 out of 10 deaths occurring in low or middle-income countries;
and road traffic crashes representing 3% of their gross domestic product. One way to mitigate these
issues is to develop technology to effectively assist the driver, perhaps making him more aware about
how her (his) decisions influence safety. Following this idea, in this paper we evaluate computational
models that can score the behavior of a driver based on a risky-safety scale. Potential applications of
these models include car rental agencies, insurance companies or transportation service providers.
In a previous work, we showed that Genetic Programming (GP) was a successful methodology to
evolve mathematical functions with the ability to learn how people subjectively score a road trip.
The input to this model was a vector of frequencies of risky maneuvers, which were supposed to be
detected in a sensor layer. Moreover, GP was shown, even with statistical significance, to be better
than six other Machine Learning strategies, including Neural Networks, Support Vector Regression
and a Fuzzy Inference system, among others. A pending task, since then, was to evaluate if a more
detailed comparison of different strategies based on GP could improve upon the best GP model.
In this work, we evaluate, side by side, scoring functions evolved by three different variants of GP.
In the end, the results suggest that two of these strategies are very competitive in terms of accuracy
and simplicity, both generating models that could be implemented in current technology that seeks
to assist the driver in real-world scenarios.

Keywords: genetic programming; driving scoring functions; driving events; risky driving; intelligent
transportation systems

1. Introduction

It is a well known problem that reckless driving affects society in a variety of ways,
with noteworthy impacts on health, economic and social issues. Government offices in charge of
planning and deploying urban programs could largely benefit by technological tools which can provide
decision-support information to develop appropriate public policies. On their part, taxicab companies
or on-line transportation services could also benefit from such tools to optimize resources or reduce
economic risks related to insurance or maintenance. At the same time, insurance companies could
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work on coverage plans designed according to a driver’s profile which could, at least partially, be based
on automatic tools that exploit useful information obtained from regular driving trips [1,2].

For these reasons, there has been a growing amount of interest in the development of approaches
that can extract information from sensors embedded in almost every modern mobile device, such as
GPS, gyroscope, magnetometer and accelerometer. This opens the possibility for a broad spectrum
of new applications that exploit different ways of collecting and analyzing sensor data. In particular
several works have proposed to transform sensor readings to deliver a driving safety score, with a
small but varied set of techniques, such as simple penalty functions [3], fuzzy classifiers [4] or Bayesian
models [5]. Moreover, other authors have suggested to expand the amount of sensors used to score
driving behaviors, such as using real time data about weather, road conditions and traffic density,
among others [6].

The problem of calculating a driving score based on the performance of the driver could be
seen as a computational learning task, where given a feature vector that contains the frequency of
risky maneuvers the goal is to assign a score to represent the driver’s performance in a risk-safety
scale (this problem could also be seen as a machine learning problem for human-rating). Recently,
in [7] the authors presented the evaluation of seven different Machine Learning (ML) approaches
to learn how individuals assigned a driving score. From this comparison a clear winner emerged,
this being the Genetic Programming (GP) approach. Since then, a question that remained open was
to evaluate if other variants of GP could attain better results. In this manuscript we approach this
question by evaluating three different GP variants that have proved to be successful for a variety of
problems, namely GPTIPS [8], neatGP [9] and neat-GP-LS [10]. The first method generates models
linear in parameters, the second builds non-linear models using a bloat control mechanism, and the
last one extends neat-GP by including a local search operator. Results suggest that GPTIPS as well as
neatGP-LS are very competitive at evolving mathematical scoring functions, and given their accuracy
and simplicity could be integrated in current car technology to assist the driver.

The rest of the paper is organized as follows. In Section 2 we overview related work on the
problem domain. Next, in Section 3 we describe our proposed approach, including building the
dataset, posing the learning problem and applying GP to solve it. In Section 4 we detail the results
obtained, and finally in Section 5 we present the main conclusions.

