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Abstract: The purpose of this research study is to present some new operations, including rejection,
symmetric difference, residue product, and maximal product of Pythagorean fuzzy graphs (PFGs),
and to explore some of their properties. This research article introduces certain notions, including
intuitionistic fuzzy graphs of 3-type (IFGs3T), intuitionistic fuzzy graphs of 4-type (IFGs4T), and
intuitionistic fuzzy graphs of n-type (IFGsnT), and proves that every IFG(n−1)T is an IFGnT
(for n ≥ 2). Moreover, this study discusses the application of Pythagorean fuzzy graphs in
decision making.
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1. Introduction

Intuitionistic fuzzy sets (IFSs) [1] of first type, an extension of Zadeh’s notion of the fuzzy
set [2] which itself extends the classical notion of a set, are sets whose elements have degrees of
membership and non-membership. Yager [3,4] considered the Pythagorean fuzzy sets (PFSs) as a new
generalization of IFSs which is characterized by the membership and the non-membership degree
satisfying the condition that their square sum is not greater than 1. Some results for PFSs and the
Pythagorean fuzzy TODIM approach to multi-criteria decision making have been presented in [5,6].
Zhang and Xu [7] dealt with the mathematical form of the PFS and introduced the concept of the
Pythagorean fuzzy number (PFN). They also discussed a series of the basic operational laws of PFNs
and proposed the Pythagorean fuzzy aggregation operators, including the Pythagorean fuzzy weighted
averaging operator. The PFS is more general than the IFS because the space of PFSs’ membership
degree is greater than the space of IFSs’ membership degree. For instance, when a decision-maker gives
the evaluation information whose membership degree is 0.5 and non-membership degree is 0.8, it can
be known that the IFN fails to address this issue because 0.5 + 0.8 > 1. However, (0.5)2 + (0.8)2 < 1.
On the other hand, the notions of IFSs of second type (IFSs2T), IFSs of third type (IFSs3T), IFSs of
fourth type (IFSs4T), and IFSs of n-th type (IFSsnT) have been studied in [8–11]. For convenience,
IFSnT is represented by IFNnT—that is, ζ = (µζ , νζ). The key difference between IFN1T, IFN2T, IFN3T,
IFN4T, . . ., IFnNT is their different constraint conditions. That is, µα + να ≤ 1, µ2

β + ν2
β ≤ 1, µ3

γ + ν3
γ ≤

1, µ4
δ + ν4

δ ≤ 1, . . . , µn
ζ + νn

ζ ≤ 1, respectively. The comparison of these spaces is shown in Figure 1.
For other notation applications, readers are referred to [12–20].

A graph is a convenient way of interpreting information involving the relationship between
objects. Fuzzy graphs are designed to represent the structures of relationships between objects such
that the existence of a concrete object (vertex) and the relationship between two objects (edge) are
matters of degree. The concept of fuzzy graphs was initiated by Kaufmann [21]. Later, Rosenfeld [22]
discussed several theoretical concepts, including paths, cycles, and connectedness in fuzzy graphs.
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Mordeson and Peng [23] defined some operations on fuzzy graphs and investigated their properties.
Parvathi and Karunambigai [24] considered intuitionistic fuzzy graphs (IFGs). Later, Akram and
Davvaz [25] discussed IFGs. Akram and Dudek [26] described intuitionistic fuzzy hypergraphs
with applications. Recently, Naz et al. [27] originally proposed the concept of Pythagorean fuzzy
graphs(PFGs), a generalization of the notion of Akram and Davvaz’s IFGs [25], along with their
applications in decision-making. Akram and Naz [28] studied the energy of PFGs with applications.
Dhavudh and Srinivasan [29,30] dealt with IFGs2T. The graph operations perform a substantial
role in many fields, especially in computer science. For example, the Cartesian product offers a
significant model for linking computers. There are various operations on PFGs. Verma et al. [31]
presented some operations of PFGs. In this research study, we present some new operations, including
rejection, symmetric difference, residue product, and maximal product of PFGs (IFGs2T), which may
be suggestive of some aspects of network design. We explore some of their properties, especially the
degree of vertices, and total degree as its modification, of resultant PFGs, acquired from given PFGs
using these operations. We introduce certain new notions, including IFGs3T, IFGs4T, and IFGsnT,
and prove that every IFG(n−1)T is an IFGnT (for n ≥ 2). Moreover, we show that the definition
and operations of PFGs (IFGs2T) mentioned in [29,31] contain some flaws. Finally, we discuss the
application of PFGs in decision making.
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Figure 3.2: IFG4K

Definition 3.3. An intuitionistic fuzzy graph of n-th type (IFGnT, for short) on a non-empty set V
is a pair P = (C,D) with C an IFSnT on V and D an IFRnT on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≥ νC(x) ∨ νC(y)

and 0 ≤ µn
D(xy) + νnD(xy) ≤ 1 for all xy ∈ E ⊆ V × V , where, µD : V × V −→ [0, 1] and νD :

V × V −→ [0, 1] represent the membership and non-membership functions of D, respectively.
For convenience, IFSnT is represented by IFNnT, i.e., ζ = (µζ , νζ).

The key difference between IFN1T, IFN2T, IFN3T, IFN4T,. . ., IFnNT is their different constraint
conditions, that is, µα+να ≤ 1, µ2

β +ν2β ≤ 1, µ3
γ +ν3γ ≤ 1, µ4

δ +ν4δ ≤ 1, . . . , µn
ζ +νnζ ≤ 1, respectively.

The comparison of these spaces is shown in Figure 3.3.
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Figure 3.3: Comparison of spaces of IFN1T, IFN2T, IFN3T, IFN4T, · · ·, IFNnT.

Theorem 3.1. Every IFG(n-1)T is an IFGnT (for n ≥ 2).

20

Figure 1. Comparison of spaces of intuitionistic fuzzy sets of n-th type (IFSsnT, given as IFNnT): IFN1T,
IFN2T, IFN3T, IFN4T, · · · , IFNnT.

2. Operations on Pythagorean Fuzzy Graphs

Definition 1. [27] A Pythagorean fuzzy graph (PFG) on a nonempty set V is a pair P = (C,D) with C a PFS
on V and D a PFR on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≥ νC(x) ∨ νC(y),

and 0 ≤ µ2
D(xy) + ν2

D(xy) ≤ 1 for all x, y ∈ V, where, µD : V ×V −→ [0, 1] and νD : V ×V −→ [0, 1]
represent the membership and non-membership functions ofD, respectively. A PFG is also called an intuitionistic
fuzzy graph of 2-type (IFG2T). For convenience, IFS2T(PFS) is represented by IFN2T(PFN) (i.e., β = (µβ, νβ)).

Example 1. Consider a simple graph G = (V, E) such that V = {a, b, c, d, e} and E = {ab, bc, ad, bd, ce} ⊆
V ×V. Let

C =
〈(

a
0.7

,
b

0.7
,

c
0.8

,
d

0.7
,

e
0.9

)
,
(

a
0.6

,
b

0.6
,

c
0.3

,
d

0.7
,

e
0.4

)〉
and



Math. Comput. Appl. 2018, 23, 42 3 of 28

D =

〈(
ab
0.6

,
bc
0.7

,
ad
0.7

,
bd
0.6

,
ce
0.8

)
,
(

ab
0.6

,
bc
0.7

,
ad
0.7

,
bd
0.7

,
ce
0.5

)〉

be the Pythagorean fuzzy vertex set and the Pythagorean fuzzy edge set defined on V and E, respectively.
By direct calculations, it is easy to see from Figure 2 that P = (C,D) is a PFG (IFG2T).

Akram and Dudek [3] described intuitionistic fuzzy hypergraphs with applications. Recently, Naz et
al. [10] originally proposed the concept of PFGs, a generalization of the notion of Akram and Davvaz’s
IFGs [2], along with its applications in decision-making. Akram and Naz [1] studied energy of PFGs
with applications. Dhavudh and Srinivasan [6, 7] dealt with IFGs2T, and Verma et al. presented
some operations of PFGs. In this research study, we present some new operations, including rejection,
symmetric difference, Residue product and Maximal product of PFGs(IFGs2T), and explore some
of their properties. We introduce certain new notions, including IFGs3T, IFGs4T and IFGsnT, and
prove that every IFG(n-1)T is an IFGnT (for n ≥ 2). Moreover, we show by counter examples that
definition and operations of PFGs(IFGs2T) mentioned in articles [6, 7, 20] contain some flaws and in
general they are not true. Finally, we discuss application of PFGs in decision making.

2 Operations on Pythagorean Fuzzy Graphs

Definition 2.1. [10] A Pythagorean fuzzy graph(PFG) on a nonempty set V is a pair P = (C,D)
with C a PFS on V and D a PFR on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≥ νC(x) ∨ νC(y)

and 0 ≤ µ2
D(xy)+ν2D(xy) ≤ 1 for all x, y ∈ V , where, µD : V ×V −→ [0, 1] and νD : V ×V −→ [0, 1]

represents the membership and non-membership functions of D, respectively. A PFG is also called an
intuitionistic fuzzy graph of 2-type(IFG2T).

Example 2.1. Consider a simple graphG = (V,E) such that V = {a, b, c, d, e} and E = {ab,bc, ad,bd, ce} ⊆
V ×V. Let
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be the Pythagorean fuzzy vertex set and the Pythagorean fuzzy edge set defined on V and E, respec-
tively.
By direct calculations, it is easy to see from Figure 2.1 that P = (C,D) is a PFG (IFG2T).
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2

Figure 2. Pythagorean fuzzy graph (PFG) (intuitionistic fuzzy graph of second type, IFG2T).

