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Abstract: Multiobjective optimization plays an increasingly important role in modern applications,
where several criteria are often of equal importance. The task in multiobjective optimization and
multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto
set) between the conflicting objectives. The advances in algorithms and the increasing interest in
Pareto-optimal solutions have led to a wide range of new applications related to optimal and feedback
control, which results in new challenges such as expensive models or real-time applicability. Since
the Pareto set generally consists of an infinite number of solutions, the computational effort can
quickly become challenging, which is particularly problematic when the objectives are costly to
evaluate or when a solution has to be presented very quickly. This article gives an overview of recent
developments in accelerating multiobjective optimal control for complex problems where either PDE
constraints are present or where a feedback behavior has to be achieved. In the first case, surrogate
models yield significant speed-ups. Besides classical meta-modeling techniques for multiobjective
optimization, a promising alternative for control problems is to introduce a surrogate model for the
system dynamics. In the case of real-time requirements, various promising model predictive control
approaches have been proposed, using either fast online solvers or offline-online decomposition.
We also briefly comment on dimension reduction in many-objective optimization problems as another
technique for reducing the numerical effort.

Keywords: multiobjective optimization; optimal control; model order reduction; model predictive
control

MSC: 90C29; 49M37

1. Introduction

There is hardly ever a situation where only one goal is of interest at the same time.
When performing a purchase for example, we want to pay a low price while getting a high quality
product. In the same manner, multiple goals are present in most technical applications, maximizing
quality versus minimizing the cost being only one of many examples. This dilemma leads to the field
of multiobjective optimization, where we want to optimize all relevant objectives simultaneously.
However, this is obviously impossible as the above example illustrates. Generically, the different
objectives contradict each other such that we are forced to choose a compromise. While we are usually
satisfied with one optimal solution in the scalar-valued setting, there exists in general an infinite
number of optimal compromises in the situation where multiple objectives are present. The set of these
compromise solutions is called the Pareto set, the corresponding points in the objective space form the
Pareto front.
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Since the solution to a Multiobjective Optimization Problem (MOP) is a set, it is significantly more
expensive to compute than the optimum of a single objective problem, and many researchers devote
their work to the development of algorithms for the efficient numerical approximation of Pareto sets.
These advances have opened up new challenging application areas for multiobjective optimization.
In optimal control, the optimization variable is not finite-dimensional, but rather a function, typically
depending on time. The goal is to steer a dynamical system in such a way that one (or multiple)
objective is minimized. Two particularly challenging control problems are feedback control and control
problems constrained by Partial Differential Equations (PDEs). In the first case, the time for computing
the Pareto set is strictly limited, often to a small fraction of a second. In the latter case, even the
solution of single objective problems is often extremely time consuming so that the development of
new algorithmic ideas is necessary to make these problems computationally feasible.

In fact, in situations like these, surrogate models or dimension reduction techniques are a
promising approach for significantly reducing the computational effort and thereby enabling real-time
applicability. This article gives an overview of recent advances in surrogate modeling for multiobjective
optimal control problems, where the approach is to replace the underlying system dynamics by
a reduced order model, which can be solved much faster. On the other hand, it introduces an
approximation error, which has to be taken into account when analyzing convergence properties.
The article is structured as follows. In Section 2, we are going to review some basics about multiobjective
optimization, including the most popular solution methods. The two main challenges are addressed
individually in the next sections, starting with expensive models in Section 3. There are also surrogate
modeling approaches for MOPs that directly provide a mapping from the control variable to the
objective function values. Since there already exist extensive surveys for this case (cf. [1–3], for instance),
these are summarized only very briefly. In Section 4, real-time feedback control is discussed. Finally,
we briefly discuss the question of dimension reduction in the number of objectives in Section 5 before
concluding with a summary of further research directions in Section 6.

2. Multiobjective Optimization

In this section, the concepts of multiobjective optimization and Pareto optimality will be
introduced and some widely-used solution methods will be summarized. More detailed introductions
to multiobjective optimization can be found in, e.g., [4,5].

2.1. Theory

In multiobjective optimization, we want to minimize multiple objectives at the same time.
Consequently, the fundamental difference from scalar optimization is that the objective function
J : U → Rk is vector-valued. Hence, the general problem is of the form:

min
u∈U

J(u) =min
u∈U

 J1(u)
...

Jk(u)


s.t. gi(u) ≤ 0, i = 1, . . . , l,

hj(u) = 0, j = 1, . . . , m,

(MOP)

where u ∈ U is the control variable and g : U → Rl , g(u) = (g1(u), . . . , gl(u))> and h : U → Rm,
h(u) = (h1(u), . . . , hm(u))>, are inequality and equality constraints, respectively. The space of the
control variables U is also called the decision space (according to the term decision variable for u
in classical multiobjective optimization), and the objective function maps u to the objective space.
Depending on the problem setup, U can either be finite-dimensional, i.e., U = Rn, or some appropriate
function space.
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Remark 1. It is common in finite-dimensional optimization to use the notation x for the control or optimization
variable and F for the objective function. In contrast to that, u and J are more common for control problems.
In order to unify the notation, the latter will be used throughout this article for all optimization and optimal
control problems.

In contrast to classical optimization, in optimal control, we have to compute an input in such a
way that a dynamical system behaves optimally with respect to some specified cost functional. Hence,
we have the system dynamics as an additional constraint, very often in the form of ordinary (ODEs) or
partial differential equations (PDEs):

ẏ(x, t) = G(y(x, t), u(t)), (x, t) ∈ Ω× (t0, te],

a(x, t)
∂y
∂n

(x, t) + b(x, t)y(x, t) = c(x, t), (x, t) ∈ Γ× (t0, te],

y(x, t0) = y0(x), x ∈ Ω,

(PDE)

where the domain of interest Ω ⊂ Rnx is a connected open set with spatial dimension nx and the
boundary is denoted by Γ = ∂Ω with outward normal vector n. The coefficients a(x, t), b(x, t) and
c(x, t) in the boundary condition are given by the problem definition. The operator G is a partial
differential operator describing the evolution of the system. The cost functional Ĵ : U × Y → Rk

of an optimal control problem consequently depends on the control u, as well as the system state y,
which results in a multiobjective optimal control problem:

min
u∈U ,y∈Y

Ĵ(u, y) = min
u∈U ,y∈Y


∫ te

t0
C1(y(x, t), u(t)) dt + Φ1(y(x, te))

...∫ te
t0

Ck(y(x, t), u(t)) dt + Φk(y(x, te))


s.t. (PDE)

gi(y, u) ≤ 0, i = 1, . . . , l,

hj(y, u) = 0, j = 1, . . . , m.

(MOCP)

There are articles on multiobjective optimal control that specifically address the implications of
multiple objectives for optimal control [6,7]; see also [8] for a short survey of methods. However, for
many problems, there exists a unique solution y for every u such that (MOCP) can be simplified
by introducing a so-called control-to-state operator S : U → Y ; see [9] for details. By setting
Ĵ(u, y) = Ĵ(u,Su) = J(u), the problem is transformed into (MOP). For this reason, we will from
now on only consider (MOP).

In the situation where U is a function space (i.e., in the case of optimal control), the problem can
be numerically transformed into a high-, yet finite-dimensional problem in a direct solution method
via discretization, cf. [10,11]. This results in a large number of control variables, which can be very
challenging on its own in multiobjective optimization. If the system dynamics are governed by a PDE,
then the spatial discretization of the state y results in an even higher number of unknowns, which can
easily reach several millions or more [12].