2. Related Work

The exponential growth of the world population has increased traffic flow in all cities worldwide.
Therefore, new and improved urban policies must be implemented, and the use of current technology is
becoming a mandatory requirement to alleviate the social impact of road accidents [11]. Recent works
deal with detecting and classifying sensor data from mobile devices, as well as sensors embedded
in automobiles [3]. Due to the increase availability of such devices, there is a surge of possible
applications for the data gathered by them. Opportunely determining the mental and physical state
of a driver through an analysis of their behavior might help mitigate the number of car accidents.
For instance the work in [6] details the social impact of traffic accidents in the UK, and approaches
the problem via a context-aware architecture that links data from sensors, driver behavior and road
infrastructure to jointly help decrease the possibility of road accidents. While most works attempt to
distinguish between aggressive from calm driving, drunk and careless driving might also be identified.
For example, Dai et al. [12] tried to detect drunk driving through an inexpensive platform using mobile
phone sensors, sending notifications to the proper authorities and to the driver.

However, modeling the behavior of a driver is a very complex task, it involves a large number
of variables and subjective data. Self perception of driving skills is very biased, some drivers
might believe that their driving style is safe, whilst a driving companion may have an entirely
different opinion. Detecting aggressive behavior while driving is a problem that has been addressed
through several ML techniques, that exploit specific types of sensor data. In a large study presented
in [1], a mobile application was designed using a crowd-sourcing approach. Data from sensors
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embedded in mobile devices was recorded by the application and used in conjunction with automobile
characteristics and road conditions. This distributed telematics platform allowed the authors to
successfully gather data regarding unsafe behaviors whilst driving. Their approach used a multivariate
Gaussian model to determine the likelihood of normal versus abnormal driving maneuvers. The work
detailed in [13,14] also deals with classification of unsafe driving practices, from sensor data within
mobile phones. The use of such sensors is extremely prevalent due to the deep penetration of the
aforementioned devices among current drivers. Most of the works that attempt to detect aggressive or
reckless behaviors while driving, focus on accurately detecting specific driving events, like sudden
stops, intrusive lane changes or speeding. This is usually done by posing a classification problem.
ML approaches that have been used to solve this problem include Fuzzy Logic Systems and Time Series
analysis [4,13,15–17], to mention two prominent techniques. However, we argue that classifying these
events is only the first step towards properly determining unsafe driving behaviors. To properly score
a driving trip, one should account for the total frequency of the events with regards to the total length
of the trip. The nature of these events are vastly studied under the concept of Insurance Telematics [2],
where they are called Figure of Merits (FoMs). Once these FoMs or risky maneuvers are detected, a new
regression problem appears, which is related to calculating a driving score. For instance, in the work
of [5] the authors attempt to score driving trips using a Bayesian classifier to differentiate between risky
and safe maneuvers. In [7], the authors compared a Fuzzy Inference System [1], a Safety Index [13],
a Bayesian regressor [5], a Multi-layer perceptron, a Random Forrest, a Support Vector regressor and a
GP approach to learn how individuals score 200 virtual road trips, where each trip was represented by
a feature vector containing the frequency of risky maneuvers. Results showed that the GP strategy
was superior than competitors, even in some cases with statistical significance. We depart from this
point, where a main comparison of approaches was already done, positioning GP as the best performer.
On top of these results this manuscript compares the performance of three flavors of GP, with the aim
to know if a better performance can be found.

3. Methodology

In this section we briefly describe the datasets that will be used. We also present the different
flavors of GP that are compared. Finally, we present the performance metric and the statistical test that
is used to validate the analysis.

3.1. The Dataset

Given that our aim is to compared GP-strategies on the first place, but also to contextualize our
results given prior results, we will use the same dataset employed in [7]. This dataset is composed
of 200 virtual trips, where each trip is characterized by a vector of frequencies, with each position of
the vector associated to a particular risky maneuver. Each trip (vector) is also associated to a Driving
score (target value) that was computed as the mean value of all scores given to it by a group of drivers.
The risky maneuvers considered in the vector are analogous to those found in [18], which suggests
those types of incidents are closely related to safety on the road. As an example, Table 1 shows how a
single road trip was characterized by a human observer based on the frequency of each risky maneuver.
To establish the ground truth for the driving score, the descriptive vector of each trip was shown to
several human observers (a total of 40) who were then asked to provide a subjective score for the
trip on a scale of 1 (very unsafe) to 10 (very safe). This means that each observer imposed subjective
criteria when deriving their score, based on what events they considered to be the most correlated
with driving safety.
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Table 1. A sample of the survey used to evaluate each driving event as safe or unsafe, based on the
frequency of each DE.