Definition 2. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs of the graphs G1 = (V1, E1) and
G2 = (V2, E2), respectively. The rejection of P1 and P2 is denoted by P1 | P2 = (C1 | C2,D1 | D2) and
defined as:

(i)

{
(µC1 | µC2)(x1, x2) = µC1(x1) ∧ µC2(x2)

(νC1 | νC2)(x1, x2) = νC1(x1) ∨ νC2(x2)

for all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µD1 | µD2)((x, x2)(x, y2)) = µC1(x) ∧ µC2(x2) ∧ µC2(y2)

(νD1 | νD2)((x, x2)(x, y2)) = νC1(x) ∨ νC2(x2) ∨ νC2(y2)

for all x ∈ V1 , x2y2 /∈ E2,

(iii)

{
(µD1 | µD2)((x1, z)(y1, z)) = µC1(x1) ∧ µC1(y1) ∧ µC2(z)
(νD1 | νD2)((x1, z)(y1, z)) = νC1(x1) ∨ νC1(y1) ∨ νC2(z)

for all z ∈ V2 and x1y1 /∈ E1,

(iv)

{
(µD1 | µD2)((x1, x2)(y1, y2)) = µC1(x1) ∧ µC1(y1) ∧ µC2(x2) ∧ µC2(y2)

(νD1 | νD2)((x1, x2)(y1, y2)) = νC1(x1) ∨ νC1(y1) ∨ νC2(x2) ∨ νC2(y2)

for all x1y1 /∈ E1 and x2y2 /∈ E2.

Example 2. Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) on V1 = {l, m, n, o} and V2 = {p, q, r},
respectively, as shown in Figure 3. Their rejection P1 | P2 is shown in Figure 4.

Proposition 1. Let P1 and P2 be the PFGs of the graphs G1 and G2, respectively. The rejection P1 | P2 of P1

and P2 is a PFG.

Proof. LetP1 = (C1,D1) andP2 = (C1,D1) be the PFGs of the graphs G1 = (V1, E1) and G2 = (V2, E2),
respectively. Then, for (x1, x2)(y1, y2) ∈ E1 × E2,
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Definition 2.2. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs of the graphs G1 = (V1, E1) and
G2 = (V2, E2), respectively. The rejection of P1 and P2 is denoted by P1 | P2 = (C1 | C2,D1 | D2) and
defined as:

(i)

{

(µC1 | µC2)(x1, x2) = µC1(x1) ∧ µC2(x2)
(νC1 | νC2)(x1, x2) = νC1(x1) ∨ νC2(x2)

for all (x1, x2) ∈ V1 × V2,

(ii)

{

(µD1 | µD2)((x, x2)(x, y2)) = µC1(x) ∧ µC2(x2) ∧ µC2(y2)
(νD1 | νD2)((x, x2)(x, y2)) = νC1(x) ∨ νC2(x2) ∨ νC2(y2)

for all x ∈ V1 , x2y2 /∈ E2,

(iii)

{

(µD1 | µD2)((x1, z)(y1, z)) = µC1(x1) ∧ µC1(y1) ∧ µC2(z)
(νD1 | νD2)((x1, z)(y1, z)) = νC1(x1) ∨ νC1(y1) ∨ νC2(z)

for all z ∈ V2 and x1y1 /∈ E1,

(iv)

{

(µD1 | µD2)((x1, x2)(y1, y2)) = µC1(x1) ∧ µC1(y1) ∧ µC2(x2) ∧ µC2(y2)
(νD1 | νD2)((x1, x2)(y1, y2)) = νC1(x1) ∨ νC1(y1) ∨ νC2(x2) ∨ νC2(y2)

for all x1y1 /∈ E1 and x2y2 /∈ E2.

Example 2.2. Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) on V1 = {l,m, n, o} and V2 =
{p, q, r}, respectively, as shown in Figure 2.2. Their rejection P1 | P2 is shown in Figure 2.3.
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Figure 2.3: Rejection of two PFGs

Proposition 2.1. Let P1 and P2 be the PFGs of the graphs G1 and G2, respectively. The rejection
P1 | P2 of P1 and P2 is a PFG.

Proof. Let P1 = (C1,D1) and P2 = (C1,D1) be the PFGs of the graphs G1 = (V1, E1) and G2 =
(V2, E2), respectively. Then for (x1, x2)(y1, y2) ∈ E1 ×E2,
If x1 = y1 , x2y2 /∈ E2,

(µD1 | µD2)((x1, x2)(y1, y2)) = µC1(x1) ∧ µC2(x2) ∧ µC2(y2)

= {µC1(x1) ∧ µC2(x2)} ∧ {µC1(y1) ∧ µC2(y2)}

= (µC1 | µC2)(x1, x2) ∧ (µC1 | µC2)(y1, y2),

(νD1 | νD2)((x1, x2)(y1, y2)) = νC1(x1) ∨ νC2(x2) ∨ νC2(y2)

= {νC1(x) ∨ νC2(x2)} ∨ {νC1(y1) ∨ νC2(y2)}

= (νC1 | νC2)(x1, x2) ∨ (νC1 | νC2)(y1, y2).

If x2 = y2, x1y1 /∈ E1,

(µD1 | µD2)((x1, x2)(y1, y2)) = µC1(x1) ∧ µC1(y1) ∧ µC2(x2)

= {µC1(x1) ∧ µC2(x2)} ∧ {µC1(y1) ∧ µC2(y2)}

= (µC1 | µC2)(x1, x2) ∧ (µC1 | µC2)(y1, y2),

4

Figure 4. Rejection of two PFGs.

If x1 = y1 , x2y2 /∈ E2,

(µD1 | µD2)((x1, x2)(y1, y2)) = µC1(x1) ∧ µC2(x2) ∧ µC2(y2)

= {µC1(x1) ∧ µC2(x2)} ∧ {µC1(y1) ∧ µC2(y2)}
= (µC1 | µC2)(x1, x2) ∧ (µC1 | µC2)(y1, y2),

(νD1 | νD2)((x1, x2)(y1, y2)) = νC1(x1) ∨ νC2(x2) ∨ νC2(y2)

= {νC1(x) ∨ νC2(x2)} ∨ {νC1(y1) ∨ νC2(y2)}
= (νC1 | νC2)(x1, x2) ∨ (νC1 | νC2)(y1, y2).
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If x2 = y2, x1y1 /∈ E1,

(µD1 | µD2)((x1, x2)(y1, y2)) = µC1(x1) ∧ µC1(y1) ∧ µC2(x2)

= {µC1(x1) ∧ µC2(x2)} ∧ {µC1(y1) ∧ µC2(y2)}
= (µC1 | µC2)(x1, x2) ∧ (µC1 | µC2)(y1, y2),

(νD1 | νD2)((x1, x2)(y1, y2)) = νC1(x1) ∨ νC1(y1) ∨ νC2(x2)

= {νC1(x1) ∨ νC2(x2)} ∨ {νC1(y1) ∨ νC2(y2)}
= (νC1 | νC2)(x1, x2) ∨ (νC1 | νC2)(y1, y2).

If x1y1 /∈ E1, x2y2 /∈ E2,

(µD1 | µD2)((x1, x2)(y1, y2)) = µC1(x1) ∧ µC1(y1) ∧ µC2(x2) ∧ µC1(y2)

= {µC1(x1) ∧ µC2(x2)} ∧ {µC1(y1) ∧ µC2(y2)}
= (µC1 | µC2)(x1, x2) ∧ (µC1 | µC2)(y1, y2),

(νD1 | νD2)((x1, x2)(y1, y2)) = νC1(x1) ∨ νC1(y1) ∨ νC2(x2) ∨ νC1(y2)

= {νC1(x1) ∨ νC2(x2)} ∨ {νC1(y1) ∨ νC2(y2)}
= (νC1 | νC2)(x1, x2) ∨ (νC1 | νC2)(y1, y2).

Hence, from all cases it is clear that D1 | D2 is a PFR on C1 | C2. Hence, P1 | P2 = (C1 | C2,D1 | D2)

is a PFG.

Definition 3. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)P1|P2
(x1, x2) = ∑

(x1, x2)(y1, y2)∈E1×E2

(µD1 | µD2)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2 /∈E2

µC1(x1) ∧ µC2(x2) ∧ µC2(y2) + ∑
x2=y2, x1y1 /∈E1

µC1(x1) ∧ µC1(y1) ∧ µC2(x2)

+ ∑
x1y1 /∈E1, x2y2 /∈E2

µC1(x1) ∧ µC1(y1) ∧ µC2(x2) ∧ µC2(y2),

(dν)P1|P2
(x1, x2) = ∑

(x1, x2)(y1,y2)∈E1×E2

(νD1 | νD2)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2 /∈E2

νC1(x1) ∨ νC2(x2) ∨ νC2(y2) + ∑
x2=y2, x1y1 /∈E1

νC1(x1) ∨ νC1(y1) ∨ νC2(x2)

+ ∑
x1y1 /∈E1, x2y2 /∈E2

νC1(x1) ∨ νC1(y1) ∨ νC2(x2) ∨ νC2(y2).

