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Abstract: There has been considerable interest in seeking exact solutions of non-linear evolution
equations that describe important physical and biological processes. Nonetheless, it is a difficult
undertaking to determine closed form solutions of mathematical models that describe natural
phenomena. This is because of their high non-linearity and the huge number of parameters of which
they consist. In this article we determine, using the hyperbolic tangent (tanh) method, travelling
wave solutions to non-linear evolution models of interest in biology and physics. These solutions
have recognizable properties expected of other solutions and thus can be used to deduce properties
of the general solutions.
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1. Introduction

The study of non-linear partial differential equations is an important area of research in applied
mathematics, theoretical physics and engineering. There has been considerable interest in seeking exact
solutions of non-linear evolution equations that describe important physical and dynamical processes.
In the recent past, many powerful methods such as variational iteration method [1], homotopy analysis
method [2], homology pertubation techniques [3], modified tanh-coth method [4], the Jacobi elliptic
function method [5] and integral transform operators [6] have been used to obtain exact travelling
wave solutions of non-linear problems.

In some conservative systems, solutions are found by direct integration, suitable transformation
and other techniques. The original partial differential equation could also be solved with direct
methods such as Hirota’s bilinear technique [7], truncated painleve expansion [8] and direct algebraic
method [9]. More precisely, there is no single method that can be used to handle all types of non-linear
problems. A powerful and effective technique called the hyperbolic tangent (tanh) method helps in
finding exact solutions of non-linear differential equations which allows all solitary and shock wave
solutions to be obtained [10]. Moreover, the main advantage of this method is that it helps to find exact
solutions of higher non-linear evolution equations which are of fundamental importance. Further, this
technique is straightforward and only minimal algebra is required.

Most non-linear partial differential equations require powerful methods to solve for an explicit
solution. Quite recently, travelling wave solutions of complex non-linear wave equations were found
with the aid of the tanh method. The main idea of this method is to express the solution of the
non-linear differential equation as a polynomial. It is based on the homogeneous balance principle [11].

The tanh method is based on priori assumption that travelling waves can be expressed in terms
of hyperbolic functions [12]. This method was proposed for obtaining travelling wave solutions of
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non-linear waves that are essentially of a localized nature. It was later adopted to determine exact
travelling wave solutions of generalised Hirota Satsuma coupled Korteweg-de Vries (KdV) system,
the doubled Sine-Gordon equation and Schrondinger equation.

The tanh method was first presented by Malfliet [13]. Much work has been focused on the various
extensions and applications of the method in Khater etal. [14]. Huibin and Kelin [12] introduced a
power series in tanh as a possible solution and substituted this expansion directly into a higher-order
KdV equation. Wei [15] used a discrete singular convolution algorithm for the integration of the
sine-Gordon equation. Fan and Hon [16] introduced an extended tanh method where the solution
is based on a series expansion of the Riccati equation. The double sine-Gordon equation, (2 + 1)
dimensional sine-Gordon equation, and the coupled Schrodinger-KdV equation were handled by
using the generalized tanh method in [16].

It is a difficult undertaking to determine analytical solutions of several mathematical models that
describe natural phenomena. The aim of this study, therefore, is to determine analytic solutions to some
useful mathematical models in biosciences and physics using the tanh method and to demonstrate
how powerful, yet easy, the method is.

2. Preliminaries

In this section, we introduce the theory behind travelling waves and give a schematic outline of
the hyperbolic tangent method.

2.1. Travelling Wave Solutions

A travelling wave is one that advances in a particular direction, with an additional property of
retaining a fixed shape. Travelling waves are associated with having a constant velocity throughout
their propagation. Such waves are observed in many areas of science, like in combustion which may
occur as a result of chemical reaction [17]. Examples of travelling waves in nature include the impulses
found in the fibre nerves [18], the laws of conservation connecting to problems in fluid dynamics [19]
and structures present in solid mechanics are also typically modelled as standing waves [20].

