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Abstract: In this paper, a deterministic mathematical model of the Dengue virus with a nonlinear
incidence function in a population is presented and rigorously analysed. The model incorporates
control measures at the aquatic and adult stages of the vector (mosquito). The stability of the system
is analysed for the disease-free equilibrium and the existence of endemic equilibria under certain
conditions. The local stability of the Dengue-free equilibrium is investigated via the threshold
parameter (reproduction number) that was obtained using the next-generation matrix techniques.
The Routh–Hurwitz criterion, along with Descartes’ rule of signs change, established the local
asymptotically stability of the model whenever R0 < 1 and was unstable otherwise. The comparison
theorem was used to establish the global asymptomatically stability of the model.

Keywords: Aedes aegypti; A. albopictus; dengue fever; reproduction number; control measures; global
stability; aquatic stage; adult stage

1. Introduction

Dengue fever is one of the infectious diseases that has continued to be a subject of major
concern to public health. It is a mosquito-borne viral infection, which is endemic in more than
a hundred countries in the world [1–3], usually in the tropical and sub-tropical regions of the
world [1,4,5]. In recent years, the transmission has increased, predominantly in the urban and
semi-urban areas [1,4], where 50–390 million people worldwide per year are infected, leading to
half a million hospitalizations [3,6,7], with an approximate 25,000 deaths [3,6,8].

The disease has been well-known clinically for over 200 hundred years, but the etiology of the
disease was not discovered until 1944 [5,9]. It was first recognized in the Philippines in 1953 and
in Thailand in 1955 [5,9,10]. The threat of the outbreak now exists in Europe, with its first local
transmission reported in France and Croatia in 2010, other cases have occurred in Florida (USA) and
Yunnan (province of China) in 2013 [1,4].

Dengue hemorrhagic fever is an infectious tropical disease that is caused by an infective agent
called the Dengue virus, of the family Flaviviridae, which has four distinguished serotypes that are
denoted by I, II, III, and IV [5,10]. The virus is transmitted to humans by the bites of Aedes mosquitoes
(Aedes aegypti and A. albopictus are the principal transistors). The infection remains in mosquitos till
death [5,9].

The Dengue infection causes a spectrum of illness in humans, ranging from clinically inapparent,
to severe and fatal hemorrhagic disease [5,10]. The incubation period (time between infection and
appearance of symptoms) is from 3–14 days, but often, it is 4–7 days [3,6,11], and is generally observed
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clearly in older children and adults [5]. Dengue fever is characterized by the sudden onset of fever,
frontal headache, nausea, vomiting, and other symptoms.

The use of mathematics in explaining the epidemiology of Dengue fever has been extensively
studied by many researchers over the years, notable among these studies by the following
authors [2,5,6,9,11–13]. In this study, since Dengue fever is spread between two-interacting populations
(human–vector), we have designed and analysed a mathematical compartmental model that considers
the human population and the vector population (mosquito). We extended the earlier model [6] by
incorporating a ‘standard force of infection’ with the proportion of antibodies that were produced
by a human in response to the incidence of infection that was caused by mosquitos, and vice versa.
Additionally, an extension of the work is to consider some of the control effects or precautionary
measures of the vector in the absence of a vaccination. These measures include the Larvicides for
the Aquatic stage of the vector, which prevents the vector from breeding; Naled; and Environmental
Protection Agency (EPA)-registered insects’ repellants to prevent getting bitten against the adult stage
of the vectors.

2. Formulation of the Model

The formulation of the Dengue model requires the interaction between two-interacting
populations (human–vector). The total human population at continuous-time t, denoted by Nh(t),
is subdivided into six compartments, namely: susceptible humans (Sh), exposed humans (Eh),
infect humans (Ih), migrated population (Mh), treatment class (Th), and recovered humans (Rh).
Hence, the total human population Nh(t) is given by the following:

Nh(t) = (Sh) + (Eh) + (Ih) + (Mh) + (Th) + (Rh) (1)

Similarly, the total vector population at continuous-time t, denoted by Nν(t), is subdivided into
four compartments, namely: aquatic class (Aν), susceptible mosquitoes (Sν), exposed mosquitoes (Eν),
and infectious mosquitoes (Iν). Hence, the total vector population Nν(t) is given by the following:

Nν(t) = (Aν) + (Sν) + (Eν) + (Iν) (2)

The dynamics of the Dengue that are considered here, based on schematic illustration from
Figure 1, is formulated and studied under the following assumption:

1. The model assumes a homogeneous mixing of the human and vector (mosquito) populations,
so that each mosquito bite has an equal chance of transmitting the virus to those that are
susceptible in the population (or acquiring the infection from an infected human);

2. Considering the saturated incidence rate (non-linear incidence), which incorporates the
production of antibodies in response to the parasites causing Dengue in both the human and
vector population (υh, υν) respectively.

3. The model considers the vector-aquatic class so as to investigate the effect of the control strategies,
such as Larvicides at the aquatic stage;

4. That the infectious mosquitoes remain infectious until death;
5. There is a loss of immunity for the recovered human population; and
6. Incorporating the controlling rate parameters, which will monitor the effects of control strategies

at the aquatic stage (Aν) and adult stages (Sν, Eν, Iν).
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Figure 1. The schematic illustration of the Dengue model. 

2.1. Analysis of the Model 

Exploring the basic dynamical feature of the model is a necessity. For the Dengue model, 
Equation (3), which has been formulated above to be epidemiologically meaningful, it is very 
important to prove that all of the states variables are non-negative all of the time (t). In other words, 
the solution of the model, Equation (3), with positive initial values of data will remain positive at all 
times t ≥ 0. 

Positivity and Boundedness of Solutions 

Since the Dengue model, Equation (3), describes the interaction between the human and vector 
population, it is important to state that all of the parameters and variables that are involved are non-

Figure 1. The schematic illustration of the Dengue model.
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In summary, following the assumptions from above, the transmission dynamics of Dengue in a
population is given by the ten compartmental systems of the non-linear differential equation below,
as follows: .

Sh(t) = πh −
bβhνSh(t)Iν(t)

1+υh Iν(t)
− µhSh(t) + ωRh(t)

.
Eh(t) =

bβhνSh(t)Iν(t)
1+υh Iν(t)

+ µ1Mh(t)− (µh + σh)Eh(t)

.
Ih(t) = σhEh(t) + µ2Mh(t)− (µh + τh + δh)Ih(t)

.
Mh(t) = πmh − (µ1 + µ2 + µh)Mh(t)

.
Th(t) = τh Ih(t)− (µh + γ1)Th(t)

.
Rh(t) = γ1Th(t)− µhRh(t)−ωRh(t)

.
Aν(t) = πν − (γm + µν + Ca)Aν(t)

.
Sν(t) = γm Aν(t)− bβνhSν(t)Ih(t)

1+υν Ih(t)
− (µν + Cm)Sν(t)

.
Eν(t) =

bβνhSν(t)Ih(t)
1+υν Ih(t)

− (θc + σν + µν + Cm)Eν(t)

.
Iν(t) = (θc + σν)Eν(t)− (δν + µν + Cm)Iν(t)



(3)

where a dot is representing the differentiation with respect to time.

2.1. Analysis of the Model

Exploring the basic dynamical feature of the model is a necessity. For the Dengue model,
Equation (3), which has been formulated above to be epidemiologically meaningful, it is very important
to prove that all of the states variables are non-negative all of the time (t). In other words, the solution
of the model, Equation (3), with positive initial values of data will remain positive at all times t ≥ 0.

Positivity and Boundedness of Solutions

Since the Dengue model, Equation (3), describes the interaction between the human and vector
population, it is important to state that all of the parameters and variables that are involved are
non-negative with respect to time. The Dengue model, Equation (3), will be considered in the
biologically-feasible region Ω = Ωh ×Ων ⊂ <6

+ ×<4
+, with the following:

Ωh =

{
Sh, Eh, Ih, Mh, Th, Rh ∈ <6

+ : Nh ≤
πh
µh

}
(4)

and

Ων =

{
Aν, Sν, Eν, Iν ∈ <4

+ : Nν ≤
πν

µν

}
(5)

It can be shown that the set Ω is a positively invariant set and the global attractor of this system.
This implies that any phase trajectory that is initiated anywhere in the non-negative region <10

+ of the
phase space eventually enters the feasible region Ω and remains in Ω thereafter.

