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Abstract: The motivation for this study is to introduce and motivate the use of nonstandard
finite difference (NSFD) schemes, capable of solving one-compartment pharmacokinetic models.
These models are modeled by both linear and nonlinear ordinary differential equations. “Exact” finite
difference schemes, which are a special NSFD, are provided for the linear models while we apply
the NSFD rules, based on Mickens’ idea of transferring nonlinear models into discrete schemes.
The method used was compared with other established methods to verify its efficiency and accuracy.
One-compartment pharmacokinetic models are considered for different routes of administration:
I.V. bolus injection, I.V. bolus infusion and extravascular administration.

Keywords: pharmacokinetics; intravenous bolus injection; intravenous bolus infusion; extravascular;
nonstandard finite difference; Michaelis-Menten elimination

1. Introduction

Pharmacokinetics modeling is the mathematical representation of the behaviour of a drug in the
body or an area of the body, created to describe the pharmacologic or physiologic kinetics characteristics.
Pharmacokinetics is the study of the basic processes that determine the duration and intensity of
a drug effect within an organism. These models can assist in simulating the biological processes
involved in the kinetic behaviour of a drug after it has been introduced into the body, leading to a
better understanding of its dynamic effects. Mathematical modeling is currently a common tool used
in the study of physiological and biochemical systems. It can be developed from non-compartmental
representations to large scale multi-compartment models. One of the early uses of compartment models
was reported by Widmark [1]. He used a compartment model to describe the distribution of alcohol in
the body. Such compartment models have proven to be a great advantage when screening drugs used
by humans at any instant in time.

In the case of compartment models, mass-balance equations are used to represent each
compartment. The number of compartments in the model depends on the rate of drug distribution
to different parts of the body. Most studies use one- or two-compartment models. When a drug
is eliminated, the drug concentration in the systemic circulation and in all tissues decline at the
same rate because of the rapid distribution equilibrium. Drugs that follow this behaviour follow the
one-compartment pharmacokinetic model, while in two-compartment models, the movement of the
administered drug is distributed instantaneously to some tissues and slowly to other tissues. However,
if the distribution of the drug happened at three different rates, a three-compartment model would be
applicable. Our focus is on a one-compartment pharmacokinetic model, specifically aimed at different
models of drug elimination.
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After a drug is released from its dosage form, the drug is absorbed into the surrounding tissue
and/or the body. As commented on by Shargel et al. [2], the distribution and elimination of the drug
in the body varies for each patient but can be characterized using mathematical models and statistics.
Being able to characterise drug distribution and elimination is an important prerequisite to be able to
determine or modify the dosing regimens of individuals and groups of patients. Among the three main
types of pharmacokinetic (PK) models: compartment, physiologic and non-compartmental models,
compartmentally based models are known to be a very simple and useful tool in pharmacokinetic.
In essence, a compartment model provides a simple way of grouping all the tissues into one or more
compartments where drugs move to and from the central or plasma compartment. In this manner,
we are able to model the transport processes between interconnected volumes, such as the movement
of drugs and hormones in the human body. Compartment models assume that there is rapid and
perfect mixing, so that the drug concentration remains the same in each compartment. The complex
transport processes are approximated by assuming that the flow rates between the compartments are
proportional to the concentration difference in the compartments.

Compartment models play a significant role in understanding the dynamics of drug concentration
in the body. In practice, PK models seldom consider all the rate processes ongoing in the body,
Shargel et al. [3]. Due to the complexity of the models which incorporate such information, simplifying
assumptions are often made so that solutions may be obtained. Traditional PK models, being simplified
mathematical expressions, are based on the assumption of a linear relationship between the dose of
a drug and its concentration—see Beňová et al. [4]. In a linear model, these rate coefficients called
k are assumed to be constant. However, such assumptions regarding the linearity of the model do
not necessarily describe the actual physical processes as accurately as a non-linear relationship may.
In fact, the non-linearities seen in such models are related to drug absorption, distribution, metabolism
and excretion and the pharmacokinetic of drug action. Since in most cases, these compartment
models are described by autonomous linear or nonlinear ordinary differential equations, we choose
to consider the latter in this work, focusing on three regimes of excretion. In the case when the
nonlinearity or kinetics in the system are complex or when the number of compartments in the
model becomes large, such as in the work of Sharma [5], exact solutions are not obtainable and
hence we turn to numerical methods. Some of the well known standard numerical schemes produce
unnecessary oscillations, introduce extraneous or spurious solutions, and converge to fixed-point
solutions different from the corresponding derivative [6]. Hence, one observes the occurrence of
numerical instabilities. The nonstandard finite difference (NSFD) scheme was developed by Mickens
as an alternative method providing an approximate solution to a wide range of differential equations
and catering for the numerical instabilities that occur when using standard methods. NSFD methods
have been well reported in recent years, mainly because they are efficient and and preserve qualitative
properties, see for example Villatoro [7], Roeger [8], Ibijola & Obayomi [9], Manning & Margrave [10],
Mickens [11–16] and Sunday [17] which give the relevant background materials on this topic. Some of
these authors deal with the exact finite difference scheme which is a special NSFD method.