The phenomena of waves is also observed in many natural reaction, convection and diffusion
processes. Studying this occurrence is a motivation to know the reason why travelling waves are
essential in mathematical analysis. To this effect, analysis of travelling waves provides a means of
finding closed form solutions of the equation. Moreover, travelling wave solutions are easier to analyse
with recognizable properties expected of other solutions and thus can be used as a tool in comparison
principles and to determine the properties of general solutions.

2.2. The Hyperbolic Tangent Method (Tanh Method)

We now present a schematic outline to determine the main features of the technique and
demonstrate the method using some examples. The reader may as well refer to [14,21–23] for the
method description. The following are the steps taken in using the tanh method:

1. Suppose one needs to determine solitary wave solutions to a non-linear partial differential
equation of the form

Ut = F(U, Uxx, Uxxx, · · · ) or Utt = F(U, UxUxx, Uxxx, · · · ). (1)

The solution to Equation (1) is proposed to be a polynomial

F(Y) =
N

∑
n=0

anYn. (2)

A travelling wave solution requires the coordinates: z = k(x− ct) and u(x, t) = U(z), where U(z)
represents the, localized, wave solution which travels with a velocity c and wave number k.
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Without loss of generality, we define k > 0. Consequently, the PDEs are transformed into ODEs.
That is, for example the first and second order, partial derivatives with respect to time and
space become

∂u
∂t = −kc dU

dz , ∂u2

∂t2 = k2c2 d2U
dz2 ,

∂u
∂x = k dU

dz , ∂2u
∂x2 = k2k2 d2U

dz2 .

 (3)

2. The central step is the introduction of Y = tanh z as a new independent variable and the
corresponding derivatives are then changed as follows:

Y′ = sech2 z = 1− tanh2 z = 1−Y2 (4)

dF(Y)
dz

= (1− tanh2 z)
dF(Y)

dY
= (1−Y2)

dF(Y)
dY

. (5)

d2F(Y)
dz2 = (1−Y2)

d
dY

(
(1−Y2)

dF(Y)
dY

)
. (6)

d3F(Y)
dz3 = (1−Y2)

d
dY

[
(1−Y2)

d
dY

(
(1−Y2)

dF(Y)
dY

)]
. (7)

Next, the degree of the polynomial (2) is determined by equating every two possible highest
exponents in the equation to get a linear system for N and then that system is solved rejecting any
solution N which is not a positive integer.

3. Determining the degree of the polynomial and coefficients an, n = 0, 1, 2, · · ·N. Solving the
non-linear system is the most involving step. So the following assumptions are made:

(i) All parameters in the problem are considered strictly positive. If some parameters are zero,
we must calculate N again because the polynomial might have changed.

(ii) The coefficient of the highest power of Y term must be non-zero
(iii) The wave number k is assumed to be positive.

4. Substitute the solutions for the coefficients and parameters into the original equation.

For clarity, let us look at some examples:

1. Korteweg-de Vries (KdV) equation

The KdV equation is one of the most famous non-linear partial differential equations. It was
derived in fluid mechanics to describe shallow water waves in a rectangular channel. The equation
is of the form:

∂U
∂t

+ U
∂U
∂x

+ b
∂3U
∂x3 = 0. (8)

By setting z = k(x− ct), the partial derivatives of Equation (8) are transformed into

∂U
∂t = −kc dU

dz , ∂U
∂x = k dU

dz
∂2U
∂x2 = ∂

∂x (
k∂U
∂z ) = k2 d2U

dz2 , ∂3U
∂x3 = k3 d3U

dz3

}
(9)

Substituting each term in Equation (9) into Equation (8) one obtains

−kc
dU
dz

+ kU
dU
dz

+ bk3 d3U
dz3 = 0. (10)

Next, we introduce Y = tanh z and as previously derived, one obtains



Math. Comput. Appl. 2018, 23, 35 4 of 14

−kc(1−Y2)
dF(Y)

dY
+ kF(Y)(1−Y2)

dF(Y)
dY

+bk3(1−Y2)
d

dY

[
(1−Y2)

d
dY

(
(1−Y2)

dF(Y)
dY

)]
= 0 (11)

where U = F(Y) = ∑N
n=0 anYn. The next step is to substitute the derivative of the polynomial

F(Y) into Equation (11) and find the highest power of Y in each term.