In contrast to single objective optimization problems, there exists no total order of the objective
function values in Rk with k ≥ 2 (unless they are not conflicting). Therefore, the comparison of values
is defined in the following way [4]:

Definition 1. Let v, w ∈ Rk. The vector v is less than w (denoted by v < w), if vi < wi for all i ∈ {1, . . . , k}.
The relation ≤ is defined in an analogous way.
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A consequence of the lack of a total order is that we cannot expect to find isolated optimal points.
Instead, the solution to (MOP) is the set of optimal compromises (also called the Pareto set or set of
non-dominated points):

Definition 2. Consider the multiobjective optimization problem (MOP). Then:

1. a point u∗ dominates a point u, if J(u∗) ≤ J(u) and J(u∗) 6= J(u).
2. a feasible point u∗ is called globally Pareto optimal if there exists no feasible point u ∈ U dominating u∗.

The image J(u∗) of a globally Pareto optimal point u∗ is called a globally Pareto optimal value. If this
property holds in a neighborhood U(u∗) ⊂ U , then u∗ is called locally Pareto optimal.

3. the set of non-dominated feasible points is called the Pareto set PS and its image the Pareto front PF.

A consequence of Definition 2 is that for each point that is contained in the Pareto set (the red line in
Figure 1a), one can only improve one objective by accepting a trade-off in at least one other objective.
Figuratively speaking, in a two-dimensional problem, we are interested in finding the “lower left”
boundary of the feasible set in objective space (cf. Figure 1b).

(a)

0 5 10 15
J1(u)

0

5

10

15
J
2
(u

)

J
∗

(b)

Figure 1. The red lines are the Pareto set (a) and Pareto front (b) of an exemplary multiobjective
optimization problem (two paraboloids) of the form minu∈R J(u), J : R2 → R2. The point J∗ = (0, 0)>

is called the utopian point.

Similar to single objective optimization, a necessary condition for optimality is based on the
gradients of the objective functions. The first order conditions were independently discovered by
Karush in 1939 [13] and by Kuhn and Tucker in 1951 [14]. Due to this, they are widely known as the
Karush–Kuhn–Tucker (KKT) conditions:

Theorem 1 ([14]). Let u∗ be a Pareto-optimal point of Problem (MOP), and assume that ∇hj(u∗) for
j = 1, . . . , m and ∇gs(u∗) for s = 1, . . . , l are linearly independent. Then, there exist non-negative scalars
α1, . . . , αk ≥ 0 with ∑k

i=1 αi = 1, γ ∈ Rm and µ ∈ Rl such that:
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k

∑
i=1

αi∇Ji(u∗) +
m

∑
j=1

γj∇hj(u∗) +
l

∑
s=1

µs∇gs(u∗) = 0,

hj(u∗) = 0, j = 1, . . . , m,

gs(u∗) ≤ 0, s = 1, . . . , l,

µsgs(u∗) = 0, s = 1, . . . , l,

µs ≥ 0, s = 1, . . . , l.

(KKT)

The set of points satisfying these conditions is called the set of substationary points PS,sub [4].
Obviously, PS,sub is a superset of the Pareto set PS. Many algorithms for MOPs compute the set of
substationary points, in particular gradient-based methods, as we will see in the next section. This set
can be reduced to the Pareto set in a consecutive step by performing a (comparatively inexpensive)
non-dominance test.

2.2. Solution Methods

Many researchers in multiobjective optimization focus their attention on developing efficient
algorithms for the computation of Pareto sets. Algorithms for solving MOPs can be compiled
into several fundamentally different categories of approaches. The first category is based on
scalarization techniques, where ideas from single objective optimization theory are extended to
the multiobjective situation. All scalarization techniques have in common that the Pareto set
is approximated by a finite set of Pareto-optimal points, which are computed by solving scalar
subproblems. Consequently, the resulting solution methods involve solving multiple optimization
problems consecutively. Scalarization can be achieved by various approaches such as the weighted-sum
method, the ε-constraint method, normal boundary intersection or reference point methods [4,5,15].

Continuation methods make use of the fact that under certain conditions, the Pareto set is a
smooth manifold of dimension k− 1 [16]. This means that one can compute the tangent space in each
point of the set, and a predictor step is performed in this space. The resulting point then has to be
corrected to a Pareto-optimal solution using a descent method [17].

Another prominent approach is based on evolutionary algorithms [18,19], where the underlying
idea is to evolve an entire population of solutions during the optimization process. Significant advances
have been made concerning Multiobjective Evolutionary Algorithms (MOEAs) in recent years [20,21]
(see also [22] for a survey) such that they are nowadays the most popular choice for solving MOPs
due to the applicability to very complex problems and being easy to use in a black box fashion.
Since convergence rates can be relatively slow for MOEAs, they can be coupled with locally fast
methods close to the Pareto set. These approaches are known as memetic algorithms; see, e.g., [23–26].

Set-oriented methods provide an alternative deterministic approach to the solution of MOPs.
Utilizing subdivision techniques, the desired Pareto set is approximated by a nested sequence of
increasingly refined box coverings [27–29]. This way, a superset is computed, which converges to the
desired solution, even in situations where the Pareto set is disconnected. However, their complexity
depends on both the dimension of the Pareto set, as well as the decision space dimension. Due to this,
one has to take additional steps to apply these algorithms for multiobjective optimal control problems.

Depending on the method of choice, gradient information can be used to accelerate convergence.
While this is widely accepted in scalar-valued optimization, this is less the case when multiple
objectives are present [30]. Nonetheless, many approaches exist where gradients are exploited,
for example in order to create sequences converging to single points [31–33], to compute the entire set of
valid decent directions [30,34], to obtain superlinear or quadratic convergence [35,36] or in combination
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with evolutionary approaches (memetic algorithms) [37–41]. In many of the gradient-based methods,
the descent direction for all objectives is a convex combination of the individual gradients:

q(u) =
k

∑
i=1

α̂i∇Ji(u). (1)

Here, α̂ is a fixed weight vector, which is determined in such a way that:

〈q(u),∇Ji(u)〉 < 0 ∀ i = 1, . . . , k, (2)

see, e.g., [31,32]. In the unconstrained case, there exists no u satisfying (2) only if ‖q(u)‖ = 0,
which implies that u is substationary, cf. (KKT).

3. Surrogate Models

The ever-increasing computational capabilities allow us to analyze more and more complicated
systems with a very large number of degrees of freedom, also in the context of optimal control, where
practical problems range from process control [42,43] and energy management [15] over space mission
design [44] to mobility and autonomous driving [45–48].

The above-mentioned examples can all be described by ordinary differential equations with a
finite-dimensional state space Y . In contrast to these problems, many phenomena in physics such
as mechanical strain, heat flow, electromagnetism, fluid flow or even multi-physics simulations
are governed by partial differential equations. Using numerical discretization schemes for the
approximation of the spatial domain (such as finite elements or finite volumes) results in a very large
number of degrees of freedom and a heavy computational burden. For more complex systems (such as
turbulent flows [49]), simulating the dynamics is already very costly. Consequently, optimal control
of these systems is all the more challenging, and considering multiple objectives further increases
the cost. Due to this reason, only a few problems have been addressed directly; see, e.g., [50–53].
A method exploiting the special structure in the system dynamics has been proposed in [54], and a
special case of Pareto-optimal solutions, namely Nash equilibria, has been computed in [55,56] (When
not using a priori selection methods such as scalarization or Nash equilibria, a decision maker selects
the appropriate solution. This is called Multi-Criteria Decision Making (MCDM) [57] and is an entire
area of research on its own. Thus, we will not go into further details about the decision making
process here.).

A very popular approach to circumvent the problem of prohibitively large computational cost
is the use of surrogate models. Here, the exact objective function J(u) is replaced by a surrogate
Jr(u), where the superscript r stands for reduced. In many situations, this surrogate function can
be evaluated faster by several orders of magnitude. The challenge here is to find a good trade-off
between acceleration and model accuracy, and many approaches have been proposed over the past
two decades.

