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Abstract: We propose numerical algorithms which can be integrated with modern computer algebra
systems in a way that is easily implemented to approximate the sine and cosine functions with an
arbitrary accuracy. Our approach is based on Taylor’s expansion about a point having a form of kp,
k ∈ Z and p = π/2, and being chosen such that it is closest to the argument. A full error analysis,
which takes advantage of current computer algebra systems in approximating π with a very high
accuracy, of our proposed methods is provided. A numerical integration application is performed to
demonstrate the use of algorithms. Numerical and graphical results are implemented by MAPLE.

Keywords: approximation; approximate value; Taylor polynomial; pointwise approximate polynomial;
piecewise approximate polynomial
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1. Introduction

It is an undoubted fact that the design of more reliable and accurate algorithms to compute
the approximate values to the sine and cosine functions is one of the most fascinating topics of the
constructive approximation of functions. This is clearly motivated by numerous applications of these
trigonometric functions ranging from mathematics, physics to engineering.

The use of polynomial approximations plays a key role in computing values of the sine and cosine
functions, as well as other elementary functions. The most commonly used polynomials are Taylor,
Chebyshev, and Remez. Let us briefly mention an early historical fact related to approximating the
trigonometric functions. That is the formula proposed by Bhaskara in the 7th century:

sin(θ◦) ≈ 4θ(180− θ)

40500− θ(180− θ)
, 0 ≤ θ ≤ 180,

which is now explained clearly and logically (see [1]). The explanation is based on the view of
interpolation by polynomials and rational functions.

For these days, with a rapid development of technology and computer science, there has been
great effort to build hardware and software algorithms for evaluating values of the elementary
functions, especially the trigonometric functions, to meet an essential need in scientific computations,
signal processing, telecommunication and computer graphics [2]. Among these algorithms is the most
important and fundamental one called the CORDIC algorithm. The name CORDIC is an acronym for
Coordinate Rotation Digital Computer. This is a computing technique for solving the trigonometric
relations that consist of plane coordinate rotation, Cartesian and polar coordinates. Details on CORDIC
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and developments on algorithms for evaluating elementary functions can be found in the excellent
monograph by Muller [3] Chapter 7, and also [4–8].

It is worth mentioning that the desirable accuracy of computed transcendental functions mainly
depends on the demand of users and/or practical scientific use. On the one hand, it would usually
suffice to numerically solve real-world problems with an accuracy to machine precision. This is the
reason that the majority of present computing software programs such as MATLAB, and its Chebfun
software package, developed by Trefethen and his team [9], aims to support. On the other hand,
there has always been an imperative need to seek for simpler and more efficient algorithms with
higher accuracy as the interest in improving scientific calculation method itself or from other sources
of practical demand. This is purely our intention when writing the present article. The design and
development of our algorithms stem from the fact that we are able to easily work with higher-degree
polynomials (even degrees of thousands or millions [10] Chapter 1) due to the increasing complexity
of computer applications.

The goals of this paper are twofold. Firstly, we present an algorithm that gives pointwise
approximate values of the sine and cosine functions at any rational angle with a desired precision.
Secondly, our biggest contribution to novelty is the piecewise approximation procedure with an
arbitrary small absolute error applied to these trigonometric functions. To this end, we introduce a
special partition that can take the advantage of dividing an interval [a, b] into appropriate subintervals
for the approximation process. Our construction is merely based on the lookup table-like storage of
approximate values of Pi (the number π). In some computer algebra systems, we can do this with
built-in commands such as evalf[n](Pi) from MAPLE, vpa(pi,n) from MATLAB and N[Pi,n] from
MATHEMATICA.

In principle, approximating the value f (x) = sin x by the Taylor polynomial of order n at a point
x0 as

f (x) ≈ Pn(x) =
n

∑
m=0

f (m)(x0)

m!
(x− x0)

m

is meaningful when the point x0 satisfies |x− x0| < 1 and all the coefficients f (m)(x0) can be explicitly
calculated. Such a point can be chosen as kp, where k ∈ Z and p = π/2. We will choose k to get
the inequality even better |x − x0| < 0.8. Because we only have rational approximate values of p,
this challenges us with several practical questions to be solved: how to evaluate errors arising from
replacing p with its approximate value p′ and how to keep f (m)(x0) unchanged with this change of
value of p? In addition, we also need an efficient mechanism to access rational approximate values of
p more enough to reach an acceptable or desired precision. Fortunately, more and more precise values
of Pi have been updated from the projects of computation of special numbers (see [11], for instance),
and these values are now supplied conveniently and efficiently for use by present computer algebra
systems. The current record of the longest decimal number computed for Pi has been 13.3 trillion digits
(date announced: 8 October 2014), held by an anonymous programmer known online as “houkouonch”,
and will be certainly broken later.

The paper is organized as follows. In Section 2, we define the steps to obtain Taylor polynomials for
approximating values of the sine function with an absolute error less than a given tolerance. We then,
in Section 3, provide appropriate regulations to show that it is possible to keep coefficients of the
approximate Taylor polynomials unchanged when p = π/2 is replaced with its approximate value p′.
The error analysis is presented in the same section in which the properties of special functions Gamma
and Modified Bessel are used. We arrive at our algorithms for pointwise approximating values of the
sine and cosine functions, and for piecewise approximating on any interval [a, b] in Sections 4 and 5.
To demonstrate the performance of our methods, Section 6 is devoted to an application of numerical
integration. Finally, some concluding remarks are discussed in the last section. For our purpose, we use
MAPLE to implement our algorithms, and demonstrate numerical and graphical results.
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2. Formulation

Recall that the function f (x) = sin x is periodic with period 2π, differentiable of any order, and for
each k0 ∈ Z and m = 0, 1, . . ., we have

f (m)(k0π/2) =

{
0, m + k0 = 2k,

(−1)k, m + k0 = 2k + 1 (k ∈ Z).
(1)

Given a number x, we can choose an integer k such that kπ/2 ≤ x < (k + 1)π/2, which is
k = bx/pc (here, we denote π/2 by p, for brevity, and bzc is the integral part of a number z).
Now, we determine k0 ∈ Z by an if-then statement: if x/p − bx/pc < 1/2, then k0 = bx/pc,
else k0 = bx/pc+ 1. In both cases, we have |x− x0| ≤ π/4 with x0 = k0 p. From the choice of x0, if Pn

is the Taylor polynomial at this point, we always have that

| f (x)− Pn(x)| ≤
(π

4

)n+1 1
(n + 1)!