F(Y) =
N

∑
n=0

anYn

dF(Y)
dY

=
N

∑
n=0

nanYn−1.

For the first term in Equation (11), we have

−kc(1−Y2)
dF(Y)

dY
= −kc(1−Y2)

(
∑ nanYn−1

)
= −kc ∑ nanYn−1 + kc ∑ nanYn+1.

The highest power of Y in the first term is YN+1. For the second term in Equation (11), we have

kF(Y)(1−Y2)
dF(Y)

dY
= k

(
∑ anYn) (1−Y2)

(
∑ anYn−1

)
= k

(
∑ ∑ na2

nY2n−1 −∑ ∑ na2
nY2n+1

)
.

The highest power of Y in the second term is Y2N+1. For the third term in (11), we start from the
inner, right, derivative to the outer, left, derivative such that

(1−Y2)
dF(Y)

dY
= (1−Y2)

(
∑ nanYn−1

)
.

d
dY

(
(1−Y2)

dF(Y)
dY

)
=
[
∑ n(n− 1)anYn−1 −∑ n(n + 1)anYn

]
.

(1−Y2)
d

dY

(
(1−Y2)

dF(Y)
dY

)
= ∑ n(n− 1)anYn−2 −∑ n(n− 1)anYn −∑ n(n + 1)anYn + ∑ n(n + 1)anYn+2.

d
dY

[
(1−Y2)

d
dY

(
(1−Y2)

dF(Y)
dY

)]
= ∑ n(n− 2)(n− 1)anYn−3 −∑ n(n)(n− 1)anYn−1 −∑ n(n)(n + 1)anYn−1

+ ∑ n(n + 2)(n + 1)anYn+1.

Therefore

(1−Y2)
d

dY

[
(1−Y2)

d
dY

(
(1−Y2)

dF(Y)
dY

)]
= (1−Y2)[∑ n(n− 2)(n− 1)anYn−3 −∑ n(n)(n− 1)anYn−1 −∑ n(n)(n + 1)anYn−1

+ ∑ n(n + 2)(n + 1)anYn+1]

= ∑ n(n− 2)(n− 1)anYn−3 −∑ n(n− 2)(n− 1)anYn−1 −∑ n(n)(n− 1)anYn−1

+ ∑ n(n)(n− 1)anYn+1 −∑ n(n)(n + 1)anYn−1 + ∑ n(n)(n + 1)anYn+2

+ ∑ n(n + 2)(n + 1)anYn+1 −∑ n(n + 2)(n + 1)anYn+3.
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We can notice that the highest power of Y in the third term is YN+3. Taking the highest possible
exponent of Y, we have Y2N+1 = YN+3 implying that 2N + 1 = N + 3. Thus N = 2. The solution,
F(Y) = ∑2

n=0 anYn, is therefore of the form F(Y) = a0 + a1Y + a2Y2. Substituting this solution
into Equation (11), one obtains F(Y) = a0 + a2Y2 where a0 = 8bk2 and a2 = −12bk2. The values
of k and c are arbitrary. We can convince ourselves that

F(Y) = 8bk2 − 12bk2Y2 = 4bk2(2− 3 tanh z),

U(x, t) = 4bk2(2− 3 tanh2 [k(x− ct)]
)
.

2. Burgers equation

∂U
∂t

+ U
∂U
∂x
− a

∂2U
∂x2 = 0 (12)

The Burgers equation is another famous non-linear PDE used in modelling various phenomena
in applied mathematics. The positive parameter a is a diffusion constant which represents the
dissipative effect of U. In order to determine closed form solutions of Burgers equation, the same
schematic outline in the previous example is followed. Firstly, Equation (12) is transformed into

−kc
dU
dz

+ kU
dU
dz
− ak2 d2U

dz2 = 0. (13)