In optimal control, there are two fundamentally different ways for model reduction. The first
case, which is equivalently applicable to multiobjective optimization problems, is to directly derive
a surrogate for the objective function, i.e., Jr : U → Rk is constructed by polynomials, radial basis
functions or other means. In optimal control, an alternative way of reducing the computational effort
is by introducing a reduced model for the system dynamics:

Jr(u) = Ĵr(u, y) = Ĵ(u,S ru),

where the reduced control-to-state operator S r indicates that the model reduction is due to a surrogate
model for the system dynamics.

In both situations, we cannot expect that Jr(u) = J(u) holds for all u ∈ U . Instead, we introduce an
error, which has to be taken into account. This is closely related to questions concerning uncertainty and
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noise. In this context, many researchers have addressed inaccuracies. In [58], the notion of ε-efficiency
(cf. Definition 3) was first introduced in order to handle uncertain objective values. Uncertainty has also
been considered in the context of multiobjective evolutionary computation (see, e.g., [59–61]. Alternative).
Methods such as probabilistic [62,63], deterministic [64] or set-oriented approaches [65,66] have also
been proposed. The special case of many-objective optimization is covered in [67], and applications are
addressed in [68,69]. A different approach to uncertainties is via robust algorithms. Several examples
from multiobjective optimization, as well as optimal control can be found in [43,70–72].

In the following, we will first introduce some results concerning inaccuracies in multiobjective
optimization in Section 3.1 and then give an overview of existing methods for both of the
above-mentioned approaches, i.e., surrogate models for the objective function (Section 3.2) or for the
system dynamics (Section 3.3). Since the first approach has already been covered extensively in several
surveys [1–3], we only give a brief overview of the existing methods and the corresponding references.

3.1. Inaccuracies and ε-Dominance

When using surrogate models in order to accelerate the solution process, we have to accept an
error both in the objective function, as well as the respective gradients. Furthermore, inaccuracies
may occur due to stochastic processes or due to unknown model parameters. In these situations,
the objective function and the corresponding gradients are only known approximately, which has to
be taken into account.

Suppose now that we only have approximations Jr(u),∇Jr(u) of the objectives Ji(u) and the
gradients ∇Ji(u), i = 1, . . . , k, respectively. Furthermore, let us assume that upper bounds ε, κ ∈ Rk

for these errors are known:

‖Jr
i (u)− Ji(u)‖2 ≤ εi ∀u ∈ U , (3)

‖∇Jr
i (u)−∇Ji(u)‖2 ≤ κi ∀u ∈ U . (4)

In this situation, we need to replace the dominance property 2 by an inexact version, also known
as ε-dominance (see also [58,69]):

Definition 3 ([66]). Consider the multiobjective optimization problem (MOP) where the objective function
J(u) is only known approximately according to (3). Then:

1. a point u∗ confidently dominates a point u, if Jr(u∗) + ε ≤ Jr(u)− ε and Jr
i (u
∗) + εi < Jr

i (u)− εi for
at least one i ∈ 1, . . . , k.

2. The set of almost non-dominated points, which is a superset of the Pareto set PS, is defined as:

PS,ε =
{

u∗ ∈ U
∣∣∣@u ∈ U which confidently dominates u∗

}
. (5)

The concept of ε-dominance is visualized in Figure 2. Theoretically, the true point could be
anywhere inside the box defined by ε such that in the cases (a)–(c), the lower left point does not
confidently dominate the other point. The necessary condition is violated for one component in (a)
and (b), respectively, and for both components in (c). The gray points in Figure 2a show a possible
realization of the true points in which no point is dominated by the other. In (d), the orange point
confidently dominates the black one, and in (e), we see the implications for the computation of
Pareto fronts. Due to the inexactness, the number of points that are not confidently dominated
is larger than in the exact case. This is also evident in Figure 3, where the exact and the inexact
solution of an example problem from production [32] have been computed with an extension of the
subdivision technique presented in [27], cf. [66] for details. Here, inexactness is introduced due to
uncertainties in pricing. ε-dominance can be used for the development of algorithms for MOPs with
uncertainties [59,61–63,65,67,68], for accelerating expensive MOPs [60,66,73], as well as for increasing
the number of compromise solutions for the decision maker [63–65,69].
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When considering gradient-based methods, inaccuracies in the gradients (Equation (4)) have to be
taken into account. Since only approximations of the true gradient are known, these result in an inexact
descent direction qr(u). The inaccuracy in the gradients introduces an upper bound for the angle
between the individual gradients ∇Jr

i (u) and the descent direction qr(u). This is equivalent to a lower
bound α̂min for the weight vector, i.e., α̂i ∈ [0, 1] in Equation (1) has to be replaced by α̂r

i ∈ [α̂min,i, 1] for
i = 1, . . . , k:

qr(u) =
k

∑
i=1

α̂r
i∇Jr

i (u); (6)

see [66] for a detailed discussion. The additional constraint ensures that if qr(u) is a descent direction
for the inexact problem, it is also a descent direction for the true problem. Furthermore, we obtain a
criterion for the accuracy up to which we can compute PS,sub based on inexact gradient information.

(a) (b)

(c) (d) (e)

Figure 2. Example for the ε-dominance property. A point-wise comparison is illustrated in (a)–(d).
The uncertainties are marked by the dashed boxes. Only in case (d), the lower left point confidently
dominates the other point. In (e), the entirety of Pareto fronts for the exact problem (PF) and the inexact
problem (PF,ε) are shown in red and orange, respectively.
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(a) (b)

Figure 3. Example for an Multiobjective Optimization Problem (MOP) from production [32] where
inexactness is introduced due to uncertainties in pricing. The Pareto set PS for the exact problem is
shown in (a), and the inexact set PS,ε is shown in (b).
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Theorem 2 ([66]). Consider the multiobjective optimization problem (MOP) without constraints. Only
approximate gradients according to (4) are available, and consequently, the descent direction is also only known
approximately according to Equation (6). Assume that ‖qr(u)‖2 6= 0 and ‖∇Jr

i (u)‖2 6= 0 for i = 1, . . . , k. Let:

α̂min,i =
1

‖∇Jr
i (u)‖2

2

‖qr(u)‖2κi −
k

∑
j=1
j 6=i

α̂j (∇Jr
i (u) · ∇Jr

i (u))

 , i = 1, . . . , k.

Then, the following statements are valid:

(a) If ∑k
i=1 α̂min,i > 1 then there exists no direction q(u) with:

〈q(u),∇Ji(u)〉 < 0 ∀ i = 1, . . . , k,

i.e., no descent direction for the exact problem.
(b) All points u with ∑k

i=1 α̂min,i = 1 are contained in the set:

PS,κ =

{
u ∈ Rn

∣∣∣ ∥∥∥ k

∑
i=1

α̂i∇Ji(u)
∥∥∥

2
≤ 2‖κ‖∞

}
. (7)

A combination of Theorem 2 with the subdivision algorithm from [27] is shown in Figure 4.
The algorithm constructs a nested sequence of increasingly refined box coverings, which converges to
the set of substationary points where in the unconstrained case, ‖q(u∗)‖ = 0 holds for all u∗ ∈ PS,sub.
The set PS,sub is shown in red in Figure 4a. Due to the inexactness, we can no longer guarantee
‖q(u∗)‖ = 0. Instead, we obtain the set PS,κ , which is shown in green. The background is colored
according to the optimality condition ‖q(u)‖ of the exact problem, and the dashed white line indicates
the error bound (7) from the above theorem.