< (0.8)n+1 1
(n + 1)!

.

Therefore, for a given number r ∈ N, to find the degree of Pn such that

δ = sup{| f (x)− Pn(x)| : x ∈ R} < 1
10r ,

we only need to determine n ∈ N satisfying

(0.8)n+110r − (n + 1)! ≤ 0. (2)

Note that the Taylor polynomial

Pn(y) =
n

∑
m=0

f (m)(x0)

m!
(y− x0)

m, x0 = k0p,

which depends on x, only contains the values of m such that m = 2k + 1− k0 due to (1). Since 0 ≤ m ≤ n,
k takes all integral values satisfying

k0 − 1
2
≤ k ≤ n + k0 − 1

2
. (3)

Then we derive Pn(x) for the approximation f (x) ≈ Pn(x) from the following cases:

1. If k0 is odd, we put k1 = (k0 − 1)/2, hence k1 ≤ k ≤ k1 + bn/2c. Thus, we can write

Pn(x) =
k1+bn/2c

∑
k=k1

(−1)k

[2(k− k1)]!
(x− k0 p)2(k−k1)

= (−1)k1

bn/2c

∑
m=0

(−1)m

(2m)!
(x− k0 p)2m. (4)

2. If k0 is even, we put k1 = k0/2, hence k1 ≤ k ≤ k1 + b(n− 1)/2c, and we have

Pn(x) = (−1)k1

b(n−1)/2c

∑
m=0

(−1)m

(2m + 1)!
(x− k0 p)2m+1. (5)

3. Regulation

In practice, we are only provided with approximate values of p = π/2. Assume that such a value is p′

and let σ = |p− p′|. If |x| < 0.8, we use the formula (5) with k0 = k1 = 0 and we have the approximation
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sin x ≈ Pn(x) with the accuracy of 1/10r, where n is determined from (2). Therefore, we consider from
this point on any rational number x such that |x| ≥ 0.8 and we then have that

0 <
x
p
−
⌊ x

p

⌋
< 1,

x
p
−
⌊ x

p

⌋
6= 1

2
.

For an initial setting, we assume that σ satisfies

σ <
1

|x|10r+2 (6)

for a given r ∈ N.
Because the formulas (4) and (5) depend on the distance between x/p and bx/pc according to

the choice of k0, we need to choose p′ so that k0 will not change its values. This can be attained when
bx/p′c = bx/pc or equivalently ⌊ x

p′
⌋
<

x
p
<
⌊ x

p′
⌋
+ 1. (7)

Since ∣∣∣ x
p
− x

p′
∣∣∣ = σ|x|

pp′
,

(7) is satisfied if and only if ⌊ x
p′
⌋
− x

p′
< ±σ|x|

pp′
<
⌊ x

p′
⌋
+ 1− x

p′
. (8)

Since pp′ > 2.4, we then have (8) if σ simultaneously satisfies the following inequalities

σ <
2.4
|x|

( x
p′
−
⌊ x

p′
⌋)

, (9)

σ <
2.4
|x|

(⌊ x
p′
⌋
+ 1− x

p′
)

. (10)

Before proceeding any further, we emphasize here that we can set p′ as the approximate value
of p with the accuracy up to m + 3 significant digits when σ < 1/10m to prevent inexactitude from
rounding-off rules. Such an approximate value of p can be declared by, for instance, evalf[m+3](Pi/2)
in MAPLE. As a convention, when the output m has been found for σ to satisfy σ < 1/10m, we then
set p′ with evalf[m + 3](p).

Finally, we recall here the cases of choosing k0 and assume some supplementary requirements for
σ to make k0 unchanged when replacing p with p′. If x/p′ − bx/p′c < 1/2 and due to

0 <
x
p
−
⌊ x

p

⌋
=

x
p′
± σ|x|

pp′
−
⌊ x

p′
⌋

,

we also have x/p− bx/pc < 1/2 when

σ <
2.4
|x|

(1
2
+
⌊ x

p′
⌋
− x

p′
)

, (11)

and we then choose k0 = bx/p′c in this case. Similarly, if x/p′ − bx/p′c > 1/2, then we also have
x/p− bx/pc > 1/2 when

σ <
2.4
|x|

( x
p′
−
⌊ x

p′
⌋
− 1

2

)
, (12)

and we choose k0 = bx/p′c+ 1. In particular, if x/p′−bx/p′c = 1/2, then we also choose k0 = bx/p′c
and note that (9) and (10) are obviously satisfied in this case.
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Let us take an important notice that: (11) implies (10), and (12) implies (9). Thus, to find an
appropriate value of p′ and then choose k0, we first require σ < 1/10m by determining a number
m ∈ N such that

1
10m ≤

1
|x|10r+2 <

1
10m−1 . (13)

Then, p′ can be chosen to satisfy simultaneously (9) and (11), which is

min
{

2.4× 10m
( x

p′
−
⌊ x

p′
⌋)

, 2.4× 10m
(1

2
+
⌊ x

p′
⌋
− x

p′
)}
≥ |x|, (14)

or (10) and (12), which is

min
{

2.4× 10m
(⌊ x

p′
⌋
+ 1− x

p′
)

, 2.4× 10m
( x

p′
−
⌊ x

p′
⌋
− 1

2

)}
≥ |x|, (15)

depending on x/p′ − bx/p′c < 1/2 or x/p′ − bx/p′c > 1/2, respectively. To prove the existence of
such a p′, we need some results from the notion of sequence limit. This result is an important basis of
our approximation algorithm.

Supposing that we have found m = m0 satisfying (13), then we choose p0 = evalf[m0 + 3](p)
and let t0 = x/p0 − bx/p0c. Letting an index i take its initial value i := 0. If ti = 1/2, then we choose
k0 = bx/pic; otherwise, we consider the following process. To choose σ that satisfies simultaneously
(6), (9), (11) or (6), (10), (12), from (14) or (15), we check

2.4× 10mi min{ti, 0.5− ti} ≥ |x|, (16)

or
2.4× 10mi min{1− ti, ti − 0.5} ≥ |x|. (17)

If both (16) and (17) could not occur, we go to the next step by setting mi+1 = mi + 1, pi+1 =

evalf[mi+1 + 3](p) and ti+1 = x/pi+1− bx/pi+1c. Then, we check again (16) and (17), but with mi+1
and ti+1 for this time. Continuing this process, we go to the following conclusion:

1. One of either (16) and (17) first occurs at some step k, and assume it is (16). Hence, we have
0 < tk = x/pk − bx/pkc < 1/2 (and also x/p− bx/pc < 1/2). Then we choose k0 = bx/pkc
(= bx/pc). Similarly, we have 1/2 < tk = x/pk − bx/pkc (and also x/p− bx/pc > 1/2) and we
choose k0 = bx/pkc+ 1 = bx/pc+ 1 if (17) occurs.