Lemma 1. The region Ω =
{

Sh, Eh, Ih, Mh, Th, Rh, Aν, Sν, Eν, Iν ∈ <10
+ : Nh ≤ πh

µh
, Nν ≤ πν

µν

}
is

positively-invariant for the Dengue model, Equation (3).
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Proof. The rate of change of the human total population is given by the following [14]:

dNh
dt

= πh − µhNh − δh Ih + πmh (6)

and
dNν

dt
= πν − µνNν − Ca Aν − Cm(Sν + Eν + Iν)− δν Iν (7)

where Nh = Sh + Eh + Ih + Mh + Th + Rh and Nν = Aν + Sν + Eν + Iν.
Since dNh

dt ≤ πh − µhNh + πmh and dNν
dt ≤ πν − µνNν for a special case δh = δν = Ca = Cm = 0,

it follows that, whenever Nh(t) >
πh+πmh

µh
and Nν(t) > πν

µν
, then dNh

dt < 0 and dNν
dt < 0, respectively.

Thus, since it follows from the right-hand side of Equations (6) and (7) that dNh
dt is bounded by

πh − µh + πmh and dNν
dt is bounded by πν − µν, respectively, the standard comparison theorem [15]

can be used to show the following:

Nh(t) ≤ Nh(0) exp−µht +
πh + πmh

µh

[
1− exp−µht] if Nh(0) ≤

πh + πmh
µh

(8)

and
Nν(t) ≤ Nν(0) exp−µνt +

πν

µν

[
1− exp−µνt] if Nν(0) ≤

πν

µν
(9)

Thus, Ω is positively invariant under the flow that has been described by Equation (3), so that
no solution path leaves through any boundary of Ω. Hence, in the region Ω, the Dengue model,
Equation (3), is recognized to be mathematically and epidemiologically well-posed. Thus, it is sufficient
to consider the dynamics of the model in the domain Ω. �

2.2. Stability of the Disease-Free Equilibrium (DFE)

The Dengue disease-free equilibrium is a point at which the population is free from Dengue fever.
The disease-free equilibrium of the Dengue model, Equation (3), exists and is obtained by setting the
right-hand side of the model system to zero, this is given by the following:

ε0 =
{

S∗h , E∗h , I∗h , M∗h , T∗h , R∗h, A∗ν , S∗ν , E∗ν , I∗ν
}

=
{

πh
µh

, 0, 0, 0, 0, 0, πν
(γm+µν+Ca)

, γmπν

(γm+µν+Ca)(µν+Cm)
, 0, 0

} (10)

The linear stability of ε0 is studied using the next generation operator technique [16,17] on the
system, Equation (3). Using the notations in [17], it follows that the matrices F and V, for the new
infection terms (transmission) and the remaining transfer terms (transition), respectively, are given by
the following:

F =



0 0 0 0 0 bS∗h βhν

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 bS∗ν βνh 0 0 0 0
0 0 0 0 0 0



and V =



κ1 0 −µ1 0 0 bS∗h βhν

−σh κ2 −µ2 0 0 0
0 0 κ3 0 0 0
0 −τh 0 κ4 0 0
0 0 0 0 κ8 0
0 0 0 0 −κ9 κ10



(11)
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where
κ1 = (µh + σh), κ2 = (µh + τh + δh), κ3 = (µ1 + µ2 + µh), κ4 = (µh + γ1),
κ8 = (θc + σν + µν + Cm), κ9 = (θc + σν), and κ10 = (δν + µν + Cm).