Definition 4. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)P1|P2
(x1, x2) = ∑

(x1, x2)(y1, y2)∈E1×E2

(µD1 | µD2)((x1, x2)(y1, y2)) + (µC1 | µC2)(x1, x2)

= ∑
x1=y1, x2y2 /∈E2

µC1(x1) ∧ µC2(x2) ∧ µC2(y2) + ∑
x2=y2, x1y1 /∈E1

µC1(x1) ∧ µC1(y1) ∧ µC2(x2)

+ ∑
x1y1 /∈E1, x2y2 /∈E2

µC1(x1) ∧ µC1(y1) ∧ µC2(x2) ∧ µC2(y2) + (µC1(x1) ∧ µC2(x2)),
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(tdν)P1|P2
(x1, x2) = ∑

(x1, x2)(y1, y2)∈E1×E2

(νD1 | νD2)((x1, x2)(y1, y2)) + (νC1 | νC2)(x1, x2)

= ∑
x1=y1, x2y2 /∈E2

νC1(x1) ∨ νC2(x2) ∨ νC2(y2) + ∑
x2=y2, x1y1 /∈E1

νC1(x1) ∨ νC1(y1) ∨ νC2(x2)

+ ∑
x1y1 /∈E1, x2y2 /∈E2

νC1(x1) ∨ νC1(y1) ∨ νC2(x2) ∨ νC2(y2) + (νC1(x1) ∨ νC2(x2)).

Example 3. Consider two PFGs P1 and P2 as in Example 2. Their rejection is shown in Figure 4. Then, by
definition of vertex degree in rejection,

(dµ)P1|P2
(l, p) = {µC1(l) ∧ µC2(p) ∧ µC2(r)}+ {µC1(l) ∧ µC1(m) ∧ µC2(p) ∧ µC2(r)}

+ {µC1(l) ∧ µC1(n) ∧ µC2(p) ∧ µC2(r)}
= 0.6 + 0.6 + 0.6 = 1.8,

(dν)P1|P2
(l, p) = {νC1(l) ∨ νC2(p) ∨ νC2(r)}+ {νC1(l) ∨ νC1(m) ∨ νC2(p) ∨ νC2(r)}

+ {νC1(l) ∨ νC1(n) ∨ µC2(p) ∨ νC2(r)}
= 0.7 + 0.7 + 0.7 = 2.1.

Therefore, dP1|P2
(l, p) = (1.8, 2.1). Also, the total degree of vertex (l, p) is given by:

(tdµ)P1|P2
(l, p) = {µC1(l) ∧ µC2(p) ∧ µC2(r)}+ {µC1(l) ∧ µC1(m) ∧ µC2(p) ∧ µC2(r)}

+ {µC1(l) ∧ µC1(n) ∧ µC2(p) ∧ µC2(r)}+ (µC1(l) ∧ µC2(p))

= 0.6 + 0.6 + 0.6 + 0.6 = 2.4,

(tdν)P1|P2
(l, p) = {νC1(l) ∨ νC2(p) ∨ νC2(r)}+ {νC1(l) ∨ νC1(m) ∨ νC2(p) ∨ νC2(r)}

+ {νC1(l) ∨ νC1(n) ∨ νC2(p) ∨ νC2(r)}+ (νC1(l) ∨ νC2(p))

= 0.7 + 0.7 + 0.7 + 0.7 = 2.8.

Therefore, tdP1|P2
(l, p) = (2.4, 2.8).

Similarly, we can find the degree and total degree of all vertices in P1 | P2.

Definition 5. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs of the graphs G1 = (V1, E1) and
G2 = (V2, E2), respectively. The symmetric difference of P1 and P2 is denoted by P1⊕P2 = (C1⊕C2,D1⊕
D2) and defined as:

(i)

{
(µC1 ⊕ µC2)(x1, x2) = µC1(x1) ∧ µC2(x2)

(νC1 ⊕ νC2)(x1, x2) = νC1(x1) ∨ νC2(x2) for all (x1, x2) ∈V1×V2,

(ii)

{
(µD1 ⊕ µD2)(x, x2)(y, y2) = µC1(x) ∧ µD2(x2y2)

(νD1 ⊕ νD2)(x, x2)(y, y2) = νC1(x) ∨ νD2(x2y2) for all x∈V1, x2y2 ∈ E2,

(iii)

{
(µD1 ⊕ µD2)(x1, z)(y1, z) = µD1(x1y1) ∧ µC2(z)
(νD1 ⊕ νD2)(x1, z)(y1, z) = νD1(x1y1) ∨ νC2(z) for all z∈ V2, x1y1 ∈ E1,

(iv)





(µD1 ⊕ µD2)(x1, x2)(y1, y2) =





µC1(x1) ∧ µC1(y1) ∧ µD2(x2y2) for all x1y1 6∈ E1, x2y2 ∈ E2

or
µC2(x2) ∧ µC2(y2) ∧ µD1(x1y1) for all x1y1 ∈ E1, x2y2 6∈ E2,

(νD1 ⊕ νD2)(x1, x2)(y1, y2) =





νC1(x1) ∨ νC1(y1) ∨ νD2(x2y2) for all x1y1 6∈ E1, x2y2 ∈ E2

or
νC2(x2) ∨ νC2(y2) ∨ νD1(x1y1) for all x1y1 ∈ E1, x2y2 6∈ E2.

Example 4. Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) on V1 = {a, b} and V2 = {c, d, e},
respectively, as shown in Figure 5. Their symmetric difference P1 ⊕P2 is shown in Figure 6.
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(iv)




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




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
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
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Proposition 2. Let P1 and P2 be two PFGs of the graphs G1 and G2, respectively. The symmetric difference
P1 ⊕P2 of P1 and P2 is a PFG of G1 ⊕ G2.

Proof. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs of the graphs G1 and G2, respectively.
Let (x1, x2)(y1, y2) ∈ E1 × E2.

If x1 = y1 = x,

(µD1 ⊕ µD2)((x, x2)(x, y2)) = µC1(x) ∧ µD2(x2y2)

≤ µC1(x) ∧ {µC2(x2) ∧ µC2(y2)}
= {µC1(x) ∧ µC2(x2)} ∧ {µC1(x) ∧ µC2(y2)}
= (µC1 ⊕ µC2)(x, x2) ∧ (µC1 ⊕ µC2)(x, y2),

(νD1 ⊕ νD2)((x, x2)(x, y2)) = νC1(x) ∨ νD2(x2y2)

≥ νC1(x) ∨ {νC2(x2) ∨ νC2(y2)}
= {νC1(x) ∨ νC2(x2)} ∨ {νC1(x) ∨ νC2(y2)}
= (νC1 ⊕ νC2)(x, x2) ∨ (νC1 ⊕ νC2)(x, y2).
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If x2 = y2 = z,

(µD1 ⊕ µD2)((x1, z)(y1, z)) = µD1(x1y1) ∧ µC2(z)

≤ {µC1(x1) ∧ µC1(y1)} ∧ µC2(z)

= {µC1(x1) ∧ µC2(z)} ∧ {µC1(y1) ∧ µC2(z)}
= (µC1 ⊕ µC2)(x1, z) ∧ (µC1 ⊕ µC2)(y1, z),

(νD1 ⊕ νD2)((x1, z)(y1, z)) = νD1(x1y1) ∨ νC2(z)

≥ {νC1(x1) ∨ νC1(y1)} ∨ νC2(z)

= {νC1(x1) ∨ νC2(z)} ∨ {νC1(y1) ∨ νC2(z)}
= (νC1 ⊕ νC2)(x1, z) ∨ (νC1 ⊕ νC2)(y1, z).

If x1y1 6∈ E1 and x2y2 ∈ E2,

(µD1 ⊕ µD2)((x1, x2)(y1, y2)) = µC1(x1) ∧ µC1(y1) ∧ µD2(x2y2)

≤ µC1(x1) ∧ µC1(y1) ∧ {µC2(x2) ∧ µC2(y2)}
= {µC1(x1) ∧ µC2(x2)} ∧ {µC1(y1) ∧ µC2(y2)}
= (µC1 ⊕ µC2)(x1, x2) ∧ (µC1 ⊕ µC2)(y1, y2),

(νD1 ⊕ νD2)((x1, x2)(y1, y2)) = νC1(x1) ∨ νC1(y1) ∨ νD2(x2y2)

≥ νC1(x1) ∨ νC1(y1) ∨ {νC2(x2) ∨ νC2(y2)}
= {νC1(x1) ∨ νC2(x2)} ∨ {νC1(y1) ∨ νC2(y2)}
= (νC1 ⊕ νC2)(x1, x2) ∨ (νC1 ⊕ νC2)(y1, y2).

If x1y1 ∈ E1 and x2y2 6∈ E2,

(µD1 ⊕ µD2)((x1, x2)(y1, y2)) = µD1(x1y1) ∧ µC2(x2) ∧ µC2(y2)

≤ {µC1(x1) ∧ µC1(y1)} ∧ µC2(x2) ∧ µC2(y2)

= {µC1(x1) ∧ µC2(x2)} ∧ {µC1(y1) ∧ µC2(y2)}
= (µC1 ⊕ µC2)(x1, x2) ∧ (µC1 ⊕ µC2)(y1, y2),

(νD1 ⊕ νD2)((x1, x2)(y1, y2)) = νD1(x1y1) ∨ νC2(x2) ∨ νC2(y2)

≥ {νC1(x1) ∨ νC1(y1)} ∨ νC2(x2) ∨ νC2(y2)

= {νC1(x1) ∨ νC2(x2)} ∨ {νC1(y1) ∨ νC2(y2)}
= (νC1 ⊕ νC2)(x1, x2) ∨ (νC1 ⊕ νC2)(y1, y2).

Hence, P1 ⊕P2 is a PFG.