2. Both of (16) and (17) could not occur at any step. Then, we obtain the infinite sequences
mi = m0 + i, pi = evalf[m0 + 3 + i](p) and ti = x/pi − bx/pic, i = 0, 1, . . ., such that

2.4× 10mi min{ti, 0.5− ti} < |x|, for all i = 0, 1, . . ., (18)

and
2.4× 10mi min{1− ti, ti − 0.5} < |x|, for all i = 0, 1, . . .. (19)

Now, we show the second item of the conclusion cannot be true. Because pi → p, then x/pi →
x/p, i → ∞. Since bx/pc < x/p < bx/pc+ 1, there exists an integer i0 such that bx/pc < x/pi <

bx/pc+ 1 for all i ≥ i0, hence bx/pic = bx/pc for all i ≥ i0. Therefore,

lim
i→∞

ti = lim
i→∞

( x
pi
−
⌊ x

p

⌋)
=

x
p
−
⌊ x

p

⌋
.

If x/p− bx/pc < 0.5, then

min{ti, 0.5− ti} → min
{ x

p
−
⌊ x

p

⌋
, 0.5− x/p +

⌊ x
p

⌋}
> 0,
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hence the left side of the inequality (18) leads to ∞ as i → ∞, and this is a contradiction. If x/p−
bx/pc > 0.5, by a similar argument, we also derive a contradiction from (19).

There is one more question that should be considered explicitly. What is the maximum value of
k that we may access in the calling sequence evalf[m0 + 3 + k](p)? We provide here an analysis of
this possibility. We set on the intervals (0, 0.5) and (0.5, 1) the functions f (t) and g(t), respectively,
such that

f (t) = min{t, 0.5− t} =
{

t as 0 < t ≤ 0.25,
0.5− t as 0.25 < t < 0.5.

and

g(t) = min{1− t, t− 0.5} =
{

t− 0.5 as 0.5 < t ≤ 0.75,
1− t as 0.75 < t < 1.

Then, we define

M(t) =

{
f (t) as 0 < t < 0.5,
g(t) as 0.5 < t < 1.

and give its graph in Figure 1.

bC bC bC| |

0.25

0 0.25 0.5 0.75 1 t

y

Figure 1. The graph of y = M(t) on (0, 0.5) ∪ (0.5, 1).

Now, reaching (16) or (17) at the step k can be expressed as

|x|
2.4× 10m0

≤ 10k M(tk).

Because |x|/10m0 ≤ 1/10r+2, we can attain this when

1
2.4× 10r+2 ≤ 10k M(tk). (20)

Taking integral values from 0, 1, . . ., the variable k makes the value of the right side of (20) increase very
fast, whereas the positive values of M(tk) slightly change when k increases. We also have the estimate
|M(t)−M(t′)| ≤ |t− t′| for all t, t′ ∈ (0, 0.5) ∪ (0.5, 1). Thus, the minimum value of mk = m0 + k
satisfying (16) or (17) is governed by m0. In practice, since |x| and r are not too large, we may always
determine such a value of mk.

On the other hand, if we find a sequence of rational numbers {qn} converging to p = π/2 and a
strictly increasing sequence of natural numbers {mn} such that

|p− qn| <
1

10mn
<

1
|x|10r+2 , n = 0, 1, . . . ,

we can determine k0, following the above steps without using the command evalf (or other
equivalent commands).

According to the choice of k0, we always have |x− k0 p′| ≤ p′/2 < 0.8. Now, we check that

|x− k0 p| < 0.8 (21)
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for all choices of k0. In the cases of x/p′ − bx/p′c < 1/2 or x/p′ − bx/p′c > 1/2, we also have x/p−
bx/pc < 1/2 or x/p− bx/pc > 1/2 and easily check that |x/p− k0| < 1/2 or |x− k0 p| < p/2 < 0.8.
In the case x/p′ − bx/p′c = 1/2, since (6), (9) and (10) are all satisfied, we have bx/p′c = bx/pc and
need to check (21) directly. Indeed, we can write

0 <
x
p
− k0 =

x
p
−
⌊ x

p′
⌋
=

x
p′
± σ|x|

pp′
−
⌊ x

p′
⌋
=

1
2
± σ|x|

pp′
,

hence

x− k0 p <
p
2
+

σ|x|
p′

<
p
2
+

1
p′10r+2 <

3.1416
4

+
1

1.5× 103 < 0.79 + 0.0067 < 0.8.

We formalize the above discussion by the following lemma.

Lemma 1. For every rational number x, there exists an integer k0 and a rational approximation p′ of p = π/2
such that bx/p′c = bx/pc, and k0 = bx/p′c or k0 = bx/p′c+ 1, depending on x/p′ − bx/p′c ≤ 1/2 or
x/p′ − bx/p′c > 1/2, respectively. Moreover, the Taylor polynomial Pn of the sine function at x0 = k0 p can
give the approximation sin x ≈ Pn(x) with the accuracy up to 1/10r, where r is a given positive integer and the
degree of Pn is determined by (2).

In practice, since we cannot use Pn from (4) or (5) to approximate the value of the sine function at
x, we replace Pn with Pc

n instead. Such a changed polynomial can be either

Pc
n(x) = (−1)(k0−1)/2

bn/2c

∑
m=0

(−1)m

(2m)!
(x− k0 p′)2m, or (22)

Pc
n(x) = (−1)k0/2

b(n−1)/2c

∑
m=0

(−1)m

(2m + 1)!
(x− k0 p′)2m+1, (23)

depending on k0 odd or even, respectively. Because |x − k0 p| < 0.8, we derive the estimate
| sin x − Pn(x)| ≤ δ from (2). Now, we need to estimate δ′ = | sin x − Pc

n(x)|, which we shall call
the practical error .

Firstly, we choose the polynomial (22) and try to make an estimate for

δ′ =
∣∣∣ sin x− (−1)k1

bn/2c

∑
m=0

(−1)m

(2m)!
(x− k0 p′)2m

∣∣∣ = ∣∣∣ sin x− (−1)k1

bn/2c

∑
m=0

(−1)m

(2m)!
(x− k0 p± k0σ)2m

∣∣∣
or

δ′ =
∣∣∣ sin x− (−1)k1

bn/2c

∑
m=0

(−1)m

(2m)!