A standard finite difference (SFD) scheme is said to be “exact” for a particular differential equation
if its local truncated error is exactly zero for its general solution (Gander & Meyer-Spasche [18] and
Mickens [19]). In other words, when the analytical solution of a differential equation can be matched
exactly with its corresponding SFD equation, then the “exact” finite difference solution exists. If exact
general solutions of a differential equation are explicitly known, then an “exact” finite difference
scheme exists. The idea of an “exact” finite difference scheme was first conceived by Mickens [19,20]
who has shown that an exact explicit scheme is easily obtained from the knowledge of its analytical
solution. Therefore, “exact” finite difference schemes are designed in such a fashion that the difference
equation has the same general solution as the corresponding differential equation. In the situation
where exact solutions exist, the solution can be re-structured in such a way to obtain the “exact” finite
difference scheme. However, in the case where exact solutions are not possible, the rules proposed by
Mickens [19] will be deployed. In such situations, the method is referred to as the NSFD method as
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discussed by Anguelov & Lubuma [21]. The consequence of these rules is that while the scheme may
not be “exact”, qualitative properties of the corresponding differential equations for all step-sizes are
preserved and thus elementary numerical instabilities that can arise are eliminated.

Our research is aimed at the well-known one-compartment model. We aim to investigate three
forms of drug elimination from the body. In a one-compartment model, the body is assumed to be a
single compartment and the drug absorbed achieves instantaneous distribution throughout the body,
metabolizing between tissues. The drug output is characterized by an elimination rate. In this study,
three dose regimen models are considered:

• One-compartment model—I.V. bolus injection,
• One-compartment model—I.V. bolus infusion,
• One-compartment model—Extravascular administration.

We consider these cases to illustrate the effectiveness of the NSFD method for the solution of
nonlinear differential equations of this nature. The work conducted here is done with the aim of
introducing a numerical method which may act as an effective tool to be employed in future research
for the solution of models which are non-linear and/or describe multiple compartments. As such,
we propose and illustrate the use of a numerical method of solution, namely the NSFD method,
capable of efficiently obtaining solutions which are not only accurate but maintain the underlying
dynamics of the system of equations. This choice of method impacts on whether we are able to consider
non-compartment models; the NSFD method is not amenable to the simulation of non-compartment
models as it provides a meta-analysis of the inter-compartment dynamics, whereas non-compartment
models are unable to describe these meta-dynamics and instead conduct parameter estimation of the
entire system as a whole through the use of experimental data. The advantage of the NSFD method
is the ability to predict the concentration-time profile of a drug when there are alterations in the
dosing regimen–this would not be possible were one to consider non-compartment analysis. Another
advantage of the NSFD method is that it preserves significant properties of the analogous models
and consequently gives reliable numerical results even when analytical solutions are not possible.
The standard approaches to multi-compartment models assume linear dynamics over the duration of
each time step, whereas the NSFD method assumes exponential dynamics. Hence, in the case of a linear
model, the NSFD method recovers the model dynamics exactly. This paper illustrates the ability of the
NSFD method to solve a one-compartment PK model with various modes of elimination, in a stable
and robust fashion, with the ability to be extended to non-linear and/or multi-compartment models.

The variables of importance and their meaning are give below:

• C: Drug concentration in the central compartment.
• Vmax: The maximum rate of change of concentration.
• Km: The Michaelis-Menten constant.
• ka: The absorption rate constant for oral administration.
• kel : Elimination rate of the drug leaving the central compartment.
• V1: The apparent volume of distribution.

2. Methods

While the implementation of the NSFD method is the focus of this research, we employ the
Runge-Kutta as a means of comparison. This section provides an overview of NSFD and Runge-Kutta.

2.1. NSFD Modeling Fundamental Principles

NSFD methods provide numerical solutions to differential equations by constructing discrete
models. They preserve the significant properties of their continuous analogues and consequently
give reliable numerical results. The following rules were given by Mickens in [19] for constructing an
NSFD scheme:



Math. Comput. Appl. 2018, 23, 27 4 of 21

Rule 1 The orders of the discrete representation of the derivative must be equal to the orders of the
corresponding derivatives appearing in the differential equations.

Rule 2 Denominator functions for the discrete representations for derivatives must, in general,
be expressed in terms of more complicated functions of the step-sizes than those
conventionally used.

Rule 3 Nonlinear terms must, in general, be modeled by nonlocal discrete representations.
Rule 4 All the special conditions that correspond to either the differential equation and/or its

solutions should also correspond to the difference equation and/or its solutions.
Rule 5 The discrete scheme should not introduce extraneous or spurious solutions.

Remark. Exact finite difference is a special NSFD.