Definition 6. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)P1⊕P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(µD1 ⊕ µD1)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2∈E2

µC1(x1) ∧ µD2(x2y2) + ∑
x1y1∈E1, x2=y2

µD1(x1y1) ∧ µC2(x2)

+ ∑
x1y1 6∈E1,x2y2∈E2

µC1(x1) ∧ µC1(y1) ∧ µD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

µD1(x1y1) ∧ µC2(x2) ∧ µC2(y2),
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(dν)P1⊕P2(x1, x2) = ∑
(x1, x2)(y1,y2)∈E1×E2

(νD1 ⊕ νD1)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2∈E2

νC1(x1) ∨ νD2(x2y2) + ∑
x1y1∈E1, x2=y2

νD1(x1y1) ∨ νC2(x2)

+ ∑
x1y1 6∈E1, x2y2∈E2

νC1(x1) ∨ νC1(y1) ∨ νD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

νD1(x1y1) ∨ νC2(x) ∨ νC2(y2).

Theorem 1. Let P1 and P2 be two PFGs. If µC1 ≥ µD2 , νC1 ≤ νD2 and µC2 ≥ µD1 , νC2 ≤ νD1 .
Then, for all (x1, x2) ∈ V1 × V2, dP1⊕P2(x1, x2) = p2dP1(x1) + p1dP2(x2), where p1 =| V1 |
−dG1(x1) and p2 = | V2 | − dG2(x2).

Proof. By definition of vertex degree of symmetric difference, we have

(dµ)P1⊕P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(µD1 ⊕ µD1)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2∈E2

µC1(x1) ∧ µD2(x2y2) + ∑
x1y1∈E1, x2=y2

µD1(x1y1) ∧ µC2(x2)

+ ∑
x1y1 6∈E1, x2y2∈E2

µC1(x1) ∧ µC1(y1) ∧ µD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

µD1(x1y1) ∧ µC2(x2) ∧ µC2(y2)

= ∑
x2y2∈E2

µD2(x2y2) + ∑
x1y1∈E1

µD1(x1y1) + ∑
x1y1 6∈E1, x2y2∈E2

µD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

µD1(x1y1)

= p2(dµ)P1(x1) + p1(dµ)P2(x2),

(dν)P1⊕P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(νD1 ⊕ νD1)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2∈E2

νC1(x1) ∨ νD2(x2y2) + ∑
x1y1∈E1, x2=y2

νD1(x1y1) ∨ νC2(x2)

+ ∑
x1y1 6∈E1, x2y2∈E2

νC1(x1) ∨ νC1(y1) ∨ νD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

νD1(x1y1) ∨ νC2(x2) ∨ νC2(y2)

= ∑
x2y2∈E2

νD2(x2y2) + ∑
x1y1∈E1

νD1(x1y1) + ∑
x1y1 6∈E1, x2y2∈E2

νD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

νD1(x1y1)

= p2(dν)P1(x1) + p1(dν)P2(x2).

Hence, dP1⊕P2(x1, x2) = p2dP1(x1) + p1dP2(x2), where p1 =| V1 | − dG1(x1) and p2 =| V2 |
− dG2(x2).
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Definition 7. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)P1⊕P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(µD1 ⊕ µD1)((x1, x2)(y1, y2)) + (µC1 ⊕ µC2)(x1, x2)

= ∑
x1=y1, x2y2∈E2

µC1(x1) ∧ µD2(x2y2) + ∑
x1y1∈E1, x2=y2

µD1(x1y1) ∧ µC2(x2)

+ ∑
x1y1 6∈E1, x2y2∈E2

µC1(x1) ∧ µC1(y1) ∧ µD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

µD1(x1y1) ∧ µC2(x2) ∧ µC2(y2) + µC1(x1) ∧ µC2(x2),

(dν)P1⊕P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(νD1 ⊕ νD1)((x1, x2)(y1, y2)) + (νC1 ⊕ νC2)(x1, x2)

= ∑
x1=y1, x2y2∈E2

νC1(x1) ∨ νD2(x2y2) + ∑
x1y1∈E1, x2=y2

νD1(x1y1) ∨ νC2(x2)

+ ∑
x1y1 6∈E1, x2y2∈E2

νC1(x1) ∨ νC1(y1) ∨ νD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

νD1(x1y1) ∨ νC2(x2) ∨ νC2(y2) + νC1(x1) ∨ νC2(x2).

Theorem 2. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs. If

(i) µC1 ≥ µD2 and µC2 ≥ µD1 , then
(tdµ)P1⊕P2(x1, x2) = p2(tdµ)P1(x1) + p1(tdµ)P2(x2) − (p1 − 1)µp2(x2) − (p2 − 1)µp1(x1) −

µp1(x1) ∨ µp2(x2)

(ii) νC1 ≤ νD2 and νC2 ≤ νD1 , then
(tdν)P1⊕P2(x1, x2) = p2(tdν)P1(x1) + p1(tdν)P2(x2) − (p1 − 1)νp2(x2) − (p2 − 1)νp1(x1) −

νp1(x1) ∧ νp2(x2))

for all (x1, x2) ∈ V1 ×V2, p1 = | V1 | − dG1(x1) and p2 =| V2 | − dG2(x2).

Proof. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)P1⊕P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(µD1 ⊕ µD1)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2∈E2

µC1(x1) ∧ µD2(x2y2) + ∑
x1y1∈E1, x2=y2

µD1(x1y1) ∧ µC2(x2)

+ ∑
x1y1 6∈E1, x2y2∈E2

µC1(x1) ∧ µC1(y1) ∧ µD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

µD1(x1y1) ∧ µC2(x2) ∧ µC2(y2) + µC1(x1) ∧ µC2(x2)

= ∑
x2y2∈E2

µD2(x2y2) + ∑
x1y1∈E1

µD1(x1y1) + ∑
x1y1 6∈E1, x2y2∈E2

µD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

µD1(x1y1) + µC1(x1) ∧ µC2(x2)

= ∑
x2y2∈E2

µD2(x2y2) + ∑
x1y1∈E1

µD1(x1y1) + ∑
x1y1 6∈E1, x2y2∈E2

µD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

µD1(x1y1) + µC1(x1) + µC2(x2)− µC1(x1) ∨ µC2(x2)

= p2(tdµ)P1(x1) + p1(tdµ)P2(x2)− (p1 − 1)µp2(x2)− (p2 − 1)µp1(x1)

− µp1(x1) ∨ µp2(x2),
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(tdν)P1⊕P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(νD1 ⊕ νD1)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2∈E2

νC1(x1) ∨ νD2(x2y2) + ∑
x1y1∈E1, x2=y2

νD1(x1y1) ∨ νC2(x2)

+ ∑
x1y1 6∈E1, x2y2∈E2

νC1(x1) ∨ νC1(y1) ∨ νD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

νD1(x1y1) ∨ νC2(x2) ∨ νC2(y2) + νC1(x1) ∨ νC2(x2)

= ∑
x2y2∈E2

νD2(x2y2) + ∑
x1y1∈E1

νD1(x1y1) + ∑
x1y1 6∈E1, x2y2∈E2

νD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

νD1(x1y1) + νC1(x1) ∨ νC2(x2)

= ∑
x2y2∈E2

νD2(x2y2) + ∑
x1y1∈E1

νD1(x1y1) + ∑
x1y1 6∈E1, x2y2∈E2

νD2(x2y2)

+ ∑
x1y1∈E1, x2y2 6∈E2

νD1(x1y1) + νC1(x1) + νC2(x2) − νC1(x1) ∧ νC2(x2)

= p2(tdν)P1(x1) + p1(tdν)P2(x2)− (p1 − 1)νp2(x2)− (p2 − 1)νp1(x1)

− νp1(x1) ∧ νp2(x2).

Where p1 = | V1 | − dG1(x1) and p2 = | V2 | − dG2(x2).

Example 5. Consider two PFGs P1 and P2 as in Example 4. Their symmetric difference is shown in Figure 6.
Then, by Theorem 1, we must have

(dµ)P1⊕P2(a, e) = p2dµP1
(a) + p1dµP2

(e) = 1.8,

(dν)P1⊕P2(a, e) = p2dνP1(a) + p1dνP2(e) = 1.5.

Therefore, dP1⊕P2(a, e) = (1.8, 1.5).
In addition, by Theorem 2, we must have

(tdµ)P1⊕P2(a, e) = p2(tdµ)P1(a)+ p1(tdµ)P2(e)− (p1 − 1)µp2(e)− (p2 − 1)µp1(a)−µp1(a)∨µp2(e) = 2.4,

(tdν)P1⊕P2(a, e) = p2(tdν)P1(a)+ p1(tdν)P2(e)− (p1 − 1)µp2(e)− (p2 − 1)µp1(a)− νp1(a)∧ νp2(e) = 1.8.

Therefore, dP1⊕P2(a, e) = (2, 4, 1.8).
Similarly, we can find the degree and total degree of all vertices in P1 ⊕P2.

Definition 8. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs of the graphs G1 = (V1, E1) and
G2 = (V2, E2), respectively. The Residue product of P1 and P2 is denoted by P1 • P2 = (C1 • C2,D1 • D2)

and defined as:

(i)

{
(µC1 • µC2)(x1, x2) = µC1(x1) ∨ µC2(x2)

(νC1 • νC2)(x1, x2) = νC1(x1) ∧ νC2(x2) for all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µD1 • µD2)(x1, x2)(y1, y2) = µD1(x1y1)

(νD1 • νD2)(x1, x2)(y1, y2) = νD1(x1y1) for all x1y1 ∈ E1, x2 6= y2.