2m

∑
k=0

(
2m
k

)
(x− k0 p)2m−k(±k0σ)k

∣∣∣. (24)

Since

2m

∑
k=0

(
2m
k

)
(x− k0 p)2m−k(±k0σ)k = (x− k0 p)2m +

2m

∑
k=1

(2m)!
k!(2m− k)!

(x− k0 p)2m−k(±k0σ)k,

(24) can be written as

δ′ =
∣∣∣ sin x− (−1)k1

bn/2c

∑
m=0

(−1)m

(2m)!
(x− k0 p)2m − (−1)k1

bn/2c

∑
m=1

(−1)m
2m

∑
k=1

(x− k0 p)2m−k(±k0σ)k

k!(2m− k)!

∣∣∣,
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hence we obtain the estimate

δ′ ≤ δ +
∣∣∣ bn/2c

∑
m=1

(−1)m
2m

∑
k=1

(x− k0 p)2m−k(±k0σ)k

k!(2m− k)!

∣∣∣. (25)

Letting |k0|σ = β, from (21) and (25), we derive

δ′ ≤ δ +
bn/2c

∑
m=1

(0.8)2m
2m

∑
k=1

( β

0.8

)k 1
k!(2m− k)!

. (26)

To estimate the sum in (26), we will use inequalities related to factorial numbers, so we need some
properties of the generalized factorial function, the Gamma function:

Γ(z) =
∫ ∞

0
e−ttz−1dt.

Γ(z) has been proven to be a log-convex function on the interval (0, ∞); thus, for y, z ∈ (0, ∞) we have

Γ
(y + z

2

)
≤
√

Γ(y)Γ(z) (27)

(see [12] Section 2). In addition, for a non-negative integer n, we have Γ(n + 1) = n!, and for y = k + 1,
z = 2m− k + 1 with integers m, k satisfying 1 ≤ k ≤ 2m, we derive the following inequality from (27)

m! ≤
√

k!(2m− k)! or
1

k!(2m− k)!
≤ 1

(m!)2 . (28)

From (26) and (28), we can write

δ′ ≤ δ +
bn/2c

∑
m=1

(0.8)2m

(m!)2

2m

∑
k=1

( β

0.8

)k
< δ +

β

0.8− β

bn/2c

∑
m=1

(0.8)2m

(m!)2 , (29)

due to 1− (β/0.8)2m < 1.
To obtain the desired estimate of δ′, we use an approximate value of the Modified Bessel function

of the First kind

Iν(x) =
∞

∑
m=0

(x/2)2m+ν

m!Γ(m + 1 + ν)
,

which is

I0(1.6) =
∞

∑
m=0

(0.8)2m

(m!)2 < 1.75,

according to the approximation formula in ([13] Section 3). Moreover, we have the estimate

β <
2

10r+2

that we now check only for x > 0.8. Indeed, if k0 = bx/p′c, then k0 ≤ x/p′, hence |k0/x| ≤ 1/p′;
if k0 = bx/p′c + 1, we have k0 − 1 ≤ x/p′ or |k0/x| = k0/x ≤ 1/p′ + 1/x < 1/p′ + 1/0.8 < 2.
These estimates for |k0/x| lead to

β = |k0|σ ≤
|k0|
|x|10r+2 <

2
10r+2 .
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Finally, from (28), we derive

δ′ < δ +
β

0.8− β
(1.75− 1) <

40
40× 10r − 1

+
0.75

40× 10r − 1
=

40.75
40× 10r − 1

<
1.1
10r .

Similarly, if the polynomial (23) has been chosen, we are led to the estimate

δ′ ≤ δ +
b(n−1)/2c

∑
m=1

(0.8)2m+1
2m+1

∑
k=1

( β

0.8

)k 1
k!(2m + 1− k)!

. (30)

In this case, applying (27), we obtain the inequality

1
k!(2m + 1− k)!

≤ 1[
Γ(m + 1 + 1/2)

]2 . (31)

To estimate the right-hand side of (31), we use an appropriate inequality of Lazarević and Lupaş in
([12] p. 95–96), stated in the form of (

z− 1− µ

2

)µ
≤ Γ(z + µ)

Γ(z)
, (32)

where z > (1− µ)/2 and µ ∈ [0, 1]. Applying (32) for z = m + 1 (m = 0, 1, . . .) and µ = 1/2, we easily
obtain the inequality

1[
Γ(m + 1 + 1/2)

]2 ≤ 1
(m!)2(m + 3/4)

≤ 4
7(m!)2 , m = 1, 2, . . . . (33)

Combining (30), (31) and (33), we finally get the desired estimate

δ′ < δ +
β

0.8− β
× 4× (0.8)(1.75− 1)

7
<

40
40× 10r − 1

+
0.35

40× 10r − 1
<

1.1
10r .

Thus, both of approximate polynomials (22) and (23) satisfy the same inequality for the practical
error; that is

| sin x− Pc
n(x)| < 1.1

10r .

Finally, for a real number x and its rational approximation x′, we have the following estimation

| sin x− Pc
n(x′)| ≤ | sin x− sin x′|+ | sin x′ − Pc

n(x′)| < |x− x′|+ 1.1
10r ,

where Pc
n is obtained from Pn, as indicated in Lemma 1, but for x′ instead. If r is replaced with r + 1 in

(2) and (6), and |x− x′| < 1/10r+1, then | sin x− Pc
n(x′)| < 1/10r.

To sum up, we state our main result in this section by the following theorem.

Theorem 1. Let x be a real number and x′ be a rational approximation of x such that |x − x′| < 1/10r+1,
where r is a given positive integer. Then, from Lemma 1 applied to x′, there exists a polynomial Pc

n having the
form of (22) or (23) that gives the approximation | sin x− Pc

n(x′)| < 1/10r.