(a)

0 5 10 15 20

J1(u)

0

2

4

6

8

10

J
2
(u

)

(b)

Figure 4. Exact and inexact solutions (PS and PS,κ) for a simple example with J : R2 → R2, cf. [66]
for details. (a) The sets PS and PS,κ (for a random error with κ = (0.01, 0.01)>) are shown in red and
green, respectively. The background is colored according to the optimality condition ‖q(u)‖, which
has to be zero for all substationary points. The dashed white line shows the error bound as derived in
Theorem 2. (b) The corresponding Pareto fronts.

3.2. Surrogate Models for the Objective Function

The most straight-forward approach for introducing a surrogate model is to directly construct a
map from the control to the decision space. This means that only the essential input-output behavior
is covered, whereas internal states, as well as the system dynamics are neglected. Using such a meta
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model, one can very quickly obtain the objective function value for every u. This approach is equally
applicable in finite-dimensional multiobjective optimization and has been used extensively in this
context. To this end, we will only briefly cover the main questions that have to be addressed when
using such models.

In special cases, one can exploit some structure in the problem formulation that yields a simplified
analytic expression. However, in most cases, even if the equations can be written down in closed
form, this approach requires a deep understanding of the underlying system, which is often hard to
obtain. Moreover, small changes in the problem setup may result in having to repeat this tedious
process all over. Due to these reasons, data-based approaches are used much more frequently. They are
often easy to apply and much more general. In these approaches, the original objective function (or
even a real-world experiment) is evaluated for a small number of inputs that are contained in the
set Uref = {u1, . . . , up}, where p is the number of function evaluations (or experiments). The data
points J(u1)–J(up) are then used to fit the meta model such as, e.g., the coefficients of a polynomial
basis. Obviously, the choice of suitable ansatz functions is essential for the success of a meta modeling
strategy. Popular choices are:

• Response Surface Models (RSM);
• Radial Basis Functions (RBF);
• statistical models such as Kriging or Gauss regression;
• machine learning methods such as artificial neural networks or support vector machines;

See [1] for an extensive survey in the context of multiobjective optimization. Additional surveys
can be found in [74], where different statistical methods are compared, in [3,75] in relation to MOEAs
or in [76], where RSM and RBF are compared for crashworthiness problems.

Besides selecting the correct meta model, questions concerning the training dataset have to
be answered:

1. How large does the set Uref have to be?
2. How can we pick the correct elements for Uref?
3. Do we define Uref in advance or online during the model building process?

In addition to the meta model, Point 1 significantly depends on the problem under consideration.
The more non-linear a problem is, the more data points are generally required to accurately construct a
meta model. Obviously, the number also depends on Point 2, the locations u1–uk of these evaluations.
The question of choosing the correct location is closely related to the field of optimum experimental
design or Design of Experiments (DoE); see, e.g., [77,78]. The relevant question there is how to optimally
pick a set of experiments such that the overall approximation error becomes minimal. Such approaches
have successfully been coupled with multiobjective optimization in [79,80]. Point 3 depends both
on the meta modeling approach, as well as the problem under consideration. In some situations
(e.g., for real-world experiments), it may not be possible to iteratively determine the experiments.
Instead, a batch approach has to be used. In computer experiments, flexibility is often higher such
that an interplay between model building and high-fidelity evaluations can help to further reduce
the number of experiments. In the context of machine learning, this process is also known as active
learning [81,82].

Many algorithms combining multiobjective optimization and meta modeling have been proposed,
and there exists a vast literature concerning this topic. Table 1 on page 17 mentions both survey articles
and a (non-exhaustive) selection of popular methods.

3.3. Surrogate Models for the Dynamical System

The above-mentioned meta modeling methods are widely studied and have been successfully
applied in a large variety of multiobjective optimization problems. In the context of control, there exists
an alternative option, which is to derive a surrogate model for the system dynamics, i.e., to replace the
high-fidelity control-to-state operator S by a less expensive surrogate model S r. Since the largest part
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of the computational effort is due to solving the dynamical system, by this, the reduced cost function
Jr(u) = Ĵr(u, y) = Ĵ(u,S ru) is also much less expensive to evaluate.

The use of Reduced Order Models (ROMs) is not limited to control, but has been used successfully
in a large variety of multi-query problems [12], and several extensive surveys have been written on
reduced order modeling and using ROMs in prediction, uncertainty quantification or optimization;
see [83–85]. For nonlinear problems, the two most widely-used approaches are the reduced basis
method and Proper Orthogonal Decomposition (POD) (also known as Principal Component Analysis
(PCA) or Karhunen–Loève decomposition).

3.3.1. ROMS via Proper Orthogonal Decomposition or the Reduced Basis Method

Numerically solving a PDE is generally realized by discretizing the spatial domain with a
numerical mesh using finite differences, finite elements or finite volumes. By this, the infinite-dimensional
state space Y is transformed into a finite-dimensional space YN via Galerkin projection:

y(x, t) ≈ yN(x, t) =
N

∑
i=1

zN
i (t)φi(x). (8)

Here, N denotes the number of degrees of freedom, and φi(x) are basis functions with local
support such as indicator functions or hat functions. This transforms the PDE into an N-dimensional
ordinary differential equation for the coefficients z. For complex domains, as well as complex dynamics,
the dimension can easily reach the order of millions such that solving the problem in YN can quickly
become very expensive, which is particularly challenging in the multi-query case.

The general concept in projection-based model reduction is therefore to find an appropriate
space Y r with dimension ` � N in which the system dynamics can nevertheless be approximated
with sufficient accuracy. The two most common approaches to do this are the Reduced Basis (RB)
method and Proper Orthogonal Decomposition (POD). In both cases, we compute s so-called snapshots
of the high-dimensional system and then use the dataset {yN

1 , . . . , yN
s } to construct a reduced basis

ψ = {ψ1, . . . , ψ`} such that:

y(x, t) ≈ yN(x, t) ≈ yr(x, t) =
`

∑
i=1

z`i (t)ψi(x).

The following example describes this approach in more detail. For an extensive introduction,
the reader is referred to [86,87].

Example 1 (Heat equation). Suppose we want to solve the time-dependent heat equation on a domain Ω with
homogeneous Neumann conditions on the boundary Σ:

yt(x, t)− λ∆y(x, t) = 0, (x, t) ∈ Ω× (t0, te],

y(x, 0) = y0(x), x ∈ Ω,

yn(x, t) = 0, (x, t) ∈ Σ× (t0, te].

(9)

Here, y is the temperature, and λ is the heat conductivity. The subscripts t and n indicate the derivatives
with respect to time and the outward normal vector of the boundary, respectively. We now derive the weak
form of (9) by multiplying with a test function ϕ and integrating over the domain Ω. Using Gauss’s theorem,
we obtain the following equation:∫

Ω
yt(·, t)ϕ− λ∇y(·, t) · ∇ϕ dx = 0, (x, t) ∈ Ω× (t0, te]. (10)
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If we want to solve (10) using the finite element method, we have to insert the Galerkin ansatz (8) into
(10) and individually take each of the basis functions as a test function. By this, we obtain the following system
of equations: ∫

Ω

N

∑
i=1

zN
i,t(t)φiφj − λzN

i (t)∇φi · ∇φj dx = 0, j = 1, . . . , N. (11)

Introducing the mass matrix M ∈ RN×N and the stiffness matrix K ∈ RN×N with:

Mi,j =
∫

Ω
φiφj dx, Ki,j =

∫
Ω
∇φi · ∇φj dx,

this yields the following N-dimensional linear system:

MzN
t (t)− λKzN(t) = 0.

If we now want to compute a reduced order model instead of a high-dimensional finite element approximation,
we can apply the same procedure, except that now, we have to use the reduced basis in the Galerkin ansatz,
as well as for test functions.