Example 6. Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) on V1 = {a, b, c} and V2 = {d, e},
respectively, as shown in Figure 7. Their Residue product P1 • P2 is shown in Figure 8.
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(ii)

{

(µD1 • µD2)(x1, x2)(y1, y2) = µD1(x1y1)
(νD1 • νD2)(x1, x2)(y1, y2) = νD1(x1y1) for all x1y1 ∈ E1, x2 6= y2.

Example 2.6. Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) on V1 = {a,b, c} and V2 = {d, e},
respectively, as shown in Figure 2.6. Their Residue product P1 • P2 is shown in Figure 2.7.
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Proposition 2.3. Let P1 and P2 be two PFGs of the graphs G1 and G2, respectively. The Residue
product P1 • P2 of P1 and P2 is a PFG of G1 •G2.

Proof. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs of the graphs G1 and G2, respectively.
let (x1, x2)(y1, y2) ∈ E1 × E2. If x1y1 ∈ E1 and x2 6= y2, then

(µD1 • µD2)((x1, x2)(y1, y2)) = µD1(x1y1)

≤ µC1(x1) ∧ µC1(y1)

≤ {µC1(x1) ∧ µC1(y1)} ∨ {µC2(x2) ∧ µC2(y2)}

= {µC1(x1) ∨ µC2(x2)} ∧ {µC1(y1) ∨ µC2(y2)}

= (µC1 • µC2)(x1, x2) ∧ (µC1 • µC2)(y1, y2),
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Figure 7. PFGs.

(ii)

{

(µD1 • µD2)(x1, x2)(y1, y2) = µD1(x1y1)
(νD1 • νD2)(x1, x2)(y1, y2) = νD1(x1y1) for all x1y1 ∈ E1, x2 6= y2.

Example 2.6. Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) on V1 = {a,b, c} and V2 = {d, e},
respectively, as shown in Figure 2.6. Their Residue product P1 • P2 is shown in Figure 2.7.

b

b b

a

b c

(0.8, 0.4)

(0.6, 0.7) (0.7, 0.5)

(0
.4
,
0
.7
) (0

.6
,
0
.6
)

(0.5, 0.8)

(a) P1

b b
d e

(0.6, 0.7)

(0.9, 0.2) (0.6, 0.6)

(b) P2

Figure 2.6: PFGs.

b b

b

bb

b

(a, d)

(0.9, 0.2) (0.9, 0.2)

(b, d)

(0.7, 0.5)
(c, d)

(0.6, 0.6)

(0.7, 0.5)

(0.8, 0.4)

(c, e)

(a, e)(b, e)

(0
.6
, 0
.6
)

(0
.6
, 0
.6
)

(0.5
, 0.8

)

(0.5
, 0.

8)

(0
.4
,
0
.7
)

(0
.4
,
0
.7
)

Figure 2.7: Residue product of two PFGs.

Proposition 2.3. Let P1 and P2 be two PFGs of the graphs G1 and G2, respectively. The Residue
product P1 • P2 of P1 and P2 is a PFG of G1 •G2.

Proof. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs of the graphs G1 and G2, respectively.
let (x1, x2)(y1, y2) ∈ E1 × E2. If x1y1 ∈ E1 and x2 6= y2, then

(µD1 • µD2)((x1, x2)(y1, y2)) = µD1(x1y1)

≤ µC1(x1) ∧ µC1(y1)

≤ {µC1(x1) ∧ µC1(y1)} ∨ {µC2(x2) ∧ µC2(y2)}

= {µC1(x1) ∨ µC2(x2)} ∧ {µC1(y1) ∨ µC2(y2)}

= (µC1 • µC2)(x1, x2) ∧ (µC1 • µC2)(y1, y2),

13

Figure 8. Residue product of two PFGs.

Proposition 3. Let P1 and P2 be two PFGs of the graphs G1 and G2, respectively. The Residue product
P1 • P2 of P1 and P2 is a PFG of G1 • G2.

Proof. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs of the graphs G1 and G2, respectively.
Let (x1, x2)(y1, y2) ∈ E1 × E2. If x1y1 ∈ E1 and x2 6= y2, then

(µD1 • µD2)((x1, x2)(y1, y2)) = µD1(x1y1)

≤ µC1(x1) ∧ µC1(y1)

≤ {µC1(x1) ∧ µC1(y1)} ∨ {µC2(x2) ∧ µC2(y2)}
= {µC1(x1) ∨ µC2(x2)} ∧ {µC1(y1) ∨ µC2(y2)}
= (µC1 • µC2)(x1, x2) ∧ (µC1 • µC2)(y1, y2),

(νD1 • νD2)((x1, x2)(y1, y2)) = νD1(x1y1)

≥ νC1(x1) ∨ νC1(y1)

≥ {νC1(x1) ∨ νC1(y1)} ∧ {νC2(x2) ∨ νC2(y2)}
= {νC1(x1) ∧ νC2(x2)} ∨ {νC1(y1) ∧ νC2(y2)}
= (νC1 • νC2)(x1, x2) ∨ (νC1 • νC2)(y1, y2).

Hence, P1 • P2 is a PFG.
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Definition 9. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)P1•P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(µD1 • µD2)((x1, x2)(y1, y2))

= ∑
x1y1∈E1, x2 6=y2

µD1(x1y1)

= (dµ)P1(x1),

(dν)P1•P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(νD1 • νD2)((x1, x2)(y1, y2))

= ∑
x1y1∈E1, x2 6=y2

νD1(x1y1)

= (dν)P1(x1).

Definition 10. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)P1•P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(µD1 • µD2)((x1, x2)(y1, y2)) + (µC1 • µC2)(x1, x2)

= ∑
x1y1∈E1, x2 6=y2

µD1(x1y1) + µC1(x1) ∧ µC2(x2)

= ∑
x1y1∈E1, x2 6=y2

µD1(x1y1) + µC1(x1) + µC2(x2)− µC1(x1) ∨ µC2(x2)

= (tdµ)P1(x1) + µC2(x2)− µC1(x1) ∨ µC2(x2),

(tdν)P1•P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(νD1 • νD2)((x1, x2)(y1, y2)) + (νC1 • νC2)(x1, x2)

= ∑
x1y1∈E1, x2 6=y2

νD1(x1y1) + νC1(x1) ∨ νC2(x2)

= ∑
x1y1∈E1, x2 6=y2

νD1(x1y1) + νC1(x1) + νC2(x2)− µC1(x1) ∧ νC2(x2)

= (tdν)P1(x1) + νC2(x2)− νC1(x1) ∧ νC2(x2).

Example 7. Consider two PFGs P1 and P2 as in Example 6. Their Residue product is shown in Figure 8.
Then by definition of vertex degree in Residue product,

(dµ)P1•P2(b, e) = (dµ)P1(b) = 0.9,

(dν)P1•P2(b, e) = (dν)P1(b) = 1.5.

Therefore, dP1•P2(b, e) = (0.9, 1.5).
In addition, by definition of total vertex degree in Residue product,

(tdµ)P1•P2(b, e) = (tdµ)P1(b) + µC2(e)− µC1(b) ∨ µC1(e) = 1.5,

(tdν)P1•P2(b, e) = (tdν)P1(b) + νC2(e)− νC1(b) ∧ νC1(e) = 2.2.

Therefore, tdP1•P2(b, e) = (1.5, 2.2).
Similarly, we can find the degree and total degree of all vertices in P1 • P2.

Definition 11. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs of G1 = (V1, E1) and G2 = (V2, E2),
respectively. The Maximal product of P1 and P2 is denoted by P1 ∗ P2 = (C1 ∗ C2,D1 ∗ D2) and defined as:
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(i)

{
(µC1 ∗ µC2)(x1, x2) = µC1(x1) ∨ µC2(x2)

(νC1 ∗ νC2)(x1, x2) = νC1(x1) ∧ νC2(x2)

for all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µD1 ∗ µD2)((x, x2)(x, y2)) = µC1(x) ∨ µD2(x2y2)

(νD1 ∗ νD2)((x, x2)(x, y2)) = νC1(x) ∧ νD2(x2y2)

for all x ∈ V1 and x2y2 ∈ E2,

(iii)

{
(µD1 ∗ µD2)((x1, z)(y1, z)) = µD1(x1y1) ∨ µC2(z))
(νD1 ∗ νD2)((x1, z)(y1, z)) = νD1(x1y1) ∧ νC2(z)

for all z ∈ V2 and x1y1 ∈ E1.

Example 8. Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) on V1 = {a, b} and V2 = {c, d, e},
respectively, as shown in Figure 9. Their Maximal product P1 ∗ P2 is shown in Figure 10.

Example 2.7. Consider two PFGs P1 and P2 as in Example 2.6, their Residue product is shown in
Figure 2.7. Then by definition of vertex degree in Residue product,

(dµ)P1•P2(b, e) = (dµ)P1(b) = 0.9,

(dν)P1•P2(b, e) = (dν)P1(b) = 1.5.

Therefore, dP1•P2(b, e) = (0.9, 1.5).
In addition, by definition of total vertex degree in Residue product,

(tdµ)P1•P2(b, e) = (tdµ)P1(b) + µC2(e)− µC1(b) ∨ µC1(e) = 1.5,

(tdν)P1•P2(b, e) = (tdν)P1(b) + νC2(e)− νC1(b) ∧ νC1(e) = 2.2.

Therefore, tdP1•P2(b, e) = (1.5, 2.2).
Similarly, we can find the degree and total degree of all vertices in P1 • P2.