4. Algorithm for Pointwise Polynomial Approximation

Given a rational number x and an integer h ≥ 2, we will construct an algorithm to evaluate the
approximate value a of sin x so that δ′ = | sin x− a| is less than an arbitrarily small tolerance, and to
display the result in the correct number h of significant digits. The first task can be completed by the
steps in Algorithm 1, following the steps as indicated in Section 3, above Lemma 1. This algorithm
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can be converted into a MAPLE procedure called ApproxSine that takes the two arguments x and r.
The output of ApproxSine(x,r) is a with δ′ < 1/10r, r ≥ 1. This estimation for δ′ is obtained when r
is replaced with r + 1 in (2) and (6). Before completing the second task, we note that the accuracy up
to the r-th decimal digit after decimal point is in general quite different from r significant digits. For
instance, if a = 0.123437 and b = 0.123415, then |a− b| < 1/104 and evalf[4](a) = evalf[4](b),
but, if a = 0.0024217 and b = 0.002421, then evalf[6](a) 6= evalf[6](b), whereas |a− b| < 1/106.
Therefore, we should first count how many zero consecutive digits there are right after decimal point
contained in the number a = ApproxSine(x,r), and assume that the number of such digits is k,
which is a = 0. 00 · · · 0︸ ︷︷ ︸

k digits

xy · · · z (x 6= 0). In fact, the number k can be determined easily, for instance,

by a simple while-do loop in MAPLE as follows:

> a:=ApproxSine(x,h):
> k:=0:
> while (abs(a)*10^k-1<0) do
> k:=k+1:
> end do:

Then, the second task can be completed by displaying the output of ApproxSine(x,k + h + 1) in
h significant digits, which is the calling evalf[h](ApproxSine(x,k + h + 1)). Now, we can make
another MAPLE procedure named Sine to perform the second task when using ApproxSine as its
local variable. The calling sequence Sine(x,h) returns an approximate value a of sin x such that the
correct number of significant digits of a is equal to h. In the following, we present Algorithm 1 as a
pseudo-code algorithm as

Algorithm 1
Input: x (rational number), r (positive integer)
Output: a ≈ sin x with | sin x− a| < 1/10r

STEPS: Purposes Stop Signal
STEP 1: Finding the degree n of Pn from (2). (Take a while loop.)

STEP 2: Determining a :=
b(n−1)/2c

∑
s=0

(−1)s x2s+1

(2s + 1)!
when |x| < 0.8. Return a.

STEP 3: Determining m from (13). (Take a while loop.)

STEP 4: Determining p and k0 with initial settings

{
p := evalf[m + 3](Pi/2),
t := x/p− bx/pc.

: • If t = 0.5 then k0 := bx/pc else determine p and t from a while loop:

: while

{
2.4× 10m ×min{t, 0.5− t} < |x|
2.4× 10m ×min{1− t, t− 0.5} < |x| then m := m + 1 and

: take

{
p := evalf[m + 3](Pi/2),
t := x/p− bx/pc.

: • If 0.5 < t then k0 := bx/pc+ 1 else k0 := bx/pc.

STEP 5: Determining a. If k0 is odd then a := (−1)(k0−1)/2
bn/2c

∑
s=0

(−1)s (x− k0 p)2s

(2s)!
Return a.

: else a := (−1)k0/2
b(n−1)/2c

∑
s=0

(−1)s (x− k0 p)2s+1

(2s + 1)!
. Return a.

Similarly, for approximating values of the cosine function, we use the Taylor polynomial of
g(y) = cos y:

Qn(y) =
n

∑
m=0

g(m)(x0)

m!
(y− x0)

m,
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where x0 = k0 p and

g(m)(k0 p) =

{
0, m + k0 = 2k + 1,

(−1)k, m + k0 = 2k (k ∈ Z).

The integer k0 is determined by the same way as the one in the previous sections and the index k satisfies

k0

2
≤ k ≤ k0 + n

2
,

due to 0 ≤ m ≤ n. Hence, depending on k0 even or odd, g(x) = cos x is approximated by

Qn(x) = (−1)k0/2
bn/2c

∑
m=0

(−1)m

(2m)!
(x− k0 p)2m

or

Qn(x) = (−1)(k0+1)/2
b(n−1)/2c

∑
m=0

(−1)m

(2m + 1)!
(x− k0 p)2m+1,

respectively. Then, we have a similar algorithm to evaluate approximate values of cos x and a
corresponding MAPLE procedure Cosine taking the same arguments x and h. In the body of Cosine,
ApproxSine becomes its local variable ApproxCosine when the variable a in ApproxSine (as a in
Algorithm 1) is assigned to these corresponding values of Qn. Cosine also returns approximate values
of the cosine function in a given correct number of significant digits. In practice, Qn(x) becomes Qc

n(x)
when p′ takes the position of p, and again we can check the estimate | cos x−Qc

n(x)| < 1.1/10r. As a
convention, we will present all algorithms afterwards in a pseudo–code form and use corresponding
MAPLE procedures with names to make calculations. Now, we implement our algorithms with some
values of x and h, and the results of the calling sequences Sine(x,r) and Cosine(x,r) are given in
Table 1.

Table 1. Some results from using the procedures Sine and Cosine.

Calling Sequences Results

Sine(123,25) −0.4599034906895912512924357
Sine(-1500.024,35) 0.99626189049405202369399458834570209
Cosine(578.99,40) 0.5922469285742675816988406427238119209980

Cosine(3.1415926535,45) −0.999999999999999999995968587163195430469041636

5. Algorithm for Piecewise Polynomial Approximation

We recall here what is needed for initial settings to the piecewise approximation process. For a
given number α, we find an integer k0 such that the Taylor polynomial Pn at k0 p, p = π/2, can be
used to approximate sin α with the accuracy of 1/10r, where r is a given positive integer. Because we
only get rational approximate values of p, we have found a way (as presented in previous sections)
to determine such a value p′, remaining the approximation sin α ≈ Pc

n(α) with the accuracy of 1/10r,
where Pc

n is obtained from Pn by replacing p with p′. In addition, we have proved that |α− k0 p| < 0.8,
or likewise |α− k0 p′| < 0.8 and

σ = |p− p′| < 1
γ10r+3 , (34)

where |k0| ≤ γ. In fact, more exactly, we have |α− k0 p′| < 0.788 and 0.8− p′/2 > 0.012 for such
a chosen p′. Moreover, for every x ∈ [k0 p′ − p′/2, k0 p′ + p′/2], we can use Pc

n to approximate sin x
because of |x− k0 p| < 0.8 (note that |x− k0 p′| ≤ p′/2 < 0.8). Indeed, we have the estimate

|x− k0 p| = |x− k0 p′ + k0 p′ − k0 p| ≤ p′

2
+ |k0||p− p′| < p′

2
+ |k0|σ,
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and get the desired inequality when |k0|σ < 0.8− p′/2 or more strictly, |k0|σ < 0.012. However, this is
obviously satisfied because

|k0|
γ10r+3 ≤

1
10r+3 < 0.012.