The most important difference between RB and POD is the area of application, although this
is not a strict separation. RB is mostly applied to parameter-dependent, yet time-independent
(i.e., elliptic) problems, whereas POD (introduced in [88]) is applied to time-dependent problems
described by parabolic or hyperbolic PDEs. Consequently, in RB, the snapshots {yN

1 , . . . , yN
s } are

solutions corresponding to parameters {u1, . . . , us}, and in POD, they are snapshots in time, collected
at the time instants {t0, . . . , ts−1}. Using an equidistant time grid h, the snapshots are taken at
{t0, t0 + h . . . , t0 + (s − 1)h}. In RB, the snapshots {yN

1 , . . . , yN
s } often directly serve as the basis ψ.

For time-dependent problems, this can cause numerical difficulties since some snapshots might
be very similar (e.g., for very slow systems or periodic dynamics) such that the snapshot matrix
S = (yN

1 , . . . , yN
s ) is ill-conditioned. Due to this, a singular value decomposition is performed on S, and

the ` leading left singular vectors are taken as the basis ψ. This results in an orthonormal basis, which
can be shown to be optimal with respect to the L2 projection error [87,88]. Furthermore, the truncation
error is given by the sum over the neglected singular values:

ε` =
∑s

i=`+1 σi

∑s
j=1 σj

.

Whereas the error between the infinite-dimensional solution and the solution via a standard
discretization approach can be neglected in many situations, the error of the ROM depends on several
factors such as the reference data, the basis size and the parameter or control for which the ROM is
evaluated. Consequently, this error can be significant such that proper care has to be taken. The most
common approach is to derive bounds either for the error of the reduced state ‖yr − yN‖ or, in the case
of optimal control, of the optimal solution ‖ur − uN‖ obtained using the ROM; see, e.g., [89–93] for
POD or [94–97] for RB methods. In addition, there are other measures that can be taken such as deriving
balanced input-output behavior [98,99] or introducing additional terms [100] or modifications [101] in
the POD-based ROM. For more detailed introductions to RB and POD, the reader is referred to [97]
and [87,88], respectively.

3.3.2. Optimal Control Using Surrogate Models

There is a rich literature on optimal control of PDEs using surrogate models. The approaches can
be summarized into three main categories:
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1. build a model once,
2. construction of regular updates in a trust region approach,
3. construction of regular updates using error estimators.

Whereas the first category is the most efficient one (see, e.g., [102] for optimal control
of the Navier–Stokes equations), it is in general not possible to prove the convergence of the
resulting algorithm.

In the second approach (which was developed by Fahl [103] for POD-based ROMs and one
objective), one defines a trust region within which the current surrogate model is considered as
trustworthy; see Figure 5 for an illustration. The ROM-based optimal control problem is then
solved with the additional constraint that the solution has to remain within the trust region,
i.e., ‖ui − uref‖ ≤ δi, where i is the current step of the iterative optimization scheme and δi is the
current trust region radius. After having obtained ui, the high-dimensional system is evaluated,
and the improvement of the full system is determined:

ρ =
|JN(ui)− JN(ui−1)|
|Jr(ui)− Jr(ui−1)|

.

If ρ is close to one, then the ROM is sufficiently accurate, and the iterate ui is accepted. We then
use the high-dimensional solution to construct the next ROM at uref = ui. If, on the other hand, ρ is
close to zero, then the ROM accuracy was bad, and the iterate ui is rejected. Instead, the trust region
radius δi is reduced, and the optimal control problem is solved again. Using the Trust Region (TR-POD)
approach, one can ensure convergence to the optimal solution of the high-dimensional problem. In the
case of the Navier–Stokes equations, this has been shown for different problem setups [103,104].

(a) (b) (c) (d)

Figure 5. Trust region method. (a) The Reduced Order Model (ROM)-based optimal control problem is
solved within the trust region δ0. (b) If the improvement is poor for the full system (i.e., ρ is small),
then the trust region radius is reduced, and we repeat the computation with the same problem. (c) If
the improvement is acceptable (intermediate values of ρ), then we compute a new model and proceed
with a smaller trust region δ1 < δ0. (d) If the improvement is good (i.e., ρ ≈ 1), then the trust region
radius is increased.

In the third approach, error estimators ∆J for the current iterate ui are required. By evaluating
∆J(ui), it is possible to efficiently estimate the error between the high- and the low-dimensional
solution, since:

|Jr(ui)− JN(ui)| < ∆J .

If this error estimate is larger than some prescribed upper bound ε, then the ROM has to be
updated using data from a high-dimensional solution. Detailed information on error estimates can be
found in, e.g., [91–97].

3.4. ROM-Based Multiobjective Optimal Control of PDEs

All three approaches for using ROMs in optimal control have recently been extended to
multiobjective optimal control problems. Besides different ROM techniques, different algorithms
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for MOPs have been used, as well, such that a variety of methods has evolved, each of which is well
suited for certain situations.

3.4.1. Scalarization

A natural and widely-used approach to MOPs is via scalarization. By this, the vector of objectives
is synthesized into a scalar objective function, and the MOP is transformed into a sequence of scalar
optimization problems for different scalarization parameters. In terms of ROM-based optimal control,
this is advantageous because many techniques from scalar-valued optimal control can be extended.
The main difference is now that the objective function may have a more complicated structure.
In [105,106], the weighted sum method has been used in combination with RB in order to solve
MOPs constrained by elliptic PDEs. In the weighted sum method, scalarization is achieved via convex
combination of the individual objectives using the weight vector α:

min
u∈U

J(u) = min
u∈U

k

∑
i=1

αi Ji(u). (12)

The weighted sum method is probably the most straight-forward approach for including ROMs
in MOPs. However, the method has strong limitations in the situation of non-convex problems, where
it is impossible to compute the entire Pareto set [5].

A more advanced approach is the so-called reference point method [5] (cf. Figure 6 for an
illustration), where the distance to an infeasible target point T with T < J(u) has to be minimized:

min
u∈U

J(u) = min
u∈U
‖T − Ji(u)‖. (13)

By adjusting the target, we can move along the Pareto front and hence obtain an approximately
equidistant covering of the front. The reference point method has been coupled with all three of the
above-mentioned ROM approaches. In [107], it was used for multiobjective optimal control of the
Navier–Stokes equations using one reduced model (cf. Figure 7a). Here, the objectives are to stabilize a
periodic solution (the well-known von Kármán vortex street) and to minimize the control cost at the
same time. In [73], the trust region framework by Fahl (TR-POD, [103]) was extended (cf. Figure 7b–c
for a heat flow problem with a tracking and a cost minimization objective). The third ROM approach
was used in [108,109]. The difficulty here is that the minimization of the distance to the target point
results in a more complicated objective function, which has to be treated carefully.

(a) (b)

Figure 6. Reference point method. (a) Determination of a Pareto-optimal solution by solving (13).
(b) Determination of the consecutive point on the Pareto front by adjusting the target and solving the
next scalar problem.

Scalarization techniques generally have the same limitations on the decision space dimension as
scalar-valued optimal control problems. This means that very efficient techniques (both direct and
indirect) exist for high-dimensional controls. However, the number of objectives is limited because the
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parametrization in the scalarization step becomes extremely tedious, and it is almost impossible to
obtain a good approximation of the entire Pareto set for more than three objectives.