It follows that the basic reproduction number of the model, Equation (3), denoted by R0, is given
by R0 = ρ(FV−1), where ρ is the spectral radius (maximum eigenvalues) [15,18]. Hence,

R0 =

√
b2S∗h βhνS∗ν βνhσhκ9

κ1κ2κ8κ10

So that

R0 =

√
b2S∗h βhνS∗ν βνhσh(σν + θc)

(µh + σh)(µh + τh + δh)(θc + σν + µν + Cm)(δν + µν + Cm)

Hence,
R0 =

√
RhRν (12)

where

Rh =
bS∗h βhνσh

(µh + σh)(µh + τh + δh)
(13)

and,

Rν =
bS∗ν βνh(σν + θc)

(θc + σν + µν + Cm)(δν + µν + Cm)
(14)

In Equation (13), Rh =
bS∗h βhνσh

(µh+σh)(µh+τh+δh)
describes the number of humans that just one infectious

vector infects over its expected infection period in a completely susceptible human population.
Also, σh

(µh+σh)
is the probability that a human will survive the exposed state, to become infectious,

while 1
(µh+τh+δh)

is the average duration of the infectious period of a human.

In Equation (14), Rν = bS∗ν βνh(σν+θc)
(θc+σν+µν+Cm)(δν+µν+Cm)

signifies the number of vectors that have been
infected by one infectious human during the period of infectiousness in a completely susceptible
vector population. Also, (σν+θc)

(θc+σν+µν+Cm)
is the probability that a vector will survive the exposed state

to become infectious, while 1
(δν+µν+Cm)

is the average duration of the infectious period of the vector.
Hence, using Theorem 2 in [19], the following result is established.

Lemma 2. The disease-free state ε0 of the Dengue model that has been considered is locally asymptotically stable
if R0 < 1, and unstable if R0 > 1.

Proof. The Jacobian matrix of the system, Equation (3), which was evaluated at the disease-free
equilibrium point ε0, is obtained as follows:

J(ε0) =



J11 0 0 0 0 J16 0 0 0 J1,10

0 J22 0 J24 0 0 0 0 0 J2,10

0 J32 J33 J34 0 0 0 0 0 0
0 0 0 J44 0 0 0 0 0 0
0 0 J53 0 J55 0 0 0 0 0
0 0 0 0 J65 J66 0 0 0 0
0 0 0 0 0 0 J77 0 0 0
0 0 J83 0 0 0 J87 J88 0 0
0 0 J93 0 0 0 0 0 J99 0
0 0 0 0 0 0 0 0 J10,9 J10,10


(15)
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where
J11 = −µh, J22 = −κ1, J32 = σh, J33 = −κ2, J53 = τh, J2,10 = bβhνS∗h ,
J24 = µ1, J34 = µ2, J44 = −κ3, J83 = −bβνhS∗ν , J93 = bβνhS∗ν ,
J55 = −κ4, J64 = γ1, J17 = ω, J66 = −κ5, J77 = −κ6, J87 = γm,
J88 = −κ7, J99 = −κ8, J10,9 = κ9, J10,10 = −κ10, J1,10 = −bβhνS∗h

From Equation (15), it is sufficient for us to show that all of the eigenvalues of J(ε0) are negative.
The first and eighth columns contain only the diagonal terms, which form the two negative eigenvalues,
−µh and −(µh + Cm), so that the other eight eigenvalues can be obtained from the sub-matrix J1(ε0),
which is formed by excluding the first and eighth rows and columns of J(ε0). Hence, J1(ε0) is written
as follows:

J1(ε0) =



J22 0 J24 0 0 0 0 J2,10

J32 J33 J34 0 0 0 0 0
0 0 J44 0 0 0 0 0
0 J53 0 J55 0 0 0 0
0 0 0 J65 J66 0 0 0
0 0 0 0 0 J77 0 0
0 J93 0 0 0 0 J99 0
0 0 0 0 0 0 J10,9 J10,10


(16)

In the same way, the fifth and sixth column of J1(ε0) contain only the diagonal term, which forms
negative eigenvalues,−(µh +ω) and−(γm + µν +Ca). The remaining six eigenvalues can be obtained
from the sub-matrix J2(ε0) written as follows:

J2(ε0) =



J22 0 J44 0 0 J2,10

J32 J33 J34 0 0 0
0 0 J44 0 0 0
0 J53 0 J55 0 0
0 J93 0 0 J99 0
0 0 0 0 J10,9 J10,10


(17)