Driving Event (id Number in the Feature Vector) Value (Frequency) Score for the Travel

Distance (x1) 7
Avg. Velocity (x2) 6
# of acceleration events (x3) 5
# of sudden starts (x4) 3 8
# of abrupt lane changes (x5) 2
# of intense brakes (x6) 7
# of sudden stops (x7) 0
# of abrupt steerings (x8) 1

To compare approaches, two experiments were envisioned. In the first experiment, now called
1–10 scale, the dataset was used the way it is, since the target values for all the feature vectors contains
a score in the range [1, 10]. For the second experiment, the targets were fitted to a 1–4 scale following
the criteria proposed in [3]. Both experiments were planned to analyzed the performance of the
approaches in a fine and coarse version of the dataset. Note that, for both scales, the minimum value
corresponds to a totally reckless trip, and the highest value to a totally safe trip.

3.2. Genetic Programming and Tested Flavors

GP uses an evolutionary search to derive small programs, operators or models. In most cases,
GP is used to solve different kinds of ML tasks, with the most common being symbolic regression,
producing Symbolic Regression Models (SRMs). These models represent the relation between the
input variables and the dependent output variable. Therefore, in this work the problem is posed as
a symbolic regression one, where GP is used to evolve the scoring functions, taking as input each
of the frequency features described above. In standard GP, and all the variants used here, the SRMs
are represented using a tree structure, where internal nodes contain elements from a set of basic
mathematical operations called the function set. Tree leaves contain input values, in this case each
of the xi features and random constants. The fitness function used in all cases is the Root Mean

Squared Error (RMSE) (RMSE =

√
1
n Σn

i=1

(
predi − targeti

)2
, where targeti is the score in the survey

for the i− th road trip, predi is the predicted score given by a particular scoring function.) between
the estimated score given by an individual SRM and the ground truth score on all of the samples in
a training set. As for any other evolutionary algorithm, in GP, special genetic operators are used to
build new SRMs (offspring) from previous ones (parents) that were chosen stochastically, with a bias
that is based on the fitness of the solution. In order to be a self-contained manuscript, the general
pseudocode of a GP search is summarized in Algorithm 1. The specific strategies of GP evaluated in
this manuscript are described next.

Algorithm 1 Genetic Programming pseudocode.

1: for i = 1 to NumO f Generations (or until an acceptable solution is found) do
2: if 1st generation then
3: generate initial population with primitives (variables, constants and elements from the

function set)
4: end if
5: Calculate fitness (minimize RMSE) of population members
6: Select n parents from population (based on fitness)
7: Stochastically apply Genetic operators to generate n offspring
8: end for
9: Return best individual (based on fitness) found during search
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3.2.1. GPTIPS V2

GPTIPS implements a multi-gene strategy to represent individuals in the population. Basically,
the representation of a single individual includes a collection of trees, and the final SRM is constructed
as a linear combination of all the trees. This is a linear in parameter model, with the model weights fitted
with linear regression. GPTIPS also uses a multi-objective selection pressure, where model complexity
(size) is also included as a selection criterion. A good aspect of the GPTIPS tool is that it offers a variety
of post execution reports, such as summary information about the latest generation, the best solutions
on the Pareto front, considering both the training and testing partitions, the complexity of the proposed
solutions in terms of number of nodes, RMSE and R2 of the best programs, among other useful stats [8]
(http://gptips.sourceforge.net/).

