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Abstract:



In this paper, we study the existence of solutions for a new class of boundary value problems of non-linear fractional integro-differential equations. The existence result is obtained with the aid of Schauder type fixed point theorem while the uniqueness of solution is established by means of contraction mapping principle. Then, we present some examples to illustrate our results.
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1. Introduction


Fractional differential equations arise in many engineering and scientific disciplines such as physics, aerodynamics, polymer rheology, regular variations in thermodynamics, biophysics, blood flow phenomena, electrical circuits, biology, etc. In fact, the tools of fractional calculus have considerably improved the mathematical modeling of many real world problems. For theoretical development and applications of the subject, we refer the reader to [1,2,3,4,5,6,7,8,9,10,11] and the references cited therein.



The nonlocal boundary conditions are important in describing some peculiarities happening inside the domain of physical, chemical or other processes [12], while the integral boundary conditions provide the means to assume an arbitrary shaped cross-section of blood vessels in computational fluid dynamics (CFD) studies of blood flow problems [13,14].



Non-local boundary value problems of nonlinear fractional order differential equations have recently been investigated by several researchers. The domain of study ranges from the theoretical aspects to the analytic and numerical methods for fractional differential equations.



Agarwal et al. [4] discussed the existence of solutions for a boundary value problem of integro-differential equations of fractional order


[image: ]








with non-local three-point boundary conditions [image: ], where [image: ].



Motivated by the works mentioned, in this paper, we investigate the existence and uniqueness of solutions for the non-linear fractional integro-differential equation


[image: ]



(1)




with non-local boundary conditions


[image: ]



(2)




where [image: ] denote the Caputo fractional derivative of order p and q respectively, [image: ] is a given continuous function, [image: ] are real constants, [image: ], [image: ], [image: ], [image: ], [image: ] and [image: ].



These boundary conditions are interesting and important from a physical point.



The rest of paper is arranged as follows: In Section 2 we recall some basic definitions of fractional calculus and present an auxiliary lemma. Section 3 contains main existence and uniqueness results. We also present some examples to to illustrate our results.




2. Preliminaries


First of all, we recall some basic definitions of fractional calculus [7].



Definition 1.

For a function [image: ], the Caputo derivative of fractional order p is defined as


[image: ]








where [image: ] denotes the integer part of real number p and [image: ] is the gamma function, which is defined by [image: ].





Definition 2.

The Riemann-Liouvill fractional integral of order p is defined as


[image: ]








provided the integral exists.





Now, we present an auxiliary lemma which plays a key role in the sequel.



Lemma 1.

Let [image: ] and [image: ]. Then the unique solution of the boundary value problem [image: ] with boundary conditions [image: ] and [image: ] is given by


[image: ]








where [image: ], [image: ] and [image: ].





Proof. 

It is well known [7] that the general solution of the equation [image: ] is given by


[image: ]



(3)




where [image: ] are arbitrary constants. By using the boundary conditions, we get


[image: ]








and


[image: ]








Substituting the values of [image: ] in (3), completes the proof. ☐






3. The Main Results


For [image: ], let [image: ] denote the Banach space of all continuous functions defined on [image: ] into [image: ] endowed with the norm [image: ].



Using Lemma 1, we define an operator [image: ] associated with the problem (1)–(2) as


[image: ]



(4)




Observe that the problem (1)–(2) has solutions if and only if the operator T has fixed points.



Theorem 1 ([15]).

Let X be a Banach space. Assume that [image: ] is a completely continuous operator and the set [image: ] is bounded. Then T has a fixed point in X.





Theorem 2.

Assume that there exists [image: ] such that [image: ] for [image: ] with [image: ]. Then the problem (1)–(2) has at least one solution on [image: ].





Proof. 

As a first step, we show that the operator T is completely continuous. Let [image: ] be a bounded set. Then for each [image: ], we get


[image: ]








on the taking the norm for [image: ], we obtain


[image: ]








We set [image: ]. In a similar manner, we find that


[image: ]








Put [image: ]



Next, for each [image: ] and [image: ], we have


[image: ]








Hence


[image: ]








In a similar manner, we get


[image: ]








The functions [image: ] are uniformaly continuous on [image: ] since [image: ]. Therefore, by Arzela-Ascoli Theorem, the sets [image: ] and [image: ] are relatively compact in [image: ]. Thus, we deduce that [image: ] is a relatively compact subset of [image: ].



Now, we consider the set


[image: ]








and show that it is bounded. Let [image: ], then [image: ]. For any [image: ], it implies from [image: ] that


[image: ]








This shows that the set B is bounded. Thus, by Theorem 1, we conclude that the operator T has at least one fixed point. Consequently , the problem (1)–(2) has at least one solution on [image: ]. ☐





Now, we establish the uniqueness of solutions for problem (1)–(2) by means of classical contraction mapping principle.