Using the same approach, the fourth column and third column of J2(ε0) contains only the
diagonal term, which forms a negative eigenvalue, −(µh + γ1) and −(µ1 + µ2 + µh). The remaining
four eigenvalues can now be obtained by the characteristics equation of the sub-matrix J3(ε0) written
as follows:

J3(ε0) =


−(µh + σh) 0 0 bβhνS∗h

σh −(µh + τh + δh) 0 0
0 bβνhS∗ν −(θc + σν + µν + Cm) 0
0 0 (θc + σν) −(µν + δν + Cm)

 (18)

Hence, the eigenvalues of the matrix J3(ε0) are the roots of the characteristics equation, as follows:

(λ + µh + σh)(λ + µh + τh + δh)(λ + θc + σν + µν + Cm)

(λ + µν + δν + Cm)− b2σνβhνS∗h βνhS∗ν(θc + σν) = 0

Let
κ1 = (µh + σh), κ2 = (µh + τh + δh),
κ8 = (θc + σν + µν + Cm), κ10 = (µν + δν + Cm) and κ9 = (θc + σν)

then, the equation above becomes the following:

B4λ4 + B3λ3 + B2λ2 + B1λ + B0 = 0 (19)
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where
B4 = 1
B3 = κ1 + κ2 + κ8 + κ10

B2 = (κ1 + κ2)(κ8 + κ10) + κ1κ2 + κ8κ10

B1 = (κ1 + κ2)(κ8κ10) + (κ8 + κ10)(κ1κ2)

B0 = κ1κ2κ8κ10 − b2σνβhνS∗h βνhS∗νκ9


(20)

Further perturbation on B0 in terms of the reproduction number, R0 yields the following:

B0 = κ1κ2κ8κ10(1− R2
0) (21)

We employ the Routh–Hurwitz criterion, [19], which states that all of the roots of the polynomial,
Equation (19), have negative real parts if, and only if, the coefficients of Bi are positive and matrices
Hi > 0, for i = 0, 1, 2, 3, 4 from (20), it is easy to see that B1 > 0, B2 > 0, B3 > 0, B4 > 0, since all of the
Bi are positive. Moreover, if R0 < 0, it then follows from Equation (21) that B0 > 0. Also, the Hurwitz
matrices for the polynomial Equation (19) are found to be positive. That is, H1 = B3 > 0, H2 =∣∣∣∣∣ B3 B4

B1 B2

∣∣∣∣∣ > 0, H3 =

∣∣∣∣∣∣∣
B3 B4 B0

B1 B2 B3

0 B0 B1

∣∣∣∣∣∣∣ > 0 and H4 =

∣∣∣∣∣∣∣∣∣
B3 B4 0 0
B1 B2 B3 B4

0 B0 B1 B2

0 0 0 B0

∣∣∣∣∣∣∣∣∣ > 0. Hence, all of

the eigenvalues of the Jacobian matrix J(ε0) have negative real parts whenever R0 < 1, and the
disease-free equilibrium point is said to be locally asymptotically stable. However, if R0 > 1, we deduce
that B0 < 0, and by Descartes’ rule of signs [19,20], there exists exactly one sign change in the
sequence B4, B3, B2, B1, B0 of the coefficients of the polynomial (19). So, there is one eigenvalue
with a non-negative real part and hence, the disease-free equilibrium point is said to be unstable,
which proclaims an existence of an endemic state of equilibria. �

2.3. The Existence of Stability Equilibrium Point

More than the existence of the disease-free equilibrium point, it is important to show that the
model, Equation (3), has an endemic equilibrium point ε1. This is a positive steady solution where the
disease persists in the population.

Theorem 1. The Dengue model, Equation (3), has no endemic equilibrium when R0 < 1 and a unique endemic
equilibrium exists whenever R0 > 1.