75 80 85 90 95

J
r
1

0

10

20

30

40

50

J
r 2

ROM

Navier-Stokes Equations

(a)

2 4 6 8 10 12

J1

0

500

1000

1500

2000

2500

J
2

FEM

ROM

(b)

0 500 1000 1500

Pareto optimal points

10
0

10
1

10
2

10
3

F
u
n
c
ti
o
n
E
v
a
lu
a
ti
o
n
s

FEM (Direct)

FEM (Trust Region)
ROM (Trust Region)

(c)

Figure 7. (a) Pareto front for an MOCP involving the Navier–Stokes equations (flow stabilization
vs. cost), solved by coupling of an ROM (created once in advance) with the reference point method.
Although we observe acceptable agreement, convergence cannot be guaranteed. (b) Pareto front for
a heat flow MOCP (reference tracking vs. cost), solved by the TR-POD approach coupled with the
reference point method. Convergence is achieved while reducing the number of expensive finite
element (FEM) evaluations by a factor of ≈ 22, cf. (c).

3.4.2. Set-Oriented Approaches with ε-Dominance

In contrast to scalarization, in set-oriented techniques, the Pareto set is approximated by a box
covering [27–29]. Here, the limitations are contrary, meaning that the dimension of the decision space
is rather limited, while the number of objectives does not pose any problems for the algorithms.
In practice, however, the computational cost increases exponentially with the number of objectives
(i.e., the dimension of the Pareto set) such that we are still limited to a moderate number of objectives.

First results coupling the subdivision algorithm developed in [27] with error estimates for
POD-based ROMs have recently appeared [110,111]. In the subdivision algorithm, the decision
space is divided into boxes, which are alternatingly subdivided and selected. In the subdivision step,
each existing box is subdivided into two smaller boxes. In the selection step, all boxes are eliminated
that are dominated, i.e., they do not cover any part of the Pareto set. Numerically, this is realized by
representing a box by a finite number of sample points and then marking a box as dominated if all
sample points are dominated by samples from another box in the covering; see [27] for details.

The subdivision algorithm can be extended to inaccuracies by replacing the strict dominance test
by an ε-dominance test as presented in Section 3.1 (see also Figure 3). After fixing an upper bound
ε, we have to ensure that the surrogate models we use do not violate this bound anywhere in the
control domain. Since this cannot be achieved with a single ROM, one has to use multiple, locally valid
ROMs instead (cf. Figure 8c). The covering by local ROMs is managed in such a way that all points
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in the neighborhood around the reference uref at which the data for the ROM were collected satisfy
the prescribed error bound ε. This way, the number of solutions of the high-dimensional system can
be reduced significantly. A comparison between the exact and the ROM-based solution is shown in
Figure 8 for a semilinear heat flow MOCP with two tracking type objectives and a cost minimization
objective. Due to the ROM approach, the number of evaluations of the FEM model could be reduced
by a factor of ≈1000.

(a) (b)

(c) (d)

Figure 8. (a) Pareto set of a semilinear heat flow MOP with four controls (coloring according to u4),
solved directly including an FEM model in the subdivision algorithm. (b) Pareto set of the same
problem, solved with localized ROMs. (c) The reference controls for which the local ROMs have been
computed are shown in black, and the colored dots are sample points at which the objective function
was evaluated. The colorings denote assignments to a specific ROM. (d) The corresponding Pareto
fronts, where the FEM solution is shown in green and the ROM solution in red.

3.5. Summary

Before moving on to feedback control, a summary of the relevant publications where
multiobjective optimization and meta modeling interact is given in Table 1. The references are
categorized into surveys, algorithms using surrogate models for the objective function, the system
dynamics and specific reduction approaches for MOPs. Furthermore, some applications are referenced.
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Table 1. Overview of publications (in chronological order) where surrogate modeling and
multiobjective optimization are combined. MOEA, Multiobjective Evolutionary Algorithm; RSM,
Response Surface Model; POD, Proper Orthogonal Decomposition; TR, Trust Region.

Surveys

Tabatabei et al. [2], Chugh et al. [3] Extensive surveys on meta modeling for MOEAs

Voutchkov and Keane [74], Surveys on meta modeling approaches from statistics (RSM,
Knowles and Nakayama [1], Jin [75] RBF) and machine learning in combination with MOEAs

Benner et al. [83], Taira et al. [85], Surveys on reduced order modeling of dynamical systemsPeherstorfer et al. [84]

Algorithms Using Meta Models for the Objective Function

Ong et al. [112], Ray et al. [113] Combination of RBF and MOEA

Chung and Alonso [114], Keane [115] Combination of kriging models and MOEA

Karakasis and Giannakoglou [116] RBF as an inexpensive pre-processing step in a MOEA

Knowles [117] Combination of DoE and an interactive method

Zhang et al. [118] Combination of Gaussian process models and scalarization

Telen et al. [79] Combination of DoE and scalarization and MOEA

Chugh et al. [119] Kriging model in combination with reference vector approach for
MOPs

Meta Models Specifically Tailored to Multiobjective Optimization

Shimoyama et al. [120] Kriging surrogate for hypervolume approximation (MOEA)

Pan et al. [121] Surrogate model for dominance relations with uncertainties

Algorithms Using Surrogate Models for the System Dynamics

Iapichino et al. [105] Combination of POD and weighted sum

Banholzer et al. [108,109] Combination of POD and reference point method

Iapichino et al. [106] Combination of RB and weighted sum

Peitz [73] Combination of TR-POD and reference point method

Beermann et al. [110,111] Combination of POD and set-oriented method

Applications

Albunni et al. [53] POD and MOEA applied to the Maxwell equation

Ma and Qu [80] MO of a switched reluctance motor by coupling RSM and
MOEA (particle swarm optimization)

Peitz et al. [107] POD-based multiobjective optimal control of the Navier–
Stokes equations via scalarization and set-oriented methods

Wang et al. [122] MOEA with multi-fidelity surrogate-management and
offline-online decomposition applied to a trauma system

4. Feedback Control

Even when the objective function is not very expensive to evaluate, MOCPs often have a
large computational cost; see, e.g., [123] for various examples. This becomes a limiting factor in
situations where the solution time is critical as is the case in real-time applications. Due to the
increasing computational power, as well as the advances in algorithms, Model Predictive Control
(MPC) (see [124,125] for extensive introductions) has become a very powerful and widely-used method
for realizing model-based feedback control of complex systems.

In MPC, an optimal control problem is solved in a short time horizon (the prediction horizon)
while the real system (the plant) is running. Then, the first entry of the optimal control is applied
to the plant, and the process is repeated with the time frame moving forward by one sample time h;
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see Figure 9 for an illustration. This way, a closed-loop behavior is achieved. On the downside, we have
to solve the optimal control problem within the sample time h. This can be in the order of seconds
or minutes (in the case of chemical processes) down to a few microseconds, for example in power
electronics applications.

Figure 9. Sketch of the MPC method. Due to the real-time constraints, the optimization problem has to
be solved faster than the sample time h.

In many MPC problems, stabilization of the system with respect to some reference state is the most
important aspect. Nevertheless, there exist variations where stability is not an issue such that other
(more economic) objectives can be pursued. These methods are known as economic MPC [126,127].
Another variation is the so-called explicit MPC [128], where the optimal control is computed in advance
for a large number of different states and stored in a library. This way, the computational effort is
shifted to an offline phase, and during operation, we only have to select the optimal control from
the library.

As in multiobjective optimal control, there are numerous applications where multiple objectives
are interesting in feedback control. This means that we would have to solve the problem (MOCP) with
t0 = ts and te = ts+p repeatedly within the sample time h. It is immediately clear that even the simplest
MOCPs cannot be solved fast enough to allow for real-time applicability. Consequently, efficient
algorithms have to be developed, which can be divided into approaches where one Pareto optimal
solution is computed online and approaches with an offline phase during which the MOCP is solved
(in this article, algorithms where Artificial Neural Networks (ANN) have to be trained beforehand are
nonetheless assigned to the first category if the optimization is performed entirely online).