Therefore, we have the approximation

sin ≈ Pc
n on [k0 p′ − p′/2, k0 p′ + p′/2], (35)

with the accuracy of 1/10r if we replace r with r + 1. This extension of our pointwise approximating
result can be a starting point to construct a piecewise function F that approximates the sine function
on an interval [a, b].

From most parts of Algorithm 1 (only without STEP 2), we can derive a simpler algorithm that
results in three objects k, p′ and Pc

n (respectively, k0, p and a in Algorithm 1) from an input number
α. For convenience, we will use the name FindPoint of a MAPLE procedure performing such an
algorithm with one real argument, so its usage can be given in one of the forms: FindPoint(α) =

[k,p′,Pc
n], FindPoint(α)[1] = k, FindPoint(α)[2] = p′ and FindPoint(α)[3] = Pc

n.
Because the sine function is odd, we only need to find the function F on [a, b] with a ≥ 0. In the

cases of 0 ≤ a < b ≤ 0.8 and 0 ≤ a < 0.8 < b, we may set F = F0 on [a, b] and F = F0 on [a, 0.8],
respectively, where

F0(x) =
b(n−1)/2c

∑
m=0

(−1)m

(2m + 1)!
x2m+1

and n is determined by Algorithm 1. Therefore, it is sufficient to construct a piecewise approximate
function F on [a, b] when 0.8 ≤ a < b.

On the other hand, from the choice of σ = |p− p′| < 1/(|x|10r+3) in Algorithm 1 to approximate
sin x, we now change it to

σ = |p− p′| < 1
(b + 3.2)10r+3 for all x ∈ [a, b]. (36)

This choice is to guarantee the precision for our later construction of F. Moreover, it is easy to check
that if α, β ∈ [a, b] are numbers such that

FindPoint(α)[1] = FindPoint(β)[1] = k

with p′ = FindPoint(α)[2], p′′ = FindPoint(β)[2] then we have |α− kp′′| < 0.8 and |β− kp′| < 0.8.
Firstly, we put

n0 = FindPoint(b)[1],

q0 = FindPoint(b)[2] and

B0 = FindPoint(b)[3],

and similarly,

k0 = FindPoint(a)[1],

p0 = FindPoint(a)[2] and

A0 = FindPoint(a)[3].

The cases of k0 = ba/p0c and k0 = ba/p0c+ 1 are illustrated in Figure 2.
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b bbC
ak0p0

A0(x)

b bbC
a k0p0

A0(x)

Figure 2. The positions of a corresponding to k0 = ba/p0c (left) or k0 = ba/p0c+ 1 (right).

Now, we consider the case k0 = n0 (or even k0 = n0 + 1); then, we choose F = A0 on [a, b]
because |b− k0 p0| < 0.8 as shown above for α, β. Next, we consider the case when k0 < n0. We extend
the approximation process to determine the next integer by setting k1 = FindPoint((k0 + 1)p0)[1],
and also p1 = FindPoint((k0 + 1)p0)[2], A1 = FindPoint((k0 + 1)p0)[3]. Because |(k0 + 1)p0 −
k1 p1| < 0.8, by the choice of k1, we must have k1 = k0 + 1. Note that, from (36), we also have
|(k0 +

1
2 )p0 − k1 p1| < 0.8. If k1 = n0, we then have cases that are illustrated in Figure 3. It is

obvious that we can set F = A0 on [a, (k0 +
1
2 )p0], regardless of k0 = ba/p0c or k0 = ba/p0c + 1.

However, we will take different settings on the other intervals, depending on where b is from (k0 + 1)p0.
These settings can be given in the following:

b b bbC
a

|

(k0 +
1
2
)p0

k0p0

k1p1

A0(x)

A1(x)

bbbC
a k0p0

k1p1
|

(k0 +
1
2
)p0

A0(x)

A1(x)

Figure 3. The positions of a corresponding to k0 = ba/p0c (left) or k0 = ba/p0c+ 1 (right).

b ≤ (k0 +
1
2 )p0 : F = A0 on [a, b].

(k0 +
1
2 )p0 < b ≤ (k0 + 1)p0 : F =

{
A0 on [a, (k0 +

1
2 )p0),

A1 on [(k0 +
1
2 )p0, b].

(k0 + 1)p0 < b : F =


A0 on [a, (k0 +

1
2 )p0),

A1 on [(k0 +
1
2 )p0, (k0 + 1)p0),

B0 on [(k0 + 1)p0, b].

(37)

If k1 < n0, we continue to put

k2 = FindPoint((k1 + 1)p1)[1],

p2 = FindPoint((k1 + 1)p1)[2],

A2 = FindPoint((k1 + 1)p1)[3].

In the case of k2 = n0, we have the following choice for F according to the different positions of b
from (k1 + 1)p1:

b ≤ (k1 +
1
2 )p1 : F =

{
A0 on [a, (k0 +

1
2 )p0),

A1 on [(k0 +
1
2 )p0, b].

(k1 +
1
2 )p1 < b ≤ (k1 + 1)p1 : F =


A0 on [a, (k0 +

1
2 )p0),

A1 on [(k0 +
1
2 )p0, (k1 +

1
2 )p1),

A2 on [(k1 +
1
2 )p1, b].

(k1 + 1)p1 < b : F =


A0 on [a, (k0 +

1
2 )p0),

A1 on [(k0 +
1
2 )p0, (k1 +

1
2 )p1),

A2 on [(k1 +
1
2 )p1, (k1 + 1)p1),

B0 on [(k1 + 1)p1, b].

(38)

Finally, continuing the above process, we obtain a finite sequence k0, k1, . . . , kn such that ki =

ki−1 + 1 = FindPoint((ki−1 + 1)pi−1)[1], i = 1, . . . , n − 1, and kn = n0. Then, we also gain two
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sequences pi = FindPoint((ki−1 + 1)pi−1)[2] and Ai = FindPoint((ki−1 + 1)pi−1)[3], i = 1, . . . , n.
Before giving our settings for this general case, let us consider ending points of the approximate
intervals by taking two consecutive nodes ki pi, ki+1 pi+1. If we let xi = ki pi + pi/2, then we have
|xi − ki+1 pi+1| = ki(pi+1 − pi) + pi+1 − pi/2, so that

|xi − ki+1 pi+1| < 0.8 if and only if (ki + 1)(pi+1 − pi) < 0.8− pi/2. (39)

To show the assertion of (39), we refer to (36) again and take the same arguments as above.
The inequality (39) explains why we can choose F on [a, b] to guarantee the accuracy of 1/10r.

b bbC
xi−1 bC

xi bC
xi+1

kipi

ki+1pi+1

Ai(x)

Ai+1(x)

|

(kn−1 +
1
2
)pn−1

|
knpn−1

Figure 4. The approximate intervals and functions will be chosen with the specific position of b
from (kn−1 +

1
2 )pn−1.