2.2. Runge-Kutta Method

In a similar fashion with the finite difference scheme, we introduce the concept of the Runge-Kutta
method from Taylor’s theorem, where h is the step size between the values of the independent
variable x. Consider

x′ = f (t, x). (1)

Then, the Taylor’s series expansion of Equation (1) is given by

x(t + h) = x(t) + hx′(t) +
h2

2!
x′′(t) +O(h3). (2)

Differentiating Equation (1), we have

x′′(t) = ft(t, x) + fx(t, x)x′(t). (3)

x′(t) is given in Equation (1), therefore Equation (3) becomes

x′′(t) = ft(t, x) + fx(t, x) f (t, x). (4)

Substituting Equations (1) and (4) into Equation (2), we have

x(t + h) = x(t) + h f (t, x) +
h2

2
( ft(t, x) + fx(t, x) f (t, x)) +O(h3). (5)

With some manipulations, we have

x(t + h) = x(t) +
h
2

f (t, x) +
h
2

f (t + h, x + h f (t, x)) +O(h3). (6)

From Equation (6), if

k1 = f (tn, xn), (7)

k2 = f (tn + h, xn + hk1), (8)

then classical second order Runge-Kutta method is given as

xn+1 = xn + h(
1
2

k1 +
1
2

k2). (9)

The approximation given by Equation (9) has a local truncation error O(h3). This second order
Runge-Kutta method is also known as Heun’s method.

The most widely used method is the fourth-order Runge-Kutta method which can be developed
in a similar fashion to the second order Runge-Kutta. The local truncated error of the fourth-order
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Runge-Kutta method isO(h5). Equation (1) can be solved using the classical fourth-order Runge-Kutta
as follows:

xn+1 = xn +
1
6
(k1 + 2k2 + 2k3 + k4), (10)

where

k1 = h f (tn, xn), (11)

k2 = h f (tn +
h
2

, xn +
k1

2
), (12)

k3 = h f (tn +
h
2

, xn +
k2

2
), (13)

k4 = h f (tn +
h
2

, xn + k3). (14)

The approximation given by Equation (10) subjected to ki, i = 1, 2, 3, 4 has an error of O(h5) and
thus is deemed the most accurate of all the approximations provided.

3. Results

3.1. I.V. Bolus Injection

When drugs are administered by an I.V. bolus injection, the entire dose administered enters
the bloodstream directly and is able to produce pharmacological effects. This is followed by the
distribution of the drug through the circulatory system to all tissues in the body. Hence, we assume
that a drug given by an I.V. bolus injection is rapidly mixed. Naturally, if you inject it directly into the
bloodstream, the drug is immediately found in the bloodstream and does not have to be absorbed.
The concentration at time t0 = 0 corresponds to the dose given in this manner and hence, it describes
the I.V. bolus injection route of administration. We consider this mode of administration alongside
two different elimination processes: (1) drugs eliminated by linear pharmacokinetic and (2) drugs
eliminated by nonlinear processes. We solve the differential equation arising from these elimination
processes, employing the NSFD method as a means of comparison with the SFD method.

The case where the drugs are given via an I.V. bolus injection, distributed as a two-compartment
model and then eliminated only by linear pharmacokinetic, is presented in Egbelowo et al. [22].
In the manuscript, we did not provide the results in the case of a one-compartment model, which is of
interest here. When considering the SFD method for the one-compartment model that describes the
distribution and elimination after an IV bolus dose, i.e.,

Ck+1 − Ck
h

= −kelCk, (15)

we notice the following interesting dynamics:

(i) if 0 < hkel < 1, Ck monotonically tends to 0,
(ii) if hkel = 1, Ck = 0 for k ≥ 1,
(iii) if 1 < hkel < 2, Ck tends to 0 with an oscillating amplitude via an alternating sign at each step,
(iv) if hkel = 2, Ck oscillates with a constant amplitude C0, and
(v) if hkel > 2, Ck oscillates with an increasing amplitude,

where h is the step-size, kel is the elimination rate of the drug, and Ck represents the concentration of
the drug at time tk. Results indicate that the SFD scheme developed has the same qualitative behaviour
as the analytical solution of the pharmacokinetic model if

0 < hkel � 1. (16)
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In turn, the corresponding NSFD scheme constructed gives accurate results without the
requirement (16) as needed by the SFD scheme.

3.1.1. I.V. Bolus Injection: Nonlinear Pharmacokinetic Elimination

The equation that describes the elimination of a drug that is distributed in the body as a
one-compartment and is eliminated by nonlinear pharmacokinetic after an I.V. bolus injection is given
as per Shargel et al. [23]. From the compartment diagram in Figure 1, we have the differential equation

dC
dt

= − VmaxC
Km + C

Vmax > 0, Km > 0, (17)

subject to
C(0) = C0, (18)

where Vmax is the maximum elimination rate and Km is the Michaelis constant. Michaelis-Menten
kinetics are also referred to as the capacity-limited metabolism, saturable metabolism, or mixed-order
kinetics as discussed in Beňová et al. [4].