Introducing Y = tanh z and U := F(Y) = ∑N
n=0 anYN yields

−kc(1−Y2)
dF(Y)

dY
+ kF(Y)(1−Y2)

dF(Y)
dY

−ak2(1−Y2)
d

dY

[
(1−Y2)

d
dY

(
(1−Y2)

dF(Y)
dY

)]
= 0. (14)

After substituting the derivatives of the polynomial F(Y) into (14) and balancing the highest
powers of Y, we arrive at Y2N+1 in the second term and third term YN+2. Hence 2N + 1 = N + 2
and therefore in this example N = 1. Hence the polynomial solution takes the form

F(Y) = a0 + a1Y. (15)

Substituting Equation (15) into (14), the solution obtained is F(Y) = a0 − 2akY where
a0 = r15, a1 = r16, k = − r16

2 a . The constants r15 and r16 remain arbitrary and the values are
greater than zero. Lastly, we need to find the value of a0 and require that the solution vanishes for
z −→ ∞ as Y −→ 1. So we let F(Y) = 0 such that a0 = 2ak since Y −→ 1. Thus

F(Y) = 2ak− 2akY = 2ak(1−Y)

U(x, t) = 2ak [1− tanh k(x− ct)] .

This is a well known shock wave solution for burgers equation [22].

In the next section, we further demonstrate how to use the tanh method in determining solutions
to even complex evolution mathematical models, thus highlighting how useful and powerful the
method is.

3. Travelling Wave Solutions to Selected Models

In this section we determine closed form solutions to selected, mathematical models in the
literature using the tanh method. We as well, for some of the models, prove the existence of travelling
wave solutions. We consider the following models:
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1. FitzHungh-Nagumo equation [24];
2. Korteweg-de Vries-burgers equation [12,23];
3. Melanoma model [25];
4. Microbial growth model [26];
5. Tumour-immune interaction model [27].

3.1. FitzHungh-Nagumo Equation

The FitzHungh-Nagumo equation is a common approximation to describe nerve fibre propagation.
The model is of the form

∂U
∂t
− ∂2U

∂x2 + U(1−U)(a−U) = 0, (16)

where a is a real constant. If a = −1, one gets the real Newell-Whitehead equation describing the
dynamical behaviour near the bifurcation point for the Rayleigh-Benard convection of binary fluid
mixtures [9]. We will firstly transform Equation (16) into a system of order differential equations and
prove the existence of travelling wave solutions by analysing the system’s phase space.

Lemma 1. By transforming the system (16) into a system of first order ODES and using phase space analysis,
the minimum wave speed of invasion for the FitzHungh-Nagumo equation is:

cmin =
2
√

a
k

. (17)

Proof. Equation (16) is transformed to an ODE by letting z = k(x− ct) thus obtaining

k2 d2U
dz2 = −kc

dU
dz

+ U(1−U)(a−U). (18)

Equation (18) is then transformed into a system of autonomous ODEs by letting

dU
dz = V such that

k2 dV
dz = −kcV + U(1−U)(a−U).

}
(19)

The equilibrium points, U, V of the system (19) are (0, 0), (1, 0) and (a, 0). The Jacobian matrix of the
system (19) is

J(U, V) =

(
0 1

3U2 − 2(1− a)U + a −kc

)
. (20)

The Jacobian matrices at the points (0, 0),(1, 0) and (a, 0) respectively are

J(0, 0) =

(
0 1
a −kc

)
. (21)

J(1, 0) =

(
0 1

3a + 1 −kc

)
. (22)

J(a, 0) =

(
0 1

5a2 − a −kc

)
. (23)

The eigenvalues at J(0, 0) are

λ(0,0) =
−kc±

√
k2c2 − 4a
2

. (24)
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The eigenvalues at J(1, 0) are

λ(1,0) =
−kc±

√
k2c2 + 12a + 4

2
(25)

and those at J(a, 0) are

λ(a,0) =
−kc±

√
k2c2 + 20a2 − 4a

2
. (26)

A travelling wave solution would be the heteroclinic connection joining the point (0, 0) to (1, 0)
or (a, 0). It therefore means that the solution leaving the equilibrium point (0, 0) must not oscillate
around it implying that the eigenvalues of J(0, 0) must not be complex. Imposing this condition
implies that k2c2 − 4a > 0 which means that the minimum wave speed cmin = 2

√
a

k . This implies that
the FitzHungh-Nagumo equation exhibits travelling wave solutions for c ≥ cmin.