Definition 2.11. Let P1 = (C1,D1) and P2 = (C2,D2) be two PFGs of G1 = (V1, E1) and G2 =
(V2, E2), respectively. The Maximal product of P1 and P2 is denoted by P1 ∗ P2 = (C1 ∗ C2,D1 ∗ D2)
and defined as :

(i)

{

(µC1 ∗ µC2)(x1, x2) = µC1(x1) ∨ µC2(x2)
(νC1 ∗ νC2)(x1, x2) = νC1(x1) ∧ νC2(x2)

for all (x1, x2) ∈ V1 × V2,

(ii)

{

(µD1 ∗ µD2)((x, x2)(x, y2)) = µC1(x) ∨ µD2(x2y2)
(νD1 ∗ νD2)((x, x2)(x, y2)) = νC1(x) ∧ νD2(x2y2)

for all x ∈ V1 and x2y2 ∈ E2,

(iii)

{

(µD1 ∗ µD2)((x1, z)(y1, z)) = µD1(x1y1) ∨ µC2(z))
(νD1 ∗ νD2)((x1, z)(y1, z)) = νD1(x1y1) ∧ νC2(z)

for all z ∈ V2 and x1y1 ∈ E1.

Example 2.8. Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) on V1 = {a,b} and V2 = {c,d, e},
respectively, as shown in Figure 2.8. Their Maximal product P1 ∗ P2 is shown in Figure 2.9.
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Proposition 2.4. Let P1 and P2 be two PFGs of the graph G1 and G2, respectively. The Maximal
product P1 ∗ P2 of P1 and P2 is a PFG of G1 ∗G2.

Proof. Let P1 and P2 be two PFGs of the graph G1 and G2, respectively. Let (x1, x2)(y1, y2) ∈ E1×E2,
If x1 = y1 and x2y2 ∈ E2,

(µD1 ∗ µD2)((x1, x2)(y1, y2)) = µC1(x1) ∨ µD2(x2y2)

≤ µC1(x1) ∨ {µC2(x2) ∧ µC2(y2)}

= {µC1(x1) ∨ µC2(x2)} ∧ {µC1(x1) ∨ µC2(y2)}

= (µC1 ∗ µC2)(x1, x2) ∧ (µC1 ∗ µC2)(y1, y2),

(νD1 ∗ νD2)((x1, x2)(y1, y2)) = νC1(x1) ∧ νD2(x2y2)

≥ νC1(x1) ∧ {νC2(x2) ∨ νC2(y2)}

= {νC1(x1) ∧ νC2(x2)} ∨ {νC1(x1) ∧ νC2(y2)}

= (νC1 ∗ νC2)(x1, x2) ∨ (νC1 ∗ νC2)(y1, y2).

If x2 = y2 and x1y1 ∈ E1,

(µD1 ∗ µD2)((x1, x2)(y1, y2)) = µD1(x1y1) ∨ µC2(x2)

≤ {µC1(x1) ∧ µC1(y1)} ∨ µC2(x2)

= {µC1(x1) ∨ µC2(x2)} ∧ {µC1(y1) ∨ µC2(x2)}

= (µC1 ∗ µC2)(x1, x2) ∧ (µC1 ∗ µC2)(y1, y2),

(νD1 ∗ νD2)((x1, x2)(y1, y2)) = νD1(x1y1) ∧ νC2(x2)

≥ {νC1(x1) ∨ νC1(y1)} ∧ νC2(x2)

= {νC1(x1) ∧ νC2(x2)} ∨ {νC1(y1) ∧ νC2(x2)}

= (νC1 ∗ νC2)(x1, x2) ∨ (νC1 ∗ νC2)(y1, y2).

Hence, the Maximal product of two PFGs is a PFG.

16

Figure 10. Maximal product of two PFGs.

Proposition 4. Let P1 and P2 be two PFGs of the graph G1 and G2, respectively. The Maximal product
P1 ∗ P2 of P1 and P2 is a PFG of G1 ∗ G2.

Proof. Let P1 and P2 be two PFGs of the graph G1 and G2, respectively. Let (x1, x2)(y1, y2) ∈ E1 × E2.
If x1 = y1 and x2y2 ∈ E2,

(µD1 ∗ µD2)((x1, x2)(y1, y2)) = µC1(x1) ∨ µD2(x2y2)

≤ µC1(x1) ∨ {µC2(x2) ∧ µC2(y2)}
= {µC1(x1) ∨ µC2(x2)} ∧ {µC1(x1) ∨ µC2(y2)}
= (µC1 ∗ µC2)(x1, x2) ∧ (µC1 ∗ µC2)(y1, y2),
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(νD1 ∗ νD2)((x1, x2)(y1, y2)) = νC1(x1) ∧ νD2(x2y2)

≥ νC1(x1) ∧ {νC2(x2) ∨ νC2(y2)}
= {νC1(x1) ∧ νC2(x2)} ∨ {νC1(x1) ∧ νC2(y2)}
= (νC1 ∗ νC2)(x1, x2) ∨ (νC1 ∗ νC2)(y1, y2).

If x2 = y2 and x1y1 ∈ E1,

(µD1 ∗ µD2)((x1, x2)(y1, y2)) = µD1(x1y1) ∨ µC2(x2)

≤ {µC1(x1) ∧ µC1(y1)} ∨ µC2(x2)

= {µC1(x1) ∨ µC2(x2)} ∧ {µC1(y1) ∨ µC2(x2)}
= (µC1 ∗ µC2)(x1, x2) ∧ (µC1 ∗ µC2)(y1, y2),

(νD1 ∗ νD2)((x1, x2)(y1, y2)) = νD1(x1y1) ∧ νC2(x2)

≥ {νC1(x1) ∨ νC1(y1)} ∧ νC2(x2)

= {νC1(x1) ∧ νC2(x2)} ∨ {νC1(y1) ∧ νC2(x2)}
= (νC1 ∗ νC2)(x1, x2) ∨ (νC1 ∗ νC2)(y1, y2).

Hence, the Maximal product of two PFGs is a PFG.

Definition 12. Let P1 and P2 be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)P1∗P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(µD1 ∗ µD2)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2∈E2

µC1(x1) ∨ µD2(x2y2) + ∑
x2=y2, x1y1∈E1

µD1(x1y1) ∨ µC2(x2),

(dν)P1∗P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(νD1 ∗ νD2)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2∈E2

νC1(x1) ∧ νD2(x2y2) + ∑
x2=y2, x1y1∈E1

νD1(x1y1) ∧ νC2(x2).

Theorem 3. Let P1 and P2 be two PFGs. If µC1 ≥ µD2 , νC1 ≤ νD2 and µC2 ≥ µD1 , νC2 ≤ νD1 . Then

dP1∗P2(x1, x2) = (dG2(x2)µC1(x1) + dG1(x1)µC2(x2), dG2(x2)νC1(x1) + dG1(x1)νC2(x2)).

Proof. By definition of vertex degree of P1 ∗ P2, we have

(dµ)P1∗P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(µD1 ∗ µD2)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2∈E2

µC1(x1) ∨ µD2(x2y2) + ∑
x2=y2, x1y1∈E1

µD1(x1y1) ∨ µC2(x2)

= ∑
x1=y1, x2y2∈E2

µC1(x1) + ∑
x2=y2, x1y1∈E1

µC2(x2)

= dG2(x2)µC1(x1) + dG1(x1)µC2(x2),
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(dν)P1∗P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(νD1 ∗ νD2)((x1, x2)(y1, y2))

= ∑
x1=y1, x2y2∈E2

νC1(x1) ∧ νD2(x2y2) + ∑
x2=y2, x1y1∈E1

νD1(x1y1) ∧ νC2(x2)

= ∑
x1=y1, x2y2∈E2

νC1(x1) + ∑
x2=y2, x1y1∈E1

νD1(x1y1)

= dG2(x2)νC1(x1) + dG1(x1)νC2(x2).

Definition 13. Let P1 and P2 be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)P1∗P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(µD1 ∗ µD2)((x1, x2)(y1, y2)) + (µC1 ∗ µC2)(x1, x2)

= ∑
x1=y1, x2y2∈E2

µC1(x1) ∨ µD2(x2y2) + ∑
x2=y2, x1y1∈E1

µD1(x1y1) ∨ µC2(x2)

+ µC1(x1) ∨ µC2(x2),

(tdν)P1∗P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(νD1 ∗ νD2)((x1, x2)(y1, y2)) + (νC1 ∗ νC2)(x1, x2)

= ∑
x1=y1, x2y2∈E2

νC1(x1) ∧ νD2(x2y2) + ∑
x2=y2, x1y1∈E1

νD1(x1y1) ∧ νC2(x2)

+ νC1(x1) ∧ νC2(x2).

Theorem 4. Let P1 and P2 be two PFGs.

(i) If µC1 ≥ µD2 and µC2 ≥ µD1 , then (tdµ)P1∗P2(x1, x2) = dG2(x2)µC1(x1) + dG1(x1)µC2(x2) +

µC1(x1) ∨ µC2(x2),
(ii) If νC1 ≤ νD2 and νC2 ≤ νD1 , then (tdν)P1∗P2(x1, x2) = dG2(x2)νC1(x1) + dG1(x1)νC2(x2) + νC1(x1) ∧

νC2(x2).

Proof. By definition of vertex degree of P1 ∗ P2, we have

(i) If µC1 ≥ µD2 and µC2 ≥ µD1 ,

(tdµ)P1∗P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(µD1 ∗ µD2)((x1, x2)(y1, y2)) + (µC1 ∗ µC2)(x1, x2)

= ∑
x1=y1, x2y2∈E2

µC1(x1) + ∑
x2=y2, x1y1∈E1

µC2(x2) + µC1(x1) ∨ µC2(x2)

= dG2(x2)µC1(x1) + dG1(x1)µC2(x2) + µC1(x1) ∨ µC2(x2).