Vmax,Km
C

Figure 1. Scheme of I.V. bolus injection with Michaelis-Menten elimination.

The solution given as C(t) to the differential Equation (17) has no closed form expression.
The explicit closed-form solution of the one-compartment I.V. bolus injection model that follows
Michaelis-Menten kinetics given in Equation (17) is, however, expressible in terms of the Lambert
W-function as

C(t) = KmW

C0e
C0
Km −

Vmaxt
Km

Km

 . (19)

Definition 1. The Lambert W-function is defined to be a multivalued (single valued in the case of PK applications)
inverse of the function x 7→ xex satisfying [24]

y = W(x), (20)

such that
x = yey. (21)

Equation (21) can then be written as

x = W(x)eW(x), (22)

where W is Lambert’s function. Equation (19) satisfies the transcendental equation (22). The exact finite
difference scheme of (19) is given as

Ck+1 = KmW

Cke
Ck
Km −

Vmaxh
Km

Km

 . (23)

A SFD scheme for the Michaelis-Menten Equation (17) might take the form

Ck+1 − Ck
h

= − VmaxCk
Km + Ck

. (24)
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We provide NSFD schemes for Equation (17) for the case where Equation (17) is discretized using three
different discretization methods, as done in the works of Mickens [25] and Chapwanya et al. [26,27] namely,
semi-implicit forward-Euler, implicit forward-Euler and explicit forward-Euler.

Case 1: Semi-Implicit Forward-Euler

The NSFD scheme here is obtained from the semi-implicit forward-Euler discretization as

Ck+1 − Ck
h

= −VmaxCk+1
Km + Ck

. (25)

This can be rewritten as

Ck+1 =
KmCk + C2

k
(Km + hVmax) + Ck

. (26)

We then use the fact that

1 +
hVmax

Km
= e

hVmax
Km +O(V2

maxh2/K2
m), (27)

allowing us to make the replacements

1 +
hVmax

Km
= e

hVmax
Km , (28)

which implies

h→ Km(e
hVmax

Km − 1)
Vmax

. (29)

Therefore, the denominator function for the semi-implicit forward-Euler discretization is given as

φ1(h, Vmax, Km) =
Km(e

hVmax
Km − 1)

Vmax
. (30)

The NSFD semi-implicit discretization of Equation (17) is

Ck+1 − Ck
φ1(h)

= −VmaxCk+1
Km + Ck

. (31)

The NSFD scheme (31) is compared with the corresponding SFD scheme (25). The scheme given by
Equation (31) has the same qualitative behaviour as the original differential equation for all step sizes.

Case 2: Implicit Forward-Euler

When Equation (17) is discretized using an implicit discretization, we obtain

Ck+1 − Ck
h

= − VmaxCk+1
Km + Ck+1

, (32)

and following the same process as described by Equations (25)–(29), we obtain the same denominator
function given in Equation (30). Therefore, the NSFD scheme for Equation (17), when discretized using
an implicit forward-Euler approximation, is

Ck+1 − Ck
φ1(h)

= − VmaxCk+1
Km + Ck+1

. (33)

Case 3: Explicit Forward-Euler

The NSFD scheme, in this case, is obtained from an explicit forward-Euler discretization as
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Ck+1 − Ck
h

= − VmaxCk
Km + Ck

. (34)

The denominator function is given by

φ2(h) =
Km(1− e

−hVmax
Km )

Vmax
. (35)

Similarly, the NSFD discretization of Equation (17) is

Ck+1 − Ck
φ2(h)

= − VmaxCk
Km + Ck

. (36)

From the three cases, we have that the denominator function obtained depends on the
discretization method used. Upon employing the Lambert function, the resultant scheme for
Equation (17) as exhibited by Equation (23), is

Ck+1 − Ck
φ2(h)

=

KmW

(
Cke

Ck
Km
−Vmaxh

Km
Km

)
− Ck

φ2(h)
. (37)

This scheme will serve as a means of comparison with the results obtained from the three
cases above.

3.1.2. I.V. Bolus Injection: Mixed Drug Elimination

Another possible route of drug elimination is mixed drug elimination. In this elimination process,
as depicted in Figure 2, drugs are eliminated by nonlinear processes. Therefore, the equation that best
describes a drug that is eliminated by Michaelis-Menten kinetics after an I.V. bolus injection is given by

dC
dt

= −kelC−
VmaxC
Km + C

, (38)

where kel is the first-order rate constant representing the sum of all first-order elimination processes.
The second term of the Equation (38) represents the saturable process. The SFD scheme of Equation (38)
is given by

Ck+1 − Ck
h

= −kelCk+1 −
VmaxCk+1
Km + Ck

. (39)

Implementing the NSFD scheme as before, we obtain a denominator function given by

φ3(h) =
Kme

h(kel Km+Vmax)
Km − Km

kelKm + Vmax
, (40)

which provides the following NSFD scheme for Equation (38)

Ck+1 − Ck
φ3(h)

= −kelCk+1 −
Vmax Ck+1

Km + Ck
. (41)
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Vmax,Km
C

kel

Figure 2. Schematic representation of I.V. bolus injection with mixed drug elimination.