Proof. Let ε1 =
{

S∗∗h , E∗∗h , I∗∗h , M∗∗h , T∗∗h , R∗∗h , A∗∗ν , S∗∗ν , E∗∗ν , I∗∗ν

}
be a non-trivial equilibrium of the

model, Equation (3), such that all of the components of ε1 are non-negative.
Setting the right-hand sides of the system of equations in Equation (3) to zero and solving

in terms of the associated form of infection at a steady-state for the state variables of the model
yieldsthe following:

S∗∗h =
πhκ4κ5+ωγ1τh I∗∗h

κ4κ5(bλ∗∗h +µh)
, A∗∗ν = πν

κ6
,

E∗∗h =
bλ∗∗h S∗∗h κ3+µ1πmh

κ1κ3
, S∗∗ν = πνγm

κ6(bλ∗∗ν +κ7)
,

M∗∗h = πmh
κ3

, E∗∗ν = bλ∗∗ν πνγm
κ6κ8(bλ∗∗ν +κ7)

,

T∗∗h =
τh I∗∗h

κ4
, I∗∗ν = bλ∗∗ν πνγmκ9

κ6κ8κ10(bλ∗∗ν +κ7)
,

R∗∗h =
γ1τh I∗∗h

κ4κ5
, I∗∗h =

σhbλ∗∗h S∗∗h κ3+σhµ1πmh+κ1µ2πmh
κ1κ2κ3
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Looking at the behavior of the solutions, it is not enough to stop there, but to test for the certainty
of the solution. Hence, using the two force of infection Table 1, as follows:

λ∗∗h =
βhν I∗∗ν

1 + υh I∗∗ν
and λ∗∗ν =

βνh I∗∗h
1 + υν I∗∗h

(22)

The endemic equilibria of the model, Equation (3), satisfies the following polynomial perturbing
the two forces of infection together:

P1(λ
∗∗
h )2 + P2(λ

∗∗
h )− P3 = 0 (23)

where
P1 = υνbS∗∗h κ3σh
P2 = υνσhµ1πmh + υνκ1µ2πmh + κ1κ2κ3 − b2βhνS∗∗h S∗∗ν κ9κ3σh
P3 = bβhνS∗∗ν κ9(σhµ1πmh + κ1µ2πmh)

(24)

According to the Routh–Hurwitz criterion, if we observe Equation (24), then there
exists only one sign change, thus there is only one real root that exists for the equation.
Therefore, the system, Equation (3), has a unique endemic equilibrium point of the form
ε1 =

{
S∗∗h , E∗∗h , I∗∗h , M∗∗h , T∗∗h , R∗∗h , A∗∗ν , S∗∗ν , E∗∗ν , I∗∗ν

}
, which has been presented in Equation (24),

above. �

So we claim the following:

Lemma 3. The model, Equation (3), has one positive (endemic) equilibrium whenever R0 > 1, and no positive
equilibrium (endemic) outbreak of disease at R0 < 1.

Hence, the above endemic equilibrium state analysis shows that the basic Dengue model,
Equation (3), has a global asymptotically stable disease-free equilibrium whenever R0 < 1, and
a unique endemic equilibrium if R0 > 1.

2.4. Global Asymptotic Stability of the Disease-Free Equilibrium Point

We employed the theorem by Carlos Castillo-Chavez [21] in order to investigate the global
asymptotical stability of the Dengue model, Equation (3). Re-writing the model, Equation (3),
as follows:

dX
dt = F(X, I),
dI
dt = G(X, I), G(X, I) = 0

(25)

where X = (Sh, Rh, Aν, Sν) and I = (Eh, Ih, Mh, Th, Eν, Iν), with the components of X ∈ <4 denoting
the uninfected population and the components of I ∈ <6 denoting the infected population.

The disease-free equilibrium is denoted as follows:

ε0 = (X∗, 0), X∗ =
(

πh
µh

,
πν

(γm + µν + Ca)
,

γmπν

(γm + µν + Ca)(µν + Cm)

)
(26)

The conditions (H1) and (H2), in Equation (27) below, must be satisfied in order to guarantee
a global asymptotic stability.

(H1)

For
dX
dt

= F(X, 0), X∗ is globally asymptotically stable (GAS)

(H2)
G(X, I) = AI − Ĝ(X, I), Ĝ(X, I) ≥ 0 (X, I) ∈ Ω (27)
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where A = DI G(X∗, 0) is an M-matrix (the off-diagonal elements of A are nonnegative) and Ω is the
region where the model (3) makes biological sense.