In short, by the setting (36), when kn = n0 with n ≥ 3 (see Figure 4), we have constructed the
piecewise function F that approximates the sine function on [a, b] (0.8 ≤ a < b) with the accuracy
of 1/10r. After getting the finite sequences {ki}n

i=0, {pi}n
i=0, {Ai}n

i=0 and the function B0 defined as
above, we choose F as follows:

If b ≤ (kn−1 +
1
2 )pn−1:

F =


A0 on [a, (k0 +

1
2 )p0),

Ai on [(ki−1 +
1
2 )pi−1, (ki +

1
2 )pi), i = 1, . . . , n− 2,

An−1 on [(kn−2 +
1
2 )pn−2, b].

(40)

If (kn−1 +
1
2 )pn−1 < b ≤ kn pn−1:

F =


A0 on [a, (k0 +

1
2 )p0),

Ai on [(ki−1 +
1
2 )pi−1, (ki +

1
2 )pi), i = 1, . . . , n− 1,

An on [(kn−1 +
1
2 )pn−1, b].

(41)

If kn pn−1 < b:

F =


A0 on [a, (k0 +

1
2 )p0),

Ai on [(ki−1 +
1
2 )pi−1, (ki +

1
2 )pi), i = 1, . . . , n− 1,

An on [(kn−1 +
1
2 )pn−1, kn pn−1),

B0 on [kn pn−1, b].

(42)

Although steps for construction of F have been presented, we give here an abbreviated algorithm,
Algorithm 2, to specifically determine this function.

In Algorithm 2, the approximate Taylor polynomials Ai are derived from Algorithm 1 and given
here as

Ai(x) = (−1)(ki−1)/2
bn/2c

∑
m=0

(−1)m

(2m)!
(x− ki pi)

2m,

or

(−1)ki/2
b(n−1)/2c

∑
m=0

(−1)m

(2m + 1)!
(x− ki pi)

2m+1, i = 0, . . . , n,

depending on ki odd or even. The polynomial B0 takes a similar expression, where ki pi is replaced
with n0q0.
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In Figure 5, the graphs of F on intervals [a, b] with different values of r are depicted by a MAPLE
procedure corresponding to Algorithm 2.

Algorithm 2
Input: FindPoint (the MAPLE procedure, mentioned above); a, b (real numbers); r (positive integer)
Output: F(x) on [a, b] with ‖ sin−F‖ = sup{| sin x− F(x)| : x ∈ [a, b]} < 1/10r

STEPS: Purposes Stop Signal
STEP 1: Finding the degree n of Pc

n from (2.2) with r + 1 in place of r.

STEP 2: Defining G on [a, b] with 0.8 ≤ a < b. Set G0 :=
b(n−1)/2c

∑
s=0

(−1)s x2s+1

(2s + 1)!
.

: If b ≤ 0.8 then G := G0 on [a, b]. Put

:


n0 := Findpoint(b)[1], q0 := Findpoint(b)[2], B0 := FindPoint(b)[3],
i := 0,
ki := Findpoint(a)[1], pi := Findpoint(a)[2], Ai := FindPoint(a)[3],
u := ki.

: If u ≥ n0 then G := A0 on [a, b] else determine G from a while loop:

: while u < n0 take



i := i + 1,
ki := Findpoint((ki−1 + i)pi−1)[1],
pi := Findpoint((ki−1 + i)pi−1)[2],
Ai := Findpoint((ki−1 + i)pi−1)[3],
u := ki.

: If i = 1 then G is defined by (37) else if i = 2 then G is defined by (38)
: else G is defined by (40), (41) and (42).

STEP 3: Defining H on [a, b] with 0 ≤ a < b and F on any [a, b].

: If 0 ≤ a < 0.8 then H :=

{
G0 on [a, 0.8),
G on [0.8, b].

else H := G on [a, b].

: If 0 ≤ a then F(x) := H(x) as x ∈ [a, b] Return F.
: else if b ≤ 0 then F(x) := −H(−x) as x ∈ [a, b] Return F.

: else F(x) :=

{
−H(−x) as x ∈ [a, 0),
H(x) as x ∈ [0, b].

Return F.

Figure 5. The graphs of F on [−3, 15] with r = 20 (left) and on [−150, 90] with r = 100 (right).

To obtain a similar algorithm to approximate the cosine function, we just replace the functions Ai with

Qi(x) = (−1)ki/2
bn/2c

∑
m=0

(−1)m

(2m)!
(x− ki pi)

2m
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or

Qi(x) = (−1)(ki+1)/2
b(n−1)/2c

∑
m=0

(−1)m

(2m + 1)!
(x− ki pi)

2m+1, i = 0, . . . , n,

depending on ki even or odd, and B0 with

P0(x) =
bn/2c

∑
m=0

(−1)m

(2m)!
x2m.

Note that the cosine function is even, so we should regulate appropriately the function F in Algorithm 2.

6. An Application of Numerical Integration

Suppose sin x is approximated by a polynomial P(x) with the accuracy up to 1/10r on an interval
[α, β]. Then, we will find an estimation of the absolute error for sins x and [P(x)]s with some natural
number s. One of the possibilities to compute sins x via sin ((n− k)x) is given in ([14] Lemma 1.3),
but here we use our previously established results as follows. Firstly, we can write

sin x = P(x) + ε,

where | sin x− P(x)| = |ε| = δ′ < 1/10r and we also have |P(x)| < 1 + (1/10r) =: d for all x ∈ [α, β].
Hence, we have that

sins x =
[
P(x) + ε

]s
=

s

∑
k=0

(
s
k

)
[P(x)]s−kεk = [P(x)]s +

s

∑
k=1

(
s
k

)
[P(x)]s−kεk.

From this relation, we easily derive the estimate

| sins x− [P(x)]s| ≤ ds
s

∑
k=1

(
s
k

)
(δ′/d)k. (43)

Now, applying (28), we obtain(
s
k

)
=

s!
k!(s− k)!