3.2. I.V. Bolus Infusion

I.V. bolus infusion is the process of infusing a drug at a constant rate. The drug input is constant
and equal to the rate of infusion of the drug. On starting the infusion, there is no drug in the body
and therefore no elimination. The concentration of the drug in the body then rises, but as the drug
concentration increases, so does the rate of elimination. Thus, the rate of elimination will keep rising
until it matches the rate of infusion. The concentration of the drug in the body is then constant and
is said to have reached a steady state. A similar approach is used for the I.V bolus injection process,
and we consider this mode of administration alongside two different elimination processes as before:
(1) drugs eliminated by linear pharmacokinetic and (2) drugs eliminated by nonlinear processes.

In the case when the drug is given via I.V. bolus infusion and the drug is excreted in a linear
way, we observe similar dynamics as we did for the case where an I.V. bolus injection is the means of
administration (see Egbelowo et al. [22]) where both cases was considered for a two-compartment
model. The one-compartment model that describes the distribution and elimination after an IV infusion
dose is given by

Ck+1 − Ck
h

= R− kelCk. (42)

The solution obtained via the SFD scheme gives the following results:

(i) if 0 < hkel < 1, Ck monotonically tends to R
kel

,
(ii) if hkel = 1, Ck =

R
kel

for k ≥ 1,
(iii) if 1 < hkel < 2, Ck tends to R

kel
with an oscillating amplitude via an alternating sign at each step,

(iv) if hkel = 2, Ck oscillates with a constant amplitude 2R
kel

, and
(v) if hkel > 2, Ck oscillates with an increasing amplitude.

h is the step-size, kel is the elimination rate of the drug, Ck represents the concentration of the drug
at time tk, R = R1

V1
is the flow rate of the drug, and R1 is the infusion rate per unit time. From these

results, we conclude that this model will have numerical instabilities for all cases except for cases (i)
and (ii). Maintaining the requirements given by cases (i) and (ii), the same qualitative behaviour is
observed as the original differential equation. The NSFD scheme constructed in turn gave accurate
results for all the cases given above.

3.2.1. I.V. Bolus Infusion: Nonlinear Pharmacokinetic Elimination

In Figure 3, the drug is administered by constant infusion and is eliminated by nonlinear
pharmacokinetic processes. The equation that describes the rate of change of the plasma concentration,
as depicted in Figure 3, is given by

dC
dt

= R− VmaxC
Km + C

Vmax > 0, Km > 0, (43)

subject to
C(0) = 0. (44)
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All the parameters in Equation (43) are defined as for model (17). Solving Equation (43) using the
concept of the W-Lambert function, we have

C(t) =
−KmVmaxW

(
− exp(L(t)+M(t))

KmVmax

)
− RKm

R−Vmax
, (45)

where 
L(t) = − R2t

KmVmax
− R2Q

KmVmax(R−Vmax)2 +
2RQ

Km(R−Vmax)2 ,

M(t) = − VmaxQ
Km(R−Vmax)2 − tVmax

Km
+ 2Rt

Km
− R2

Vmax(R−Vmax)
+ R

R−Vmax
.

Q = −KmVmax log
(

RKme−
R

Vmax

)
− RKm,

(46)

Equation (45) can be written in the form

Ck+1 − Ck
φ1(h)

=

−KmVmaxW
(
− exp(L1+M1)

KmVmax

)
−RKm

R−Vmax
− Ck

φ1(h)
, (47)

where L1 = L(h) and M1 = M(h). The steady-state concentration of Equation (43) is determined by
the following equation

Css1 =
KmR

Vmax − R
. (48)

The NSFD scheme for Equation (43) is structured as

Ck+1 − Ck
φ1(h)

= R− VmaxCk+1
Km + Ck

, (49)

where φ1(h) is defined as before. Comparing Equation (49) with the SFD scheme given by

Ck+1 − Ck
h

= R− VmaxCk
Km + Ck

, (50)

shows that the NSFD scheme is dynamically consistent with the original differential equation for any
step size.

C
R1 Vmax,Km

Figure 3. Schematic representation of IV infusion with Michaelis-Menten elimination.