When implementing a multiobjective MPC (MOMPC) algorithm, one should keep in mind that,
regardless of the algorithm used, the resulting trajectory need not be Pareto optimal, even if each
single step is, cf. [129]. A remedy to this issue is presented in [130], where the selection of compromise
solutions is restricted to a part of the Pareto front that is determined in the first MPC step. Due to this,
upper bounds for the objective function values can be guaranteed.

4.1. Online Multiobjective Optimization

In the classical MPC framework, the optimal control problem is solved online within the sample
time h. Since it is in general impossible to approximate the entire Pareto set sufficiently accurately
within this time frame, there are three alternatives:

1. compute a single Pareto-optimal solution according to some predefined preference,
2. compute only a rough approximation of the Pareto set,
3. compute an arbitrary Pareto-optimal control that satisfies additional constraints (e.g., stability).

In the first approach, the objective function is scalarized using, for instance, the weighted sum
method (12) or the reference point method (13). In this situation, well-established approaches from
scalar-valued MPC exist on which one can build. First results using the weighted sum method have
appeared in [131]. In [132,133], the authors use the same scalarization for an MPC problem with
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convex objective functions. In this situation, it is guaranteed that any Pareto-optimal solution can be
computed using weighted sums, and the weights can be adapted online according to a decision maker’s
preference. Due to the convexity, stability can be proven for the resulting MPC algorithm. In [134],
this approach is extended by providing gradient information of the objectives with respect to the weight
vector α. This way, the weights can be adapted in such a way that a desired change in the objective
space is realized. For non-convex problems, the weighted sum method is incapable of computing the
entire Pareto set. Therefore, in [135], a variation of the reference point method is applied, where the
target T is the utopian point J∗, i.e., the vector of the individual minima. This way, also non-convex
problems can be treated. In fact, due to the reference point method, the objective function is always
convex [109], which can be exploited during the optimization. Alternative scalarization methods are
the ε-constraint method [136] or lexicographic ordering [137].

A disadvantage of a priori scalarization is that it is often difficult to select the scalarization
parameter in such a way that a desired trade-off solution is obtained, and the remedy proposed in [134]
is only applicable to a specific class of problems. Therefore, an alternative approach is to quickly
compute a rough approximation of the entire Pareto set and then select the desired control online.
Such methods have been proposed by many authors. The general approach is to us an MOEA and
stop the computation after a few iterations. In the next step, one of these suboptimal solutions is
selected. This selection is realized by specifying a weight vector for the objectives in [138–141] and by
the satisficing trade-off method in [142].

As a third option, we can compute a single Pareto-optimal point without specifying which one
we are specifically interested in as long as it satisfies additional constraints such as the stability of the
system. Approaches of this type have been developed in [136,143], where a game theoretic approach
is used.

4.2. Offline-Online Decomposition

A well-known trick to avoid heavy online computations is to introduce an offline-online
decomposition (very similar to meta modeling approaches where surrogate models are constructed
before solving the MOCP). This means that the Pareto set is computed beforehand, and in the online
phase, an optimal compromise is selected according to a decision maker’s preference or some heuristic
based on the system state or the environment.

Many of the approaches that fall into this category use a standard feedback controller instead
of MPC; see [144] for a short review concerning methods using scalarization and offline PID
controller optimization. In the offline phase, a Pareto set is computed for the controller parameters.
Possible objectives are, among many others, overshooting behavior, energy efficiency or robustness.
Algorithms of this type have been proposed in [145–147] using MOEAs and in [148–150] using
set-oriented methods.

An alternative approach is motivated by explicit MPC, i.e., the idea of solving many MOPs offline
such that the correct solution can be extracted from a library in the online phase. Such a method has
been proposed in [48]. In the offline phase, one has to identify all possible scenarios that can occur in
the online phase. Such a scenario consists of both system states, as well as constraints. This results
in a large number of MOPs that have to be solved. In order to reduce this number, symmetries in
the problem are exploited. To this end, a concept known as motion primitives [151,152] is extended.
In short, this means that if:

arg min
u∈U

MOP1 = arg min
u∈U

MOP2,

where MOP1 and MOP2 are two problem instances from the offline library, then we only have to solve
one of the problems in order to have a Pareto-optimal solution for both. Moreover, if two problem
instances vary only slightly, one can use a previously-computed solution as a good initial guess for the
next MOCP to further decrease the computational effort [73]. In the online phase, the correct Pareto
set is selected from the library (according to the system state and the constraints), and an optimal
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compromise is selected according so a decision maker’s preference α. In contrast to the affine linear
solutions, which can be computed in explicit MPC for linear-quadratic problems, one has to rely on
interpolation between solutions in the nonlinear setting.

4.2.1. Example: Autonomous Driving

We here want to demonstrate the superiority of multiobjective approaches over scalar-valued
MPC using the example of autonomously-driving electric vehicles [47,48,153]. The problem there is
to find the set of optimal engine torque profiles such that the velocity is maximized while the energy
consumption is minimized. Additional constraints have to be taken into account such as speed limits
or stop signs. The system dynamics are described by a four-dimensional, highly nonlinear ODE for
the vehicle velocity, the battery state of charge and two battery voltage drops, cf. [153] for details.
Numerical investigations reveal several symmetries in the system such that the only relevant state for
a scenario is the current velocity, whereas all other states only have a minor influence on the solution
of the MOP. Consequently, the velocity, as well as the constraints form the above-mentioned scenarios;
see Figure 10a for an illustration. For example, a scenario could be that the current velocity is 60 km/h
and that the speed limit is currently increasing from 50–100 km/h, cf. Scenario (II) in Figure 10a.
We then solve the MOP for this scenario and store the Pareto set in a library. By discretizing the
velocity into steps of 0.1 (i.e., v(t0) = . . . , 59.9, 60.0, 60.1, . . .), we have to solve 1727 MOPs in total in
the offline phase.
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Figure 10. Results for the offline-online MPC approach from [48]. (a) Different constraint scenarios
((I)–(VI)), i.e., constant velocity, acceleration, deceleration and stopping. (b) Example track driven with
the MPC algorithm. The red lines define the velocity bounds; the black dashed lines are trajectories
corresponding to a constant weight α; and the green line is a trajectory where the weight is changed from
0 (energy efficient) over 0.5 (average) to 1 (fast). (c) Comparison between the MPC algorithm (coupled
with a simple heuristic for the weighting) and the global optimum obtained via dynamic programming.
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Table 2. Overview of publications (in chronological order) for multiobjective feedback control.