We now proceed to determine the travelling wave solutions. Introducing Y = tanh z and U :=
F(Y) = ∑N

n=0 anYN , one obtains

− kc(1−Y2)
dF(Y)

dY
− k2(1−Y2)

d
dY

[
(1−Y2)

dF(Y)
dY

]
+ F(Y)(1− F(Y))(a− F(Y)) = 0. (27)

After substituting the derivatives of the polynomial F(Y) into (27) and balancing the highest powers of
Y, we arrive at YN+2 in the second term and the third term Y3N from (27), 3N = N + 2 and therefore in
this example N = 1. The polynomial, thus, takes the form F(Y) = a0 + a1Y and the solution obtained
is F(Y) = 1

2 −
1
2 Y where a0 = 1

2 , a1 = − 1
2 , k = 1

2
√

2
, c = 2a−1√

2
.

The closed form solution of the Fitzhugh-Nagumo equation is thus given by:

U(x, t) =
1
2

[
1− tanh

(
x√
2
− 2a− 1√

2
t
)]

.

3.2. Korteweg-de Vries-Burgers Equation

∂U
∂t

+ U
∂U
∂x

+ b
∂3U
∂x3 − a

∂2U
∂x2 = 0 (28)

This equation is familiar in fluid mechanics. It describes shallow water waves in an elastic tube with
dissipation. To determine a closed form solution of this equation, like with all the other examples, we
let z = k(x− ct) such that (28) is transformed to

−kc
dU
dz

+ Uk
dU
dz

+ b
d3U
dz3 − a

d2U
dz2 = 0. (29)

By following the same procedure as in Section 3.1 we obtain a limiting speed cmin = a2

4bc .
Substituting Y = tanh z and U := F(Y) = ∑N

n=0 anYN into Equation (29) yields

− kc(1−Y2)
dF(Y)

dY
+ F(Y)k(1−Y)(1−Y2)

dF(Y)
dY

+ bk3(1−Y2)
d

dY

[
(1−Y2)

d
dY

[
(1−Y2)

dF(Y)
dY

]]
− a(1−Y2)

d
dY

[
(1−Y2)

dF(Y)
dY

]
= 0. (30)
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Substituting the derivatives of the polynomial F(Y) into (30) and balancing the highest powers of Y, we
get Y2N+1 in the second term and third term YN+3 such that N = 2. The solution is determined to be

F(Y) = 36k2b(1−Y)
(

1 +
1
3

Y
)

(31)

where a0 = 36 r2
27r28, a1 = 12 r2

27r28, k = r27, c = 24 r2
27r28, a = 10 r3

27r28, b = r28. The coefficients r27

and r28 remain arbitrary and the values are greater than zero. We require that the solution vanishes for
z −→ ∞ as Y −→ 1 because F(Y) = (1−Y)m ∑N−m

n=0 anYN due to the boundary condition. We take the
case m = 1 to get this solution but N remains the way we had it earlier. Therefore

F(Y) = 36k2b(1−Y)
(

1 +
1
3

Y
)

with c = 24bk2.

Thus

F(Y) = 36k2b
[

1− tanh z
(

1 +
1
3

tanh z
)]

U(x, t) = 36k2b
[

1− tanh k(x− ct)
(

1 +
1
3

tanh k(x− ct)
)]

.

This represents a particular combination of a solitary wave in the first term with Burgers shock wave
in the second term.