3.2.2. I.V. Bolus Infusion: Mixed Drug Elimination

Figure 4 describes the rate of change in the plasma drug concentration for a drug that is given by
I.V. infusion and eliminated by nonlinear pharmacokinetic. This is an extension of Figure 3, which
leads to Equation (51)

dC
dt

= R− kelC−
VmaxC
Km + C

C(0) = 0. (51)

All the parameters are defined as done for the model given by Equation (17). The steady-state
concentration of Equation (51) can be determined by
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Css2 =
(R− kelKm −Vmax) +

√
(R− kelKm −Vmax)2 + 4RkelKm

2kel
. (52)

The NSFD scheme of (51) is given by

Ck+1 − Ck
φ3(h)

= R− kelCk+1 −
VmaxCk+1
Km + Ck

, (53)

where φ3(h) is given in Equation (40). The SFD scheme of the relevant equation is

Ck+1 − Ck
h

= R− kelCk −
VmaxCk
Km + Ck

. (54)

C
R1 Vmax,Km

kel

Figure 4. Schematic representation of I.V. infusion with mixed drug elimination.

3.3. Extravasular Administration

A drug administered via the extravascular route of administration undergoes the process of
absorption before it gets to the systemic circulation. This type of drug delivery is complicated by the
variable at the site of absorption. The level of absorption of a drug from the gastrointestinal tract (GIT)
depends on the anatomy and physiology of the absorption site, physiochemical properties of the drug,
and physiochemical properties of the dosage form. Initially, the entire drug is in the site of absorption
and none has yet reached the systemic circulation [28]. Most drugs administered extravascularly
act systemically. In such cases, systemic absorption is a prerequisite for efficacy. This section
describes the extravascular route of administration. We consider this mode of administration via two
different elimination processes: (1) drugs eliminated by linear pharmacokinetic (2) drugs eliminated
by nonlinear processes.

3.3.1. Extravasular Administration: Linear Pharmacokinetic Elimination

When a drug is administered through extravascular administration and eliminated by a linear
process as shown in Figure 5, we apply Equations (55) and (56) in order to model the process.
Equation (55) describes the drug at the site of absorption before it reaches the systemic circulation,
while Equation (56) describes the concentration of the drug at the systemic circulation. D is the
amount of drug in the GIT at any time t, ka is the first-order absorption rate constant, C is the plasma
concentration of the drug in the body and kel is the elimination rate. Thus, the disappearance rate of
the drug from the GIT is given by (also termed the equation for drug in GIT),

dD
dt

= −kaD, D(0) = D0. (55)

The rate of change of the amount of drug in the body is given by

dC
dt

= kaD− kelC, C(0) = 0, (56)
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where C is the amount of the drug available at the absorption site. The time course of the the amount
of drug that follows the oral route of administration is given by

C(t) =
kaD0

V1(ka − kel)

(
e−kel t − e−kat

)
, ka 6= kel , (57)

where D0 is the dose of the administered drug, ka is the constant of the absorption, and kel is the rate
of elimination. At t = ∞ (at later time intervals) the above equation reduces to (i.e., when e−kat ≈ 0)

C(t) =
kaD0

V1(ka − kel)
e−kel t. (58)

The “exact” finite difference scheme of the model is derived from the analytical solution.
Since Equations (55) and (56) can be solved simultaneously, we proceed as

dD
dt = −kaD

dC
dt = kaD− kelC,

(59)

D0 = D(t0), C0 = C(t0). (60)

The particular solution of Equation (59) is

D = 0, C = 0. (61)

Considering the system of Equations (59) in matrix form, the corresponding matrix is

M =

(
−ka 0
ka −kel

)
.

The matrix has eigenvalues λ if det(M− λI) = 0 or λ2 − tra(M)λ + det(M) = 0. Therefore, the
eigenvalue equation to be

λ2 + (ka + kel)λ + kakel = 0, (62)

which provide the eigenvalues
λ1 = −ka, λ2 = −kel . (63)

Suppose v =

(
v1

v2

)
represents the eigenvectors corresponding to the eigenvalues,

then (M− λI)v = 0.
Hence, we have that (

−ka − λ1,2 0
ka −kel − λ1,2

)(
v1

v2

)
=

(
0
0

)
,

which gives (−ka − λ1,2)v1 = 0,

kav1 + (−kel − λ1,2)v2 = 0.
(64)

Hence,

v =

(
v1

v2

)
=

(
kel+λ1,2

ka

1

)
,

giving the general solution of the system as
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D(t) = A
(

kel + λ1

ka

)
eλ1t + B

(
kel + λ2

ka

)
eλ2t, (65)

C(t) = Aeλ1t + Beλ2t. (66)

To calculate A and B, we use the initial values given in Equation (60) so that Equation (66)
simplifies to

C(t0) = Aeλ1t0 + Beλ2t0 = C0, (67)

A = C0e−λ1t0 − Bet0(λ2−λ1). (68)

From Equation (65), we have that

D(t0) = A
(

kel + λ1

ka

)
eλ1t0 + B

(
kel + λ2

ka

)
eλ2t0 = D0. (69)

Substituting Equation (68) into Equation (69) and after some algebraic manipulations, we obtain

B =

(
ka

λ2 − λ1

)
D0e−λ2t0 −

(
kel + λ1

λ2 − λ1

)
C0e−λ2t0 . (70)