3.2.2. neatGP

The neatGP method [9] combines GP with the NeuroEvolution of Augmenting Topologies
algorithm (NEAT) [19]. It was proposed as a bloat-free GP search based on the results obtained
by Flat Operator Equalization (Flat-OE) [20]. In general, neatGP preserves a diverse population
of individuals of different shapes and sizes, by using speciation techniques and standard fitness
sharing. Results on both regression and classification tasks have show that neatGP can produce very
accurate models that are orders of magnitude smaller than the ones produced by standard GP [9].
The implementation used in this paper was developed on top of the DEAP Library [21].

3.2.3. neatGP-LS

One way to enhance a global search algorithm or metaheuristic is by embedding additional
search operators that can improve the overall exploitation ability of the search process. In particular,
GP utilizes search operators that operate at the level of syntax, i.e., they modify the syntactic
representation of the programs or SRMs. This can make the search more inefficient when what
is required are small steps in the solution space. That is one of the reasons that GPTIPS, for instance,
uses linear regression to fit the linear parameters of the evolved models. Similarly, neatGP-LS integrates
a local search (LS) mechanism within neatGP, by first parameterizing each solution by adding a
real-valued weight θ to each node and fitting those weights using a trust region optimizer [10].
In standard GP these weights are usually ignored and considered to be θ = 1, in neat-GP this
represents their initial value but the numerical optimizer can tune the weights as required. One effect
of embedding a LS method within GP is that smaller solutions in the population have a better chance
of surviving after the LS is applied, since they are more susceptible to suboptimal parameter values.

3.3. Statistical Analysis: Friedman Test and Critical Difference Diagram

To validate the differences in the output generated by each GP strategy, we will conduct the
Friedman test [22], which is a non-parametric test that helps identify if there are statistical differences
in the variances of multiple treatments. For all the experiments, we will use a significance level of
α = 0.05. To present this analysis, we will make use of a Critical Difference Diagram (CDD), proposed
by [23]. CDD shows in an intuitively manner how different approaches are ranked, being favored
those that are located rightmost in the horizontal bar. It also shows when no statistical difference was
found between a group of treatments, joining them with a thick bar.

4. Results

In this section we present the results of the execution of each GP strategy applied to the problem
of finding suitable scoring functions for driving trips. A 10-fold cross validation scheme was applied
in all the experiments, where the same data partitions were used by all algorithms. All of the common
parameters were set to the same values, summarized in Table 2. All other parameters were set to their
default values as reported in the original references.

http://gptips.sourceforge.net/
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Table 2. Parameters for GPTIPS, neatGP and neatGP-LS.

Parameter Value Units

Population size 100 items
Max. # of generations 100 items
Input variables 8 items
Range of Constants [−10, 10] items
Training instances 180 road trips
Testing instances 20 road trips
Crossover probability 85 percentage (%)
Mutation probability 15 percentage (%)
Function set ×,−,+,÷,

√
x, functions

tanh, exp, log, x3,
MULT3, ADD3,
negexp, neg, |x|

Experiment 1: Targets in the 1–10 scale. The performance of each GP strategy is given in
Tables 3–5, for GPTIPS, neatGP and neatGP-LS, respectively. The format for all comparison tables
present the performance on each fold, showing the best training RMSE, the RMSE of the best solution
found, the size of the best individual given in number of nodes, and the average size of the population.
Summary statistics are also given, showing the minimum, maximum, mean, standard deviation,
median and linear correlation coefficient of the best solutions, between the ground truth and the
model output.

Figure 1 presents a scatter plot analysis of the best model found, plotting the ground truth score
and the model output for each training and testing sample of that particular fold, respectively for
GPTIPS (a) and neatGP-LS (b), neatGP was omitted in this comparison since it achieved the poorest
results. The corresponding linear correlation coefficient, for the training and testing data, are given in
the previous tables.

As a concluding remark for this subsection let us examine the distribution of the RMSE scores for
all three approaches. Figure 2 shows through boxplots how GP-Tips and neatGP-LS generate models
with less error than neatGP.

Table 3. Root Mean Squared Error (RMSE) for the 10-fold cross validation performance of GPTIPS on
the 1–10 scale dataset.