3.3. Melanoma Model

We determine closed form solutions for a melanoma growth model originally presented in [25].
The model describes haptotatic cell invasion by a skin cancer type known as melanoma. The model,
in dimensionless form, is derived as:

∂E
∂t

= −E2U (32)

∂U
∂t

= U(1−U)− ∂

∂x

(
U

∂E
∂x

)
(33)

with boundary conditions

lim
x→−∞

E(t, x) = 0, lim
x→∞

E(t, x) = Ẽ, lim
x→−∞

U(t, x) = 1, lim
x→∞

U(t, x) = 0

and x ∈ R, t ∈ R+. Here E(t, x) represents the extracellular matrix concentration and U(t, x) is
the invasive tumor population. It is important to note that we ignore the Protease density as it is
assumed to be constant. By letting z = k(x − ct), Y = tanh z, E(Y) = F1(Y) = ∑N

n=0 anYN and
U(Y) = F2(Y) = ∑N

n=0 bnYN , the model Equation (32) are transformed to

−kc(1−Y2)
dF1(Y)

dY
=

F2
1 (Y)F2(Y)

kc

−kc(1−Y2)
dF2(Y)

dY
= F2(1− F2(y))− k2c2(1−Y2)2 dF1(Y)

dY
dF2(Y)

dY

− k2F2(Y)(1−Y2)

[
d

dY

[
(1−Y2)

dF1(Y)
dY

]]
.

(34)

Following the procedure as in the previous examples, the travelling wave solution permitted
by (32) are given by

U(t, x) =
1
2
− 1

2
tanh

[
k
(

x− 1
2k

t
)]

, E(t, x) = 0



Math. Comput. Appl. 2018, 23, 35 9 of 14

where k is arbitrary.

3.4. Microbial Growth Model

∂S
∂t

= ρ
∂2S
∂x2 − α

∂S
∂x
− f (S)P

∂P
∂t

= d
∂2P
∂x2 − α

∂P
∂x

+ [ f (S)− K]P (35)

The model (35) with α = 0 was introduced in [28] to study a population model with diffusion. This
is a model for microbial growth in a flow reactor. This system with α = 0 and f (S) = S, is a simple
diffusive epidemic model in which S and P represents the densities of susceptible and infective
population. For α = 0 and K = 0, Equation (35) also serves as a model for single-stage reaction of first
order combustion [29]. Quite recently, this model was derived in [26] to study a single population
microbial growth for limiting nutrient in a flow reactor. We use the hyperbolic tangent method to
determine closed form solutions to the model Equation (35).

We transform the PDEs in (35) to ODEs in Equation (36) by letting z = k(x− ct).

kc dS
dz + ρk2 d2S

dz2 − αk dS
dz − SP = 0

kc dP
dz + dk2 d2P

dz2 − αk dP
dz + [S− K]P = 0.

 (36)

By following the same procedure as in Section 3.1, one obtains a limiting speed cmin given by

cmin =
2
√

Kdk
k2 − αk2. (37)

We thus deduce that travelling wave solutions to the model Equation (35) only exist for c ≥ cmin.
Next, we introduce Y = tanh z and Equation (36) is transformed into

kc(1−Y2) dF1(Y)
dY + ρk2(1−Y2) d2F1(Y2)

dY − αk(1−Y2) dF1(Y)
dY − F1(Y)F2(Y) = 0

kc(1−Y2) dF2(Y)
dY + dk2(1−Y2) d2F2(Y)

dY2 − αk(1−Y2) dF2(Y)
dY − [F1(Y)− K]F2(Y) = 0

 (38)

where F1(Y) = ∑N
n=0 anYn and F2(Y) = ∑N

n=0 bnYn. By substituting the derivatives of the polynomials
F1(Y) and F2(Y) in (38), finding the highest power of Y in each term of the system and balancing the
highest powers of Y. We arrive at YN+2 in the second term and the forth term Y2N . Hence N + 2 = 2N
and therefore in this example N = 2.

One thus obtains the flowing solutions

S(x, t) = a0 + a1 tan k(x− ct) + a2 tanh2 k(x− ct) and P(x, t) = b0 + b2 tanh2 k(x− ct)

where

a0 = −
K
(
(3d− 2)2 − ρ2)

ρ2 , a1 =
3K(3d− 2)

ρ
, a2 =

3K(3d− 2)2

ρ2

b0 =
3K(3d− 2)2

(dρ2)
, b2 = −3K(3d− 2)2

(dρ2)
with

c =

√(
α2 − 9d2K

18d3

)
and k =

√
K
2d

.
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These solutions represent shock waves observed in reaction-diffusion equations. Next, we determine
travelling wave solutions to an even more complicated model for tumour-immune growth.