Substituting Equation (70) into (68), we obtain

A = C0e−λ1t0 −
(

ka

λ2 − λ1

)
D0e−λ1t0 +

(
kel + λ1

λ2 − λ1

)
C0e−λ1t0 . (71)

Substituting Equations (70) and (71) into Equation (66) with some manipulations we obtain

C(t) = −p
[(

D0 −
kel + λ2

ka
C0

)
eλ1(t−t0)

]
+ p

[(
D0 −

λ1 + kel
ka

C0

)
eλ2(t−t0)

]
. (72)

where p =
(

ka
λ2−λ1

)
. The ‘exact’ finite difference scheme of Equation (59) is obtained by making the

following transformations in Equation (72)

t0 → tk = hk,

t→ tk+1 = h(k + 1),

D0 → Dk,

D(t)→ Dk+1,

C0 → Ck,

C(t)→ Ck+1,

(73)

Ck+1 = −p
[(

Dk −
λ2 + kel

ka
Ck

)
eλ1h

]
+ p

[(
Dk −

λ1 + kel
ka

Ck

)
eλ2h

]
. (74)

Thus,

Ck+1 − Ck

(
λ2eλ1h − λ1eλ2h

λ2 − λ1

)
= (kaDk − kelCk)

(
eλ2h − eλ1h

λ2 − λ1

)
, (75)

giving the “exact” finite difference scheme
Dk+1−ψDk

φ = −kaDk

Ck+1−ψCk
φ = kaDk − kelCk,

(76)
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where

ψ =
kae−kel h − kele−kah

ka − kel
, φ =

e−kel h − e−kah

ka − kel
. (77)

The “exact” finite difference result obtained in system (76) will be compared with the SFD scheme
Dk+1−Dk

h = −kaDk

Ck+1−Ck
h = kaDk − kelCk.

(78)

kelC
kaD

Figure 5. One-compartment pharmacokinetic model for first-order drug absorption and first-order elimination.

3.3.2. Extravascular Administration: Mixed Drug Elimination

In the situation when the drug is administered by the extravascular mode of administration and
eliminated by parallel pathways, Equation (79) is applied to describe Figure 6. Consider

dD
dt = −kaD

dC
dt = kaD− kelC− VmaxC

Km+C ,
(79)

with initial conditions D0 = D(t0) and C0 = C(t0). The NSFD scheme of Equation (79) is
Dk+1−ϕDk

φ = −kaDk

Ck+1−ϕCk
φ = kaDk − kelCk − VmaxCk

Km+Ck
,

(80)

and may be compared to the SFD scheme of the form
Dk+1−Dk

h = −kaDk

Ck+1−Ck
h = kaDk − kelCk − VmaxCk

Km+Ck
.

(81)

Vmax,Km
C

kaD

kel

Figure 6. Schematic presentation of extravascular administration with both linear and Michealis-Menten
elimination.
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4. Numerical Simulations and Discussion

One-compartment models with different routes of administration (I.V. bolus injection, I.V. bolus
infusion and extravasular) are considered for simulations. In order to perform a useful comparison,
these methods were tested under similar conditions corresponding to the intended practical application.
The purpose of the tests was to compare the accuracy and stability of the various numerical schemes
employed. This is done for varying step-sizes and the results are examined in the figures and numerical
results presented in the next few sections. The numerical calculations are carried out in MATHEMATICA,
and the results are then processed in MATLAB to generate visual representations.

4.1. I.V. Bolus Injection: Simulations

4.1.1. Results Describing Nonlinear Pharmacokinetic Elimination

Thi section presents the results of the case when the drug is administered by I.V. bolus injection
and eliminated by Michaelis-Menten elimination. NSFD schemes (31), (33) and (36), and the SFD
schemes (25), (32) and (34) respectively, are compared with the analytical solution (19) in Figure 7.
The analytical solution was obtained through the use of the W-Lambert function.
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Figure 7. (a) NSFD scheme (31) in case 1 plotted against the analytical solution (19) and the
corresponding SFD scheme (25); (b) NSFD scheme (33) in case 2 plotted against the analytical
solution (19) and the corresponding SFD scheme (32) and (c) NSFD scheme (36) in case 3 plotted
against the analytical solution (19) and the corresponding SFD scheme (35).
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4.1.2. Results Describing Mixed Drug Elimination

In this section, simulations of the equation that describe a drug that is eliminated by mixed drug
elimination after an I.V. bolus injection are provided. Figure 8 shows a comparison between the SFD
scheme in Equation (39), the NSFD scheme in Equation (41) and MATLAB built-in function ODE45.
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SFD − Mixed drug elimination

NSFD − Mixed drug elimination

Figure 8. Trajectory representation of the one-compartment I.V. bolus injection model that follows
mixed drug elimination. The SFD scheme (39) and NSFD scheme (41) plotted against ODE45 of (38).