Theorem 3.

Assume that [image: ] is a continuous function satisfying the condition


[image: ]








with [image: ], where [image: ]. Then, the problem (1)–(2) has a unique solution on [image: ].





Proof. 

First, we show that [image: ], where T is the operator defined by (4), [image: ] with [image: ], where [image: ]. For [image: ], we have


[image: ]











Hence,


[image: ]











Similarly, we obtain


[image: ]








Therefore, we get that [image: ] implies that [image: ]. Moreover, for [image: ] and for any [image: ], we have


[image: ]








Analogously, we can obtain


[image: ]








Therefore, with the condition [image: ], we deduce that the operator T is a contraction. Hence, it follows Banach’s fixed point theorem that the problem (1)–(2) has a unique solution on [image: ]. ☐





Example 1.

Consider the following fractional boundary value problem given by


[image: ]



(5)




where [image: ], and


[image: ]








Clearly [image: ] with [image: ]. Hence, by Theorem 2, the problem (5) has at least one solution on [image: ].





Example 2.

Consider the following fractional boundary value problem given by


[image: ]



(6)




Here [image: ], and


[image: ]








Using the given values of the parameters, we obtain [image: ] and [image: ]. It is easy to see that


[image: ]








We have [image: ] and [image: ]. Therefore, by Theorem 3 we deduce that the problem (6) has a unique solution on [image: ].






4. Conclusions


In this paper, we have obtained some existence results for a non-linear fractional integro-differential problem with non-local boundary conditions by means of Schauder type fixed point theorem and contraction mapping principle. Our results are not only new in the given configuration but also correspond to some new situations associated with the specific values of the parameters involved in the given problem.







Author Contributions


Both authors contributed to each part of this study equally and read and approved the final version of the manuscript.




Conflicts of Interest


The authors declare no conflict of interest.




References


	1. 
Ahmad, B.; Nieto, J.J. A class of differential equations of fractional order with multi-point boundary conditions. Georgian Math. J. 2014, 21, 243–248. [Google Scholar] [CrossRef]

	2. 
Ahmad, B.; Nieto, J.J. Anti-priodic fractional boundary value problems. Comput. Math. Appl. 2011, 62, 1150–1156. [Google Scholar] [CrossRef]

	3. 
Agarwal, R.P.; Ahmad, B. Existence theory for anti-priodic boundary value problems of fractional differential equations and inclusions. J. Appl. Math. Comput. 2011, 62, 1200–1414. [Google Scholar] [CrossRef]

	4. 
Agarwal, R.P.; Ntouyas, S.K.; Ahmad, B.; Alhothuali, M.S. Existence of solutions for integro-differential equations of fractional order with non-local three-point fractional boundary conditions. Adv. Differ. Eq. 2013, 2013, 128. [Google Scholar] [CrossRef]

	5. 
Goodrich, C. Existence and uniqueness of solutions to a fractional difference equation with non-local conditions. Comput. Math. Appl. 2011, 61, 191–202. [Google Scholar] [CrossRef]

	6. 
Henderson, J.; Luca, R.; Tudorache, A. On a system of fractional equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 2015, 18, 361–386. [Google Scholar] [CrossRef]

	7. 
Kilbas, A.A.; Sirvastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]

	8. 
Magin, R.L. Fractional Calculus in Bioengineering; Begal House Publishers Inc.: Danbury, CT, USA, 2006. [Google Scholar]

	9. 
Liu, X.; Liu, Z.; Fu, X. Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 2014, 409, 446–458. [Google Scholar] [CrossRef]

	10. 
Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]

	11. 
Sirvastava, H.M.; Harjule, P.; Jain, R. A general fractional differential equation associated with an integral operator with the H-function in the kernel. Rus. J. Math. Phys. 2015, 22, 112–126. [Google Scholar] [CrossRef]

	12. 
Bitsadze, A.; Samarskii, A. On some simple generalizations of linear elliptic boundary problems. Sov. Math. Dokl. 1969, 10, 398–400. [Google Scholar]

	13. 
Ahmad, B.; Alsaedi, A.; Alghamdi, B.S. Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Anal. Real World Appl. 2008, 9, 1727–1740. [Google Scholar] [CrossRef]

	14. 
Ciegis, R.; Bugajev, A. Numerical approximation of one model of the bacterial self-organization. Nonlinear Anal. Model. Control 2012, 17, 253–270. [Google Scholar]

	15. 
Samet, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]







© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  mca-23-00036


  
    		
      mca-23-00036
    


  




  





media/file0.png