(ii) If νC1 ≤ νD2 and νC2 ≤ νD1 ,

(tdν)P1∗P2(x1, x2) = ∑
(x1, x2)(y1, y2)∈E1×E2

(νD1 ∗ νD2)((x1, x2)(y1, y2)) + (νC1 ∗ νC2)(x1, x2)

= ∑
x1=y1, x2y2∈E2

νC1(x1) + ∑
x2=y2, x1y1∈E1

νC2(x2) + νC1(x1) ∧ νC2(x2)

= dG2(x2)νC1(x1) + dG1(x1)νC2(x2) + νC1(x1) ∧ νC2(x2).

Example 9. Consider two PFGs P1 and P2 as in Example 8. Their Maximal product is shown in Figure 10.
Then, by Theorem 3, we must have

(dµ)P1∗P2(b, c) = dG2(c)µC1(b) + dG1(b)µC2(c) = 2.0,
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(dν)P1∗P2(b, c) = dG2(c)νC1(b) + dG1(b)νC2(c) = 1.4.

Therefore, (d)P1∗P2(b, c) = (2, 1.4).
In addition, by Theorem 4, we must have

(tdµ)P1∗P2(b, c) = dG2(c)µC1(b) + dG1(b)µC2(c) + µC1(b) ∨ µC2(c) = 2.8,

(tdν)P1∗P2(b, c) = dG2(c)νC1(b) + dG1(b)νC2(c) + νC1(b) ∧ νC2(c) = 1.8.

Therefore, (td)P1∗P2(b, c) = (2.8, 1.8).
Similarly, we can find the degree and total degree of all vertices in P1 ∗ P2.

3. Intuitionistic Fuzzy Graphs of n-th Type

Definition 14. An intuitionistic fuzzy graph of third type (IFG3T, for short) on a nonempty set V is a pair
P = (C,D) with C an IFS3T on V and D an IFR3T on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≥ νC(x) ∨ νC(y)

and 0 ≤ µ3
D(xy) + ν3

D(xy) ≤ 1 for all x, y ∈ V, where, µD : V ×V −→ [0, 1] and νD : V ×V −→ [0, 1]
represent the membership and non-membership functions of D, respectively. For convenience, IFS3T is
represented by IFN3T (i.e., γ = (µγ, νγ)).

Example 10. Consider a simple graph G = (V, E) such that V = {a, b, c, d, e, f , g} and E =

{ab, ae, be, cd, de, e f , f g}. Let

C =
〈(

a
0.7

,
b

0.8
,

c
0.8

,
d

0.6
,

e
0.7

,
f

0.6
,

g
0.9

)
,
(

a
0.85

,
b

0.75
,

c
0.65

,
d

0.9
,

e
0.85

,
f

0.9
,

g
0.6

)〉
and

D =

〈(
ab

0.65
,

ae
0.5

,
be
0.6

,
cd

0.45
,

de
0.6

,
e f
0.4

,
f g
0.5

)
,
(

ab
0.85

,
ae
0.8

,
be
0.9

,
cd
0.9

,
de
0.9

,
e f

0.95
,

f g
0.95

)〉

be an intuitionistic fuzzy vertex set of third type and an intuitionistic fuzzy edge set of third type defined on V
and E, respectively.

By direct calculations, it is easy to see from Figure 11 that P = (C,D) is an IFG3T.

3 Intuitionistic Fuzzy Graphs of n-th Type

Definition 3.1. An intuitionistic fuzzy graph of 3-rd type(IFG3T, for short) on a nonempty set V is
a pair P = (C,D) with C an IFS3T on V and D an IFR3T on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≥ νC(x) ∨ νC(y)

and 0 ≤ µ3
D(xy)+ν3D(xy) ≤ 1 for all x, y ∈ V , where, µD : V ×V −→ [0, 1] and νD : V ×V −→ [0, 1]

represents the membership and non-membership functions of D, respectively.

Example 3.1. Consider a simple graph G = (V,E) such that V = {a, b, c, d, e, f, g} and E =
{ab, ae, be, cd, de, ef, fg}. Let

C =

〈(

a

0.7
,
b

0.8
,
c

0.8
,
d

0.6
,
e

0.7
,
f

0.6
,
g

0.9

)

,

(

a

0.85
,

b

0.75
,

c

0.65
,
d

0.9
,

e

0.85
,
f

0.9
,
g

0.6

)〉

and

D =

〈(

ab

0.65
,
ae

0.5
,
be

0.6
,
cd

0.45
,
de

0.6
,
ef

0.4
,
fg

0.5

)

,

(

ab

0.85
,
ae

0.8
,
be

0.9
,
cd

0.9
,
de

0.9
,
ef

0.95
,
fg

0.95

)〉

be an intuitionistic fuzzy vertex set of 3-rd type and an intuitionistic fuzzy edge set of 3-rd type defined
on V and E, respectively.
By direct calculations, it is easy to see from Figure 3.1 that P = (C,D) is an IFG3T.
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Figure 3.1: IFG3K

Definition 3.2. An intuitionistic fuzzy graph of 4-th type (IFG4T, for short) on a nonempty set V
is a pair P = (C,D) with C an IFS4T on V and D an IFR4T on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≥ νC(x) ∨ νC(y)

and 0 ≤ µ4
D(xy)+ν4D(xy) ≤ 1 for all x, y ∈ V , where, µD : V ×V −→ [0, 1] and νD : V ×V −→ [0, 1]

represents the membership and non-membership functions of D, respectively.

Example 3.2. Consider a graphG = (V,E), where V = {a, b, c, d, e, f} and E = {ac, bc, cd, ce, de, df, ef}.
Let

C =

〈(

a

0.9
,

b

0.75
,
c

0.8
,
d

0.6
,
e

0.9
,

f

0.85

)

,

(

a

0.75
,
b

0.9
,

c

0.85
,

d

0.95
,

e

0.75
,
f

0.8

)〉

and

D =

〈(

ac

0.8
,

bc

0.75
,
cd

0.55
,
ce

0.8
,
de

0.55
,
df

0.6
,
ef

0.85

)

,

(

ac

0.85
,
bc

0.9
,
cd

0.95
,

ce

0.85
,
de

0.95
,
df

0.95
,
ef

0.8

)〉

19

Figure 11. IFG3K.

Definition 15. An intuitionistic fuzzy graph of fourth type (IFG4T, for short) on a nonempty set V is a pair
P = (C,D) with C an IFS4T on V and D an IFR4T on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≥ νC(x) ∨ νC(y)
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and 0 ≤ µ4
D(xy) + ν4

D(xy) ≤ 1 for all x, y ∈ V, where, µD : V ×V −→ [0, 1] and νD : V ×V −→ [0, 1]
represent the membership and non-membership functions of D, respectively. For convenience, IFS4T is
represented by IFN4T (i.e., δ = (µδ, νδ)).

Example 11. Consider a graph G = (V, E), where V = {a, b, c, d, e, f} and E = {ac, bc, cd, ce, de, d f , e f}. Let

C =
〈(

a
0.9

,
b

0.75
,

c
0.8

,
d

0.6
,

e
0.9

,
f

0.85

)
,
(

a
0.75

,
b

0.9
,

c
0.85

,
d

0.95
,

e
0.75

,
f

0.8

)〉
and

D =

〈(
ac
0.8

,
bc

0.75
,

cd
0.55

,
ce
0.8

,
de

0.55
,

d f
0.6

,
e f

0.85

)
,
(

ac
0.85

,
bc
0.9

,
cd

0.95
,

ce
0.85

,
de

0.95
,

d f
0.95

,
e f
0.8

)〉

be an intuitionistic fuzzy vertex set of fourth type and an intuitionistic fuzzy edge set of fourth type defined on
V and E, respectively.

By direct calculations, it is easy to see from Figure 12 that P = (C,D) is an IFG4T.

be an intuitionistic fuzzy vertex set of 4-th type and an intuitionistic fuzzy edge set of 4-th type defined
on V and E, respectively.
By direct calculations, it is easy to see from Figure 3.2 that P = (C,D) is an IFG4T.
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Figure 3.2: IFG4K

Definition 3.3. An intuitionistic fuzzy graph of n-th type (IFGnT, for short) on a non-empty set V
is a pair P = (C,D) with C an IFSnT on V and D an IFRnT on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≥ νC(x) ∨ νC(y)

and 0 ≤ µn
D(xy)+νnD(xy) ≤ 1 for all x, y ∈ V , where, µD : V ×V −→ [0, 1] and νD : V ×V −→ [0, 1]

represents the membership and non-membership functions of D, respectively.

Theorem 3.1. Every IFG(n-1)T is an IFGnT (for n ≥ 2).

Proof. Let P = (C,D) be an IFG of (n− 1)-th type. Then for any edge xy ∈ E ⊆ V × V,

µ
(n−1)
D (xy) + ν

(n−1)
D (xy) ≤ 1,

where, µD : V × V −→ [0, 1] and νD : V × V −→ [0, 1]. Since, µD(xy), νD(xy) ∈ [0, 1], therefore,

µn
D(xy) ≤ µ

(n−1)
D (xy) and νnD(xy) ≤ ν

(n−1)
D (xy) for all n ≥ 2.