Algorithms without Offline Phase: Computation of Single Points

Kerrigan et al. [131], Scalarization via Weighted Sum (WS)Wojsznis et al. [154]

Kerrigan and Maciejowski [155], Scalarization via lexicographic orderingHe et al. [137]

Bemporad and Muñoz Scalarization via WS for convex objectives, guaranteed stability for
de la Peña [132,133] large gain vs. noise robust stabilizing objectives

Geisler and Trächtler [134] WS, online adaptation of weights using gradient information

Maestre et al. [143] Scalarization via game-theoretic approach

Zavala and Flores- Scalarization via reference point approachTlacuahuac [135]

Hackl et al. [129] Scalarization via WS for Linear Time-Invariant (LTI) systems

Zavala [136] Scalarization via ε-constraint: economic objective, stability as constraint

Grüne and Stieler [130] Economic objectives, performance bounds via selection criterion

Algorithms without Offline Phase: Approximation of the Entire Pareto Set

Laabidi et al. [138,140], ANN for state prediction, optimization via
Garcìa et al. [141] MOEA, selection of Pareto point via WS

Bouani et al. [139] ANN for state prediction, comparison of two MOEAs and WS for MOP

Nakayama et al. [142] Few MOEA iterations online, selection via satisficing trade-off method

Algorithms with Offline Phase

Fonseca [145], Offline computation of Pareto optimal controller parameters
Herreros et al. [146] using MOEA

Scherer et al. [156] Robust control using a common Lyapunov function for multiple
stability criteria

Ben Aicha et al. [147] Offline computation of Pareto optimal controllers parameters via EA
and WS, online selection according to geometric mean of objectives

Krüger et al. [148] Offline computation of Pareto optimal controllers parameters via Set
oriented methods, parametric model reduction for increased efficiency

Hernández et al. [149], Offline computation of Pareto-optimal controllers parameters via
Xiong et al. [150] simple cell mapping

Peitz et al. [48] Offline-online decomposition similar to explicit MPC

Applications

Zambrano and Camacho [157] MOMPC of a solar refrigeration plant via scalarization

Porfírio et al. [158] MOMPC of an industrial splitter using a min-max reformulation

Pedersen and Yang [159] MO PID controller design for magnetic levitation systems via MOEA

Li et al. [160] Multiobjective adaptive cruise control for vehicles

Hu et al. [161] MOMPC of high-power converters via WS

Núñez et al. [162] MOMPC of dynamic pickup and delivery problems using MOEA

Peitz et al. [163] MOMPC of an industrial laundry, scalarization of a traveling
salesman problem via WS

In the online phase, we now select the relevant Pareto set from the library and, according to a
decision maker’s preference, apply one of the Pareto-optimal controls to the electric vehicle. This is
done repeatedly such that a feedback loop is realized. The result is illustrated in Figure 10b for an
example track, where the black lines correspond to constant weighting of the two criteria and the green
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line corresponds to a varying weight. This way, a flexible cruise control is established where the driver
can quickly adapt, for instance, to changing energy requirements.

As has been mentioned before, an alternative to interactively choosing a weight is to implement
some heuristic that automatically chooses a weight based on the current situation. Such an approach is
visualized in Figure 10c, where the weighting depends on the vehicle velocity, as well as on current and
future velocity constraints. For a simpler track, it is possible to compute a globally optimal solution
for a scalarized objective using dynamic programming. We see that with the heuristic, the MOMPC
approach yields trajectories close to the global optimum while only having finite horizon information.

4.3. Summary

We again conclude the section by giving a summary of publications where multiobjective
optimization is applied in a real-time context, cf. Table 2. The publications are divided into four
categories. The first two contain algorithms where the MOP is solved online. The categories differ in
whether a single point is computed or the entire set is approximated. Consequently an offline phase is
not required except in the case where surrogate models are trained in order to accelerate the online
computations. The third category then contains the methods with an offline optimization phase, and
some applications are mentioned in the fourth category.

5. Reduction Techniques for Many-Objective Optimization Problems

Another important restricting factor in multiobjective optimization is the number of
objectives [164]. For MOPs with four or more objectives, the term Many-Objective Optimization (MaOP)
has been coined, and over the past few years, many researchers have dedicated their work to address
MaOPs and the issues arising from the curse of dimensionality, cf. [165] for an overview, [166,167] for
new concepts for identifying non-dominated solutions and [168–172] for evolutionary approaches.

A popular approach for MaOPs is comprised of interactive methods [173–178]. These methods
do not compute the entire set of optimal compromises, but instead interactively explore the Pareto
set. Starting at the current Pareto-optimal solution, a decision maker can choose in which direction to
proceed, i.e., which objective to improve at the expense of some other, currently less important objective.
The approach in [178], for example, allows for Pareto-optimal movements both in the decision and
objective space. One of the main advantages of interactive methods is the reduced computational
effort, especially in the presence of many criteria, since it is not affected significantly by the dimension
of the Pareto set. Moreover, this way, decision making from a vast number of Pareto-optimal solutions
is avoided, which can be overwhelming for a decision maker. Consequently, interpretability and
usability are increased.

Besides interactive methods, several reduction techniques have been proposed in the context of
many-objective optimization, and although it is not the main theme of this review article, we want to
give a brief overview of these reduction approaches since they also aim at increasing the efficiency
of solving MOPs. These reduction techniques can be divided into two main categories. The first one
is objective reduction, where the aim is to reduce the number of objectives while (approximately)
preserving the Pareto set. The observation behind this is that not all objectives are of equal importance
to the structure of the Pareto set, which is measured by the degree of conflict [179]. Consequently,
when it is possible to identify the main contributors to the Pareto set, then one can solve a reduced
problem taking into account only these most important objectives. Different approaches have been
proposed for this identification step, all of which use a set of sample points. In [179], both exact and
inexact algorithms are proposed for selecting a subset of objectives such that only those points in the
Pareto set are lost that are worse in all remaining objectives by a constant δ or more. This approach
is also exploited in [180]. In [181,182], POD (cf. Section 3.3) is used to identify such a subset, and a
related concept is implemented in [183] using hyperplanes. In [184], an entropy-based approach is
presented, and in [185], the relevant subset is selected multiple times within an evolutionary procedure.
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A slightly different approach is pursued in [186], where the authors split large decision spaces into
several smaller ones according to the relevance of decision variables for specific objectives.

The method proposed in [187] possesses characteristics of the first category, namely objective
reduction, as well as of the second category, which is the exploitation of the structure of Pareto sets and
front. Therein, first the corners of the Pareto front are identified, and this information is used to select
the relevant objectives. Algorithms of the second type all exploit this hierarchical structure. This means
that under certain assumptions, the Pareto front is bounded by the Pareto fronts of subproblems where
one or more objectives have been neglected, cf. [188,189]. This way, the solution can be computed
by a hierarchical approach where, starting with scalar problems, the boundary is computed before,
finally, the interior is obtained. Very recently, results about the hierarchical structure of the Pareto
set, i.e., in decision space, have appeared; see [73,190] for details. This approach is illustrated in
Figure 11 where the solution to an MOP with four objectives is shown, as well as the Pareto sets of the
subproblems with three and two objectives, respectively.

(a) (b) (c)

Figure 11. Visualization of the hierarchical structure of Pareto sets. (a) Pareto set of an example
problem with J : R3 → R4. (b) The four Pareto sets taking only three objectives into account form
the boundary of the original Pareto set. (c) The Pareto sets in (b) are again bounded by the respective
bi-objective subproblems.

6. Future Directions

This survey has given an overview of recent advances in the context of accelerating multiobjective
optimization. These are surrogate models, feedback control and objective reduction techniques.
Similar to almost every other field of science, it can be expected that the immense developments
in data-based methods will also have a major impact on research in multiobjective optimization, in
particular in the context of surrogate modeling. A very large number of researchers from the dynamical
systems community is working on data-based methods using the Koopman operator, which is an
infinite-dimensional, but linear operator describing the dynamics of observables [191,192]. Significant
effort has been put into the development of numerical methods for approximating this operator from
data; see, e.g., [193,194]. This way, the dynamics of observations can be reconstructed entirely from
data and without any knowledge of the underlying system dynamics. In a way, this allows us to
merge the two surrogate modeling categories from Sections 3.2 and 3.3 since we can approximate
the dynamics not only of the state, but directly of the objectives. Several methods have recently been
proposed to use the Koopman operator for data-based controller design, both in simulations [195–198],
as well as experiments [199,200]. The results are very promising, such that it is just a matter of time
until these methods are utilized for multiobjective optimal control.

In the same manner, machine learning techniques [201] will very likely gain more and more
attention, both in multiobjective optimization, as well as optimal control. There are already many
papers on this topic or related ones, and the number is growing quickly.
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