GPTIPS

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 1.1219 1.2211 22 21.1200
2 1.1168 1.2188 25 22.6067
3 1.1329 1.0482 22 20.0633
4 1.0978 1.4509 26 23.6000
5 1.1479 1.0034 25 22.7067
6 1.1296 1.1546 24 24.3533
7 1.1367 1.1857 24 23.2800
8 1.0650 1.7854 25 23.0167
9 1.1356 1.3130 23 22.2233

10 1.0595 1.5560 22 21.1667
Minimum 1.0595 1.0034 22 20.0633
Maximum 1.1479 1.7854 26 24.3533

mean 1.1144 1.2937 23.8000 22.4137
SD 0.0306 0.2408 1.4757 1.2994

median 1.1257 1.2199 24.0000 22.6567
Correlation Coefficient 0.8030 0.2868
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Table 4. RMSE for the 10-fold cross validation performance of neatGP on the 1–10 scale dataset.

neatGP

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 1.2093 1.5795 46 39.1850
2 1.2584 1.1488 64 45.9650
3 1.8291 1.9927 183 124.3400
4 1.3928 1.3015 132 100.0250
5 1.3064 1.5171 44 27.9500
6 1.2969 1.9753 61 44.3100
7 0.8505 1.5701 625 211.0900
8 1.2261 1.6290 69 54.6200
9 1.2496 1.9254 66 47.0100

10 1.2546 1.4381 44 29.5650
Minimum 0.8505 1.1488 44 27.9500
Maximum 1.8291 1.9927 625 211.0900

mean 1.2874 1.6077 133.4000 72.4060
SD 0.2378 0.2845 178.4204 57.7911

median 1.2565 1.5748 65.0000 46.4875
Correlation Coefficient 0.6432 0.6337

Table 5. RMSE for the 10-fold cross validation performance of neatGP-LS on the 1–10 scale dataset.

neatGP-LS

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 1.1690 1.6912 30 11.5900
2 1.2195 1.1623 40 11.9700
3 1.1622 1.2626 22 16.0000
4 1.2188 1.0513 31 18.8400
5 1.1756 1.5657 29 16.1750
6 1.1813 1.0310 36 20.1050
7 1.3758 1.3739 1 3.4200
8 1.1822 1.1456 18 18.5950
9 1.1326 1.4899 31 13.2200

10 1.1917 1.2202 35 16.5700
Minimum 1.1326 1.0310 1 3.4200
Maximum 1.3758 1.6912 40 20.1050

mean 1.2009 1.2994 27.3000 14.6485
SD 0.0666 0.2236 11.2551 4.8923

median 1.1818 1.2414 30.5000 16.0875
Correlation Coefficient 0.7735 0.5012

(a) GPTIPS

Figure 1. Cont.
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(b) neatGP-LS

Figure 1. Scatter plot of the ground truth scores and the model outputs for the training and testing
partitions of the best solution found computed for the dataset with a 1–10 scale.

Figure 2. Box plot comparison of all methods based on testing fitness on the dataset with a 1–10 scale.

Experiment 2: Targets in scale 1–4. Tables 6–8 summarize the performance of GPTIPS, neatGP
and neatGP-LS, respectively.

The performance over all cross-validation folds is shown in Figure 3, which is a box plot for
the testing RMSE. Notice that in the scale 1–4 GPTIPS does not only presents the best performance,
but also it shows the less variance.

Table 6. RMSE for the 10-fold cross validation performance of GPTIPS on the 1–4 scale dataset.