3.5. Tumour-Immune Interaction Model

Malinzi and Amima [27] analysed a moving boundary problem to investigate cancer dormancy.
In one dimension, and with a constant radius, a simplified form of the model takes the form

∂X
∂t

= ψx
∂2X
∂r2 − βX

∂2U
∂r2 − β

∂X
∂r

∂U
∂r

+ α1X(1− α2X) +
f XY

η + Y
− φ1XY,

∂Y
∂t

= ψy
∂2Y
∂r2 + β1Y(1− β2Y)− φ2XY,

∂U
∂t

= ψu
∂2Y
∂r2 + φ3XY− d1U.

(39)

By letting z = k(r− ct), the model Equation (39) is transformed to

kc
dX
dz

+ ψxk2 d2X
dz2 − βk2

(
X

d2U
dz2 +

dU
dz

dX
dz

)
+ ϕ1X(1− ϕ2X) +

δXY
γ + Y

− ν1XY = 0,

kc
dY
dz

+ ψyk2 d2Y
dz2 + σ1Y(1− σ2Y)− ν2XY = 0,

kc
dU
dz

+ ψuk2 d2U
dz2 + ν3XY− µ1U = 0

(40)

with boundary conditions:

lim
t→−∞

(X, Y, U) = X0 and lim
t→−∞

(X, Y, U) = X1

where X0 = (0, 0, 0) or X0 = (1/ϕ2, 0, 0) and X1 := (X∗, Y∗, U∗) is the tumour endemic state.

Lemma 2. By transforming the system (40) into a system of first order differential equations and using phase
space analysis, the minimum wave speeds of invasion for the tumour and immune travelling wave fronts,
respectively, are:

cy
min =

2
k2

√
σ1ψy and cx

min = 2
√

ϕ1ψx. (41)

Proof. Equation (40) are transformed into first order differential equations by letting y1 = dX/dz,
y2 = dY/dz, y3 = dU/dz to get

dy1

dt
=

1
k2ψx

(
βk2(Xy3 + y1y3)− kcy1 − ϕ1X(1− ϕ2X)− δXY

γ + Y
+ ν1XY

)
,

dX
dt

= x1,

dy2

dt
=

1
k2ψy

(
− kcy2 − σ1y(1− σ2) + ν2XY)

)
,

dy
dt

= y2,

dy3

dt
=

1
k2ψu

(
− kcy3 − ν3XY + µ1U

)
,

du
dz

= y3.

(42)
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The travelling wave solutions are trajectories connecting equilibrium X0 to X1. Just as discussed before,
the solution leaving X0 is therefore not required to oscillate, that is, the eigenvalues of the Jacobian
matrix of (42) evaluated at X0 must not have complex roots.

J(X0) =



c
(−ψx)k

ψ1
(−ψx)k2 0 0 0 0

1 0 0 0 0 0

0 0 − k3c
ψy
− k2σ1

ψy
0 0

0 0 1 0 0 0

0 0 0 0 − k3c
ψu

k2µ1
ψu

0 0 0 0 1 0


. (43)

The eigenvalues are:

−
k3c +

√
k4c2 − 4 ψyσ1k

2 ψy
,−

k3c−
√

k4c2 − 4 ψyσ1k

2 ψy
,

c−
√
−4 ψ1ψx + c2

2 2ψx
,

c +
√
−4 ψ1ψx + c2

2 2ψx
,− k3c +

√
k4c2 + 4 µ1ψuk
2 ψu

,− k3c−
√

k4c2 + 4 µ1ψuk
2 ψu

.

(44)

The conditions √
k4c2 − 4 ψyσ1k and

√
−4 ψ1ψx + c2 (45)

must determine the minimum wave speeds since all the other eigenvalues are real except for those
with these terms. That is k4c2 − 4 ψyσ1 ≥ 0 and −4 ψ1ψx + c2 ≥ 0 which gives

cy
min =

2
k2

√
σ1ψy and cx

min = 2
√

ϕ1ψx.