4.2. I.V. Bolus Infusion: Simulations

4.2.1. Results Describing Nonlinear Pharmacokinetic Elimination

The results for the case when the drug is administered by I.V. bolus infusion and eliminated by
Michaelis-Menten elimination is presented. The NSFD scheme (49) and SFD scheme (50) are compared
with MATLAB built-in, ODE45. From Figure 9 we see that regardless of the step-size, the NSFD
scheme (49) converges to the steady state. Table 1 gives the simulation results of the I.V. bolus infusion
case where nonlinear pharmacokinetic elimination is present.

Table 1. The absolute error results of Equations (43) for C with parameters values R = 0.5, Km = 4,
and Vmax = 2.

Absolute Error for C

N h Error in Scheme 50 (SFD) Error in Scheme 49 (NSFD)

2 4.000 1.027 0.108
4 2.000 0.338 0.030
8 1.000 0.115 0.007
16 0.500 0.051 0.002
32 0.250 0.024 0.000
64 0.125 0.012 0.000

128 0.062 0.006 0.000
256 0.031 0.003 0.000
512 0.016 0.001 0.000

1024 0.008 0.001 0.000
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Figure 9. NSFD (50) scheme, SFD scheme (49) and ODE45 are compared analytical solution (45). Css1 is
the steady state Equation (48). The concentration of the drug when administered via I.V. bolus infusion
and eliminated by nonlinear pharmacokinetic processes for (a) h = 0.51613 and (b) h = 6.4516.

4.2.2. Results Describing Mixed Drug Elimination

Figure 10 show the simulation results of the NSFD scheme (53) and SFD scheme (54) in comparison
to the results obtained via the in-built function ODE45.
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Figure 10. NSFD scheme (53) and SFD scheme (54) is comparison with ODE45. Css2 is the steady state
Equation (52). The concentration of the drug when administered via I.V. bolus infusion and eliminated
by mixed drug processes for (a) h = 0.75 and (b) h = 3.3333.

4.3. Extravasular Administration: Simulations

4.3.1. Results Describing Linear Pharmacokinetic Elimination

Results of the one compartment pharmacokinetic model administered by an extravascular mode
of administration and following linear elimination are presented here. The NSFD scheme (76) is
compared to the SFD scheme (78). The schemes obtained from the model using different methods are
tested under similar conditions. Simulations are provided for h = 0.5 and h = 1 in Figure 11.
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Figure 11. NSFD scheme (76), SFD scheme (78) and ODE45 is compared with exact solution (57).
Plasma concentration-time curve for a drug given as a single oral dose with linear pharmacokinetic
elimination (a) h = 0.5 and (b) h = 1.

Table 2 shows numerical results for the “exact” finite difference scheme for extravascular
administration in comparison with standard methods (Euler, Heun and Runge-Kutta) and the analytical
solution of the model. The numerical results for the ‘exact’ finite difference scheme are the same as the
analytical solution for any value of t.

Table 2. The numerical results for the extravascular administration model.

Numerical Results

h Euler Heun Runge-Kutta Exact FD Exact

0.0 0.00000 0.00000 0.00000 0.00000 0.00000
0.1 0.15000 0.13763 0.13823 0.13823 0.13823
0.2 0.27525 0.25411 0.25514 0.25514 0.25514
0.3 0.37950 0.35241 0.35374 0.35374 0.35374
0.4 0.46592 0.43508 0.43661 0.43661 0.43661
0.5 0.53723 0.50432 0.50597 0.50597 0.50597
0.6 0.59573 0.56203 0.56373 0.56374 0.56374
0.7 0.64337 0.60983 0.61154 0.61154 0.61154
0.8 0.68180 0.64912 0.65080 0.65081 0.65081
0.9 0.71245 0.68112 0.68275 0.68275 0.68275
1.0 0.73651 0.70686 0.70842 0.70842 0.70842

4.3.2. Results Describing Mixed Drug Elimination

Figure 12 shows the simulation results for the model describing extravascular administration
along with mixed drug elimination processes.
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Figure 12. Comparison of methods for one-compartment extravascular administration that follows
mixed drug elimination i.e., NSFD scheme (80) and SFD scheme (81) is compared with ODE45.

5. Conclusions

In this work, we presented one-compartment pharmacokinetic models with different routes of
administration. We presented numerical results via a variety of schemes for each of the developed
models, paying attention particularly to the efficiency of the NSFD method in comparison to standard
methods. From the results obtained, we observe that the stability of the NSFD scheme is independent
of the chosen step-size for the linear cases. This is not the case with standard methods such as Euler
and Heun methods. With the later methods, the step-size must be chosen in a reasonable domain,
otherwise numerical instabilities will occur. The numerical simulations conducted verify that NSFD
schemes are efficient and accurate for the solution of problems modelling pharmacokinetic processes.
Importantly, as pointed out through test cases in this work, the NSFD method is able to generate
numerical schemes that are dynamically consistent with the original differential equations.
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