GPTIPS

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 0.6445 0.7347 22 22.0300
2 0.6567 0.6591 18 17.7833
3 0.6474 0.7408 21 21.8767
4 0.6215 0.9530 23 23.9733
5 0.6604 0.6833 29 24.4567
6 0.6491 0.7931 20 18.0233
7 0.6630 0.5913 22 20.8233
8 0.6524 0.6400 29 22.3667
9 0.6402 0.7241 21 19.9933

10 0.6176 0.9286 23 21.7733
Minimum 0.6176 0.5913 18 17.7833
Maximum 0.6630 0.9530 29 24.4567

mean 0.6453 0.7448 22.8000 21.3100
SD 0.0153 0.1182 3.5839 2.2205

median 0.6482 0.7294 22.0000 21.8250
Correlation Coefficient 0.7505 0.6219
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Table 7. RMSE for the 10-fold cross validation performance of neatGP on the 1–4 scale dataset.

neatGP

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 0.6070 2.6656 234 174.0650
2 0.5770 0.9034 276 169.5550
3 0.8056 0.8421 464 266.4800
4 0.6513 1.1010 176 118.1200
5 0.4705 0.5493 236 151.3600
6 0.5038 1.1317 245 160.8900
7 0.6748 0.7746 159 110.3400
8 0.7093 0.7463 55 42.1850
9 0.5284 0.9176 205 146.1850

10 0.5491 1.4260 139 65.5550
Minimum 0.4705 0.5493 55 42.1850
Maximum 0.8056 2.6656 464 266.4800

mean 0.6077 1.1058 218.9000 140.4735
SD 0.1034 0.5991 107.1888 62.4507

median 0.5920 0.9105 219.5000 148.7725
Correlation Coefficient 0.8805 0.5857

Table 8. RMSE for the 10-fold cross validation performance of neatGP-LS on the 1–4 scale dataset.

neatGP-LS

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 0.6387 0.9852 30 18.9650
2 0.7240 0.7477 29 16.7000
3 0.6675 0.7854 28 14.3150
4 0.6291 0.9384 37 20.5550
5 0.6321 0.7810 21 16.1550
6 0.6611 0.7851 41 24.1900
7 0.7217 0.4519 29 19.7950
8 0.6337 0.6387 34 19.5900
9 0.6622 0.9408 29 15.8750

10 0.6323 1.0198 17 14.0850
Minimum 0.6291 0.4519 17 14.0850
Maximum 0.7240 1.0198 41 24.1900

mean 0.6603 0.8074 29.5000 18.0225
SD 0.0359 0.1738 6.9960 3.1629

median 0.6499 0.7852 29.0000 17.8325
Correlation Coefficient 0.7598 0.3352

Figure 3. Box plot comparison of all methods based on testing fitness on the dataset with a 1–4 scale.
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To ilustrate a resulting evolved model of GP, Table 9 presents one of the best models found by
GPTIPS from the perspective of accuracy and complexity.

Table 9. ith Best model in the Pareto front, from the stand point of accuracy and complexity (1–4 scale)
(GPTIPS).

RMSE Testing Complexity
(# of Nodes) Model

0.919 37
y =

0.4486 e−1.0 x1 (x1 − 1.0 x1 (x2 − 9.9))
x2

− 0.05036 x8

− 0.02518 tanh(tanh(x4)) (tanh(tanh(x4))− 1.0 x1 (x2 − 9.9))

− 0.2356 x2 + 3.443

Statistical analysis. To formally compare the results from each algorithm in terms of test
performance (RMSE), we applied a Friedman test [22] and present this results using a Critical Difference
Diagram [23], as previously stated.

Figure 4 shows a summary of the results for the 1–10 scale, showing the average rank of each
method, indicating that there is no statistically significant difference between the test performance
results of all GP variants.

Figure 4. Critical Difference Diagram (CDD) of the Friedman test for the 1–10 scale problem.

Figure 5 presents the same analysis for the 1–4 scale. For the 1–10 scale, neatGP-LS is the top
performer, although with no statistical difference. In the 1–4 scale, GPTIPS seems to have advantage,
with no statistical difference with neatGP-LS but with statistical difference with neatGP.

Figure 5. CDD of the Friedman test for the 1–4 scale problem.