To determine the closed form solutions, we introduce the transformation W = tanh (z) and let
the solutions take the following forms

X(W) = F1(W) = (1−W)p1(1 + W)q1

N−p1−q1

∑
i=0

aiWn,

Y(W) = F2(W) = (1−W)p2(1 + W)q2

N−p2−q2

∑
i=0

biWn,

U(W) = F3(W) = (1−W)p3(1 + W)q3

N−p3−q3

∑
i=0

ciWn,

(46)

where p1( 6= 0) + q1( 6= 0) = 2, · · · , N, p2( 6= 0) + q2( 6= 0) = 2, · · · , N, p3( 6= 0) + q3( 6= 0) = 2, · · · , N.
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Equation (40) become

kc(1−W2)
dF1

dW
+ ψxk2(1−W2)

d
dW

(
(1−W2)

dF1

dW

)
−βk2F1(W)(1−W2)

d
dW

(
(1−W2)

dF3

dW

)
− β

(
k2c2(1−W2)2 dF1

dW
dF3

dW
)

+ϕ1F1(W)(1− ϕ2F1(W)) +
δF1(W)F2(W)

γ + F2(W)
− ν1F1(W)F2(W) = 0,

kc(1−W2)
dF2

dW
+ ψyk2(1−W2)

d
dW

(
(1−W2)

dF2

dW

)
+σ1F2(W)(1− σ2F2(W))− ν2F1(W)F2(W) = 0,

kc(1−W2)
dF3

dW
+ ψuk2(1−W2)

d
dW

(
(1−W2)

dF3

dW

)
+ F1(w)F2(W)− µ1F3(W) = 0.

(47)

The substitution of Fi(W) in Equation (47) yields pi = qi = 1, i = 1, 2, that is,

F1(W) = a0(1−W)2, F2(W) = b0(1−W)2, F3(W) = c0(1−W)2. (48)

The following results are obtained after substituting (48) into (47):
Either

a0 =
1

4ϕ2
, b0 = 0, c =

1
2
√

6

√
ϕ1

ψx
, c =

5√
6

√
ϕ1ψx, c0 = 0 (49)

or

a0 = 0, b0 =
1

4σ2
, k =

1
2
√

6

√
σ1

ψy
, c =

5√
6

√
σ1ψy, c0 = 0. (50)

The result in (49) would imply immune cells attacking tumour cells with a wave front

X(t, r) =
1

4ϕ2

(
1− tanh (k(r− ct))

)2

, where k =
1

2
√

6

√
ϕ1

ψx
and c =

5√
6

√
ϕ1ψx

and that in (50) would imply that tumour cells attack immune cells with a wave front

Y(t, r) =
1

4σ2

(
1− tanh (k(r− ct))

)2

, where k =
1

2
√

6

√
σ1

ψy
and c =

5√
6

√
σ1ψy.

Both the travelling wave solutions in Equations (49) and (50) and the minimum wave speeds
in Equation (41) are characterized by the cell carrying capacities, diffusion constants. Malinzi and
Amima [27] note that these results imply that the cell invasion dynamics are mainly driven by their
motion and growth rates. Thus, treatment options should strive to improve immune recognition of
tumour cells, reduce the intrinsic growth rate of tumour cells and increase that for immune cells.

4. Conclusions

Most non-linear partial differential equations require powerful tools to determine exact solutions.
Recently, travelling wave solutions of complex non-linear equations have been determined using the
tanh method [14,21–23,30]. We have demonstrated how effective the tanh method is in determining
closed form solutions to even highly non-linear evolution models; that is, melanoma model [25],
microbial growth model [26] and a tumour-immune interaction model [27]. By elaborating all the steps
involved, we further demonstrated how straightforward and concise the method is in comparison to
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other existing techniques. A possible extension of this work is to compare the solutions generated here
using the tanh method with those generated by other methods in the literature.
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