≤ Γ(s + 1)[
Γ(1 + s/2)

]2 , (44)

and relying on the inequality ([15] p. 93), we imply

Γ
( s

2
+

1
2

)
≤
√

s
2

Γ
( s

2

)
. (45)

Using (44), (45) and the formulas in [15], such as

Γ(z + 1) = zΓ(z), 2z−1Γ
( z

2

)
Γ
( z

2
+

1
2

)
=
√

π Γ(z),

we attain the estimate

Γ(s + 1)[
Γ(1 + s/2)

]2 =
sΓ(s)( s

2

)2[
Γ
( s

2

)]2 =
4
s

Γ(s)[
Γ
( s

2

)]2 ≤
√

2
π

2s
√

s
. (46)
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Finally, from (43), (46) and the formula for the sum of a geometric progression, we derive the
following estimate

| sins x− [P(x)]s| ≤ ds
√

2
π

2s
√

s
(δ′/d)

1− (δ′/d)
[
1− (δ′/d)s] < √ 2

π

(2d)s
√

s
δ′,

also due to d− δ′ > d− (1/10r) = 1.
Thus, we have proven the result stated in the following lemma.

Lemma 2. Assume that f (x) = sin x is approximated by the polynomial Pc
n(x) on an interval [α, β] with the

accuracy up to 1/10r, derived from the Taylor polynomial Pn(x) about kp, k ∈ Z and p = π/2, by replacing p
with its rational approximation p′, as constructed in the previous sections. Then, if

I =
∫ β

α
xt sins x dx (t, s ∈ N)

is approximated by

J =
∫ β

α
xt[Pc

n(x)]sdx,

the error |I − J| has the following upper bound

|I − J| ≤
∫ β

α
| sins x− [Pc

n(x)]s||x|tdx ≤
√

2
π

(2 + 2/10r)s
√

s 10r

∫ β

α
|x|tdx. (47)

Because the upper bound of |I − J| in (47) only depends on r, s, except the integral on the right
side, we then easily imply the following theorem.

Theorem 2. Suppose an interval [a, b] can be expressed as a finite union [a, α1] ∪ [α1, α2] ∪ · · · ∪ [αn, b] and
f (x) = sin x is approximated by the polynomials Pc

mi
(x) on the intervals [αi−1, αi], i = 1, . . . , n + 1, with the

accuracy up to 1/10r, where α0 = a and αn+1 = b. Then, if Q is an arbitrary polynomial and

I =
∫ b

a
Q(x) sins x dx (s ∈ N)

is approximated by

J =
∫ α1

a
Q(x)[Pc

m1
(x)]sdx + · · ·+

∫ b

αn
Q(x)[Pc

mn+1
(x)]sdx =

n+1

∑
i=1

∫ αi

αi−1

Q(x)[Pc
mi
(x)]sdx,

the error |I − J| has the following upper bound

|I − J| ≤
√

2
π

(2 + 2/10r)s
√

s 10r

n+1

∑
i=1

∫ αi

αi−1

|Q(x)|dx =

√
2
π

(2 + 2/10r)s
√

s 10r

∫ b

a
|Q(x)|dx. (48)

Based on Algorithm 2, we have established a procedure, say AppIntSin, to approximately
compute the integral given in Theorem 2 with the desired accuracy. AppIntSin’s arguments may take
input values in order as for a, b, r, s and Q, and we can even choose the value for r to get the result
satisfying a given tolerance. For instance, to have the estimate |I − J| < ε, a positive integral value for
r may be chosen as to satisfy

10r > 0.8
(2.2)s

ε
√

s

∫ b

a
|Q(x)|dx, (49)

due to
√

2/π < 0.8 and 2 + 2/10r < 2.2.
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Let us consider the following example. Find the approximate value of

I =
∫ 100

1
(2x5 + x− 3) sin20 x dx

with the accuracy up to ε = 10−30. We first derive r = 48 from (49) with the settings a = 1, b = 100, s = 20
and Q(x) = 2x5 + x− 3. Performing Algorithm 2 with a = 1, b = 100 and r = 48, we determine n = 63,
(k62 +

1
2)p62 = 99.74556674, k63p62 = 100.5309649 and find the appropriate case (41). Then, the calling

AppIntSin(1, 100, 48, 20, Q(x)) gives us the desired approximation to I, first put in symbolic form as

J =
∫ (k0+

1
2 )p0

a
Q(x)[A0(x)]sdx +

n−1

∑
i=1

∫ (ki+
1
2 )pi

(ki−1+
1
2 )pi−1

Q(x)[Ai(x)]sdx

+
∫ b

(kn−1+
1
2 )pn−1

Q(x)[An(x)]sdx

and then in numerical value

J = 6.055874915602438876766631353985011986803× 1010.

7. Conclusions

Motivated by the powerfulness and popular use of modern computer algebra systems in terms
of its ease in programming and accessibility to the value of π with a very high accuracy, simple and
easily-implemented algorithms have been designed to approximate the trigonometric functions with
an arbitrary accuracy by a means of Taylor expansion. We have provided a careful analysis of the
proposed approach with numerical illustrations. Nevertheless, our initial intention is not to compare
or surpass other well-developed and well-established existing algorithms in the research literature;
rather, we emphasize on the simplification of our methods as a computational application of CAS for
which we highlight below:

• Approximating values of the trigonometric functions by Taylor polynomials with an arbitrary
accuracy, taking the form of 1/10r, r ∈ N.

• Using a so-called spreading technique to switch the process of pointwise approximating to that of
piecewise approximating all over an arbitrary interval.

• Performing only arithmetics on very small values of finite rational numbers.
• Only using one command of CAS to access approximate values of π/2.

Our approximation method in Algorithm 2, utilizing the achievements of computing values of Pi
with more and more exact significant digits and the power of current computer algebra systems,
presents the special partition of an interval [a, b] with nodes ki pi’s, where ki ∈ Z and pi is an
approximate value of π/2. This is a great advantage for local approximation to values of the sine (or
cosine) function f on each definite interval because pi’s are all finite rational numbers. These nodes
also play a role as adjoining centers of approximation, whereas the functional coefficients f (m) still
take their normal values 0,±1 at kiπ/2.

Our procedure, corresponding to Algorithm 1, gives not only numerical results of great precision
but also a remedy for mistakes in the use of some existing mathematical software programs when
displaying wrong results with a small number n of significant digits (e.g., n < 9). In such cases,
the argument x’s to approximate sin x are commonly close to kπ/2’s, k ∈ Z.

In addition, Theorem 2 can be applied to look for desired estimates to the best L2-approximation
of the sine function in the vector space P` of polynomials of degree at most `, a subspace of L2(a, b).
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