Analysis of Features Frequency. To gain some insight about how each method is deriving the
predictions of the driving score, Figure 6 plots the frequency with which each input feature appears
in all of the best solutions found (a total of 10, one for each fold). Such an analysis can be useful,
particularly since the models are quite compact. In the case of neatGP, where the models are larger,
the frequency is notably heftier. However, probably the most useful way in which to read this plot is
to consider the relative importance of each feature for each method. To associate each feature with
its corresponding index variable see Figure 1. In the case of neatGP, feature x1 is the most used by
the models, followed by x2, and then x6 and x8. On the other hand, neatGP-LS prefers x2, x4 and
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x6. Additionally GPTIPS uses a smaller number of features, focusing on x1 and x2. Notice that some
features are practically ignored by neat-GP or GPTIPS, namely x5 by both and x5, x3 and x4 by GPTIPS.
This suggest that these features are not required and may be omitted by a real-time system that must
first detect these features before scoring a driving trip.

(a) 1–10 scale

(b) 1–4 scale

Figure 6. Frequency of appearance of each DE (feature variables x1 to x8) in the best solutions found
by each method on the dataset.

5. Conclusions

As cities and urban areas continue to grow, the need for smart technologies that can improve
safety is always of great importance. One source of great health and economic impact are traffic
accidents, that can range from minor fender benders to life threatening situations. One way to help
mitigate these type of accidents is to be able to automatically detect when a person is driving in an
unsafe manner, to help bring about the proper corrective measures. This problem can be solved in
a two-step process. First, to detect specific types of driving events that are highly correlated with
safety. Second, to use the frequency of detected events to derive a safety score for a given driving trip.
This paper deals with the latter, building upon previous results were the former has been solved using
sensors from mobile devices [24].

This work presents an experimental evaluation of three GP algorithms to solve a difficult
real-world problem. GP search is used to evolve scoring functions that take as input the frequency with
which a set of driving events are detected during a trip. The goal is to have models that can accurately
predict how a human observer would grade a particular trip, based on features such as average speed,
distance of a trip, number of lane changes, abrupt steering, sudden stops, among others. A dataset
was built, comprised by a total of 200 road trips, each one assembled as a collection of DE, and several
human observers graded the trips, with the final score being an average of all scores received.

Using GP, we generated models, expressed as mathematical equations that are able to predict the
scores given by humans. Three variants were tested, namely neatGP, neatGP-LS and GPTIPS. In terms
of predictive accuracy no statistically significant difference was detected among the methods. However,
neatGP did show the largest variance and larger number of outliers from a 10-fold cross validation
evaluation. On the other hand, in terms of model size (or complexity) a clear trend was apparent,
neatGP produced the largest models, while neatGP-LS and GPTIPS produced similarly concise and
compact models. All three methods use a form of bloat control, neatGP and neatGP-LS use speciation
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and fitness sharing, while GPTIPS uses a multi-objective selection pressure. However, neatGP does
not include a numerical local search optimizer, while the other two methods include one, GPTIPS uses
linear regression and neatGP-LS a trust region optimizer. This indicates that in real-world problems,
traditional bloat control is not sufficient. Local search methods help the evolutionary process tune
smaller solutions and improve their chances of survival, curtailing bloat in favor of simpler solutions
with properly tuned parameter values. A further analysis about what events are important to construct
the scoring functions offers interesting insights. For GPTIPS, the distance (x1) and average velocity of
the trip (x2) are important features. On its part, neatGP-LS considers the same features, but also the
number of abrupt steerings (x8) and frequency of intense brakes (x6). In summary, it is clear that GP is
a viable approach to solve this problem, and the evolved models are candidates for real-world testing
given their accuracy and compact (efficient) form.
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The following abbreviations are used in this manuscript:

GP Genetic Programming
ML Machine Learning
SRM Symbolic Regression Model
ANN Artificial Neural Networks
SVM Support Vector Machines
RF Random Forest
BN Bayesian Networks
FIS Fuzzy Inference Systems
BRR Bayesian Ridge Regression
SVR Support Vector Regression
LS Local Search
NEAT NeuroEvolution of Augmenting Topologies algorithm
Flat-OE Flat Operator Equalization
DE Driving Event
RMSE Root Mean Squared Error
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