If the system, Equation (25), satisfies the condition, Equation (27), above, then the following
theorem holds:

Theorem 2. The fixed point ε0 = (X∗, 0) is a globally asymptotically stable equilibrium of system, (25) provided
that R0 < 1 and that the assumptions in (27) are satisfied.

Proof. From the Dengue model, Equation (3), we have the following:

F(X, 0) =

 πh − µhSh
πν − (γm + µν + Ca)Aν

γm Aν − (µν + Cm)Sν

 (28)

and

A =



k1 0 µ1 0 0 bβhνS∗h
σh k2 µ2 0 0 0
0 0 k3 0 0 0
0 τh 0 k4 0 0
0 bβνhS∗ν 0 0 k5 0
0 0 0 0 k7 k6


(29)

where

k1 = −(µh + σh), k2 = −(µh + τh + δh), k3 = −(µ1 + µ2 + µh), k4 = −(µh + γ1),
k5 = −(θc + σν + µν + Cm), k6 = −(δν + µν + Cm), k7 = (θc + σν)

(30)

By the condition, as follows, (H2) :

Ĝ(X, I) =



Ĝ1(X, I)
Ĝ2(X, I)
Ĝ3(X, I)
Ĝ4(X, I)
Ĝ5(X, I)
Ĝ6(X, I)


=



bβhνS∗h Iν

(
1− Sh

S∗h(1+υh Iν)

)
0
0
0

bβνhS∗ν Ih

(
1− Sν

S∗ν(1+υν Ih)

)
0


Since 0 ≤ Sh and 0 ≤ Sν, it is clear that Ĝ(X, I) ≥ 0. It is also clear that the disease-free point

X∗ =
(

πh
µh

, πν
(γm+µν+Ca)

, γmπν

(γm+µν+Ca)(µν+Cm)

)
is a GAS equilibrium of dX

dt = F(X, 0). Hence, by the above
theorem, the disease-free equilibrium ε0 = (X∗, 0) is globally asymptotically stable. �

3. Conclusions

A deterministic mathematical model of the Dengue virus with nonlinear incidence function in
a population, with a consideration of some control measures (strategies) at the aquatic and adult stages
of the vector (mosquito) Table 1, was presented and rigorously analysed. The disease-free equilibrium,
represented by (ε0), was shown to be locally asymptotically stable, whenever the reproduction
number (R0) was less than unity; additionally, the existence of the endemic equilibria state was
analysed under certain conditions. The global asymptotically stability of the model was shown by the
comparison theorem techniques, and the results showed that the disease-free equilibrium was globally
asymptotically stable whenever the reproduction number (R0) was less than unity.
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Table 1. Description of the parameters of the Dengue model, Equation (3).

Parameters Description

πh, πν Recruitment rate of humans and vector, respectively
πmh Recruitment rate of migrated population
βhν Transmission rate from host to vector
βνh Transmission rate from vector to host
b The biting rate of vector

υh The proportion of antibody produced by a human in response to the incidence of infection caused by the vector
υν The proportion of antibody produced by a vector in the response to the incidence of infection caused by the human

µh, µν The natural death rate of humans and vector, respectively
µ1, µ2 Transition rates between exposed humans and infectious humans

σh Progression rate of exposed humans to infectious class
σν Progression rate of the exposed vector to the infectious class
τh Treatment rate of the infectious individuals
ω Per capita rate of loss of immunity in humans
γ1 Recovery rate due to treatment
γm Mean aquatic transition rate

δh, δν Disease—an induced death rate of humans and vector, respectively
Ca, Cm Control effect rate

θc Extrinsic incubation rate of vector

4. Further Research

Dengue fever is a health challenge disease that remains endemic, usually in the tropical and
sub-tropical regions of the world. Hence, it is important to look into the re-occurrence of its outbreak by
considering the backward bifurcation of the model that has been considered (because of the temporary
immunity that is acquired by the recovered individuals), and the sensitivity analysis of the model,
which tells the importance of each parameter to the disease transmission in the population.
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