Thus,

µn
D(xy) + νnD(xy) ≤ µ

(n−1)
D (xy) + ν

(n−1)
D (xy) ≤ 1.

This implies that P = (C,D) is an IFGnT for n ≥ 2. This completes the proof.

Remark 3.1. Converse of Theorem 3.1 may not be true as it can be seen in the following examples.
1. Consider P1 = (C1,D1) as shown in Figure 3.3.

20

Figure 12. IFG4K.

Definition 16. An intuitionistic fuzzy graph of n-th type (IFGnT, for short) on a non-empty set V is a pair
P = (C,D) with C an IFSnT on V and D an IFRnT on V such that

µD(xy) ≤ µC(x)∧ µC(y), νD(xy) ≥ νC(x)∨ νC(y)

and 0 ≤ µn
D(xy) + νn

D(xy) ≤ 1 for all x, y ∈ V, where, µD : V ×V −→ [0, 1] and νD : V ×V −→ [0, 1]
represent the membership and non-membership functions of D, respectively. For convenience, IFSnT is
represented by IFNnT (i.e., ζ = (µζ , νζ)).

The key difference between IFN1T, IFN2T, IFN3T, IFN4T,. . ., IFnNT is their different constraint
conditions. That is, µα + να ≤ 1, µ2

β + ν2
β ≤ 1, µ3

γ + ν3
γ ≤ 1, µ4

δ + ν4
δ ≤ 1, . . . , µn

ζ + νn
ζ ≤ 1, respectively.

The comparison of these spaces is shown in Figure 1.

Theorem 5. Every IFG(n-1)T is an IFGnT (for n ≥ 2).

Proof. Let P = (C,D) be an IFG of (n− 1)-th type. Then for any edge xy ∈ E ⊆ V ×V,

µ
(n−1)
D (xy) + ν

(n−1)
D (xy) ≤ 1,

where µD : V × V −→ [0, 1] and νD : V × V −→ [0, 1]. Since µD(xy), νD(xy) ∈ [0, 1], therefore,
µn
D(xy) ≤ µ

(n−1)
D (xy) and νn

D(xy) ≤ ν
(n−1)
D (xy) for all n ≥ 2.

Thus,
µn
D(xy) + νn

D(xy) ≤ µ
(n−1)
D (xy) + ν

(n−1)
D (xy) ≤ 1.
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This implies that P = (C,D) is an IFGnT for n ≥ 2. This completes the proof.

Remark 1. The converse of Theorem 5 may not be true, as can be seen in the following examples.
1. Consider P1 = (C1,D1) as shown in Figure 13.

b b

b b

a
(0.7, 0.5)

b

c d

(0.7, 0.5)

(0.5, 0.7)

(0
.6
,
0
.5
) (0

.5
,
0
.7
)

(0.7, 0.4)

(0.6, 0.7)

(0.7, 0.4)(0.8, 0.3)

Figure 3.3: P1 = (C1,D1)

Notice that
µ2
D1

(xy) + ν2D1
(xy) ≤ 1 for all xy ∈ E.

This implies that P1 = (C1,D1) is an IFG2T(PFG). But

µD1(ab) + νD1(ab) = 0.5 + 0.7 = 1.2 6≤ 1.

This shows that P1 = (C1,D1) is not IFG1T. Thus, we conclude that every PFG(IF2T) may not be
an IFG1T.

2. Consider P2 = (C2,D2) as shown in Figure 3.4.

b b

bb

b

a b

e

dc

(0.7, 0.8)
(0.65, 0.85)

(0.8, 0.65)

(0.5, 0.85) (0.6, 0.9)

(0.9, 0.6)

(0.7, 0.7)

(0
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,
0
.9
)

(0
.4
9
,
0
.8
9
)

(0.5, 0.9)
(0
.6
, 0
.9
)

Figure 3.4: P2 = (C2,D2)

We see that
µ3
D2

(xy) + ν3D2
(xy) ≤ 1 for all xy ∈ E.

Thus, P2 = (C2,D2) is an IFG3T. But

µ2
D2

(ab) + ν2D2
(ab) = (0.65)2 + (0.85)2 = 1.145 6≤ 1.

This shows that P2 is not an IFG2T. Hence, every IFG3T may not be an IFG2T.
3. Consider P3 = (C3,D3) as shown in Figure 3.5.
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Figure 13. P1 = (C1,D1).
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This implies that P1 = (C1,D1) is an IFG2T(PFG). However,

µD1(ab) + νD1(ab) = 0.5 + 0.7 = 1.2 6≤ 1.

This shows that P1 = (C1,D1) is not an IFG1T. Thus, we conclude that every PFG(IF2T) may not be
an IFG1T.
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Figure 14. P2 = (C2,D2).

We see that
µ3
D2
(xy) + ν3

D2
(xy) ≤ 1 f or all xy ∈ E.

Thus, P2 = (C2,D2) is an IFG3T. However,

µ2
D2
(ab) + ν2

D2
(ab) = (0.65)2 + (0.85)2 = 1.145 6≤ 1.

This shows that P2 is not an IFG2T. Hence, every IFG3T may not be an IFG2T.
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3. Consider P3 = (C3,D3) as shown in Figure 15.
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Figure 3.5: P3 = (C3,D3)

We see that

µ4
D3

(xy) + ν4D3
(xy) ≤ 1 for all xy ∈ E.

Thus, P3 = (C3,D3) is an IFG4T. But

µ3
D2

(ab) + ν3D2
(ab) = (0.55)3 + (0.95)3 = 1.190 6≤ 1.

This shows that , P3 is not an IFG3T. Hence, every IFG4T may not be an IFG3T.
Consequently, every IFGnT need not be an IFG(n-1)T (for n ≥ 2).

4 Some Flaws in Definition of PFGs [6,20]

Dhavudh and Srinivasan [6, 7] dealt with IFGs2T, and Verma et al. presented some operations of
PFGs(IFGs2T). In this section, we show by counter examples that definition [6,20] and operations [20]
of PFGs contain some flaws and in general they are not true.

Definition 4.1. [6, 20] A PFG (IFG2T) on a nonempty set V is a pair P = (C,D) with C a PFS on
V and D a PFR on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≤ νC(x) ∨ νC(y)

and 0 ≤ µ2
D(xy) + ν2D(xy) ≤ 1 for all x, y ∈ V .

Example 4.1. Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) on V1 = {a, b, c, d} and V2 =
{a, b, e, f}, respectively, as shown in Figure 4.1.

b

b

b

b

a

d b

c
(0.7, 0.1)

(0.2, 0.4)

(0.5, 0.6)

(0
.4
, 0
.7
)

(0.4, 0.6)

(0
.1
,
0
.5
)(0

.7
,
0
.6
)

(0.2, 0.6)
(0.7, 0.7)

(a) P1

b

b

a

b

(0.3, 0.8)

(0
.2
,
0
.8
)

(0.7, 0.2)

b

b

b

f

e

c

(0
.5
, 0

.7
)

(0.6, 0.7)

(0.7, 0.7)

(0.5, 0.6)

(0.3, 0.7)

(0
.6
, 0

.6
) (0.4, 0.5)

(b) P2

Figure 4.1: PFGs.

22

Figure 15. P3 = (C3,D3).

We see that
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Thus, P3 = (C3,D3) is an IFG4T. However,
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(ab) = (0.55)3 + (0.95)3 = 1.190 6≤ 1.

This shows that P3 is not an IFG3T. Hence, every IFG4T may not be an IFG3T.
Consequently, every IFGnT need not be an IFG(n− 1)T (for n ≥ 2).

4. Some Flaws in the Definition of PFGs (IFGs2T)

Dhavudh and Srinivasan [29,30] dealt with IFGs2T, and Verma et al. [31] presented some
operations of PFGs (IFGs2T). In this section, we show by counter examples that definition [29,30] and
operations [31] of PFGs contain some flaws.

Definition 17. [29,31] A PFG (IFG2T) on a nonempty set V is a pair P = (C,D) with C a PFS on V and D
a PFR on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≤ νC(x) ∨ νC(y)

and 0 ≤ µ2
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This shows that , P3 is not an IFG3T. Hence, every IFG4T may not be an IFG3T.
Consequently, every IFGnT need not be an IFG(n-1)T (for n ≥ 2).

4 Some Flaws in Definition of PFGs [6,20]

Dhavudh and Srinivasan [6, 7] dealt with IFGs2T, and Verma et al. presented some operations of
PFGs(IFGs2T). In this section, we show by counter examples that definition [6,20] and operations [20]
of PFGs contain some flaws and in general they are not true.

Definition 4.1. [6, 20] A PFG (IFG2T) on a nonempty set V is a pair P = (C,D) with C a PFS on
V and D a PFR on V such that

µD(xy) ≤ µC(x) ∧ µC(y), νD(xy) ≤ νC(x) ∨ νC(y)

and 0 ≤ µ2
D(xy) + ν2D(xy) ≤ 1 for all x, y ∈ V .

Example 4.1. Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) on V1 = {a, b, c, d} and V2 =
{a, b, e, f}, respectively, as shown in Figure 4.1.
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(a) Union of two PFGs
Using Definition 17, we see that the union P1 ∪ P2 as displayed in Figure 17 is not a PFG, since

µD(ab) = 0.2 ≤ 0.7 = 0.7∧ 0.7 = µC(a) ∧ µC(b),

νD(ab) = 0.8 6≤ 0.2 = 0.1∨ 0.2 = νC(a) ∨ νC(b).
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Using Definition 4.1, we see that the union P1 ∪ P2 as displayed in Figure 4.2 is not a PFG since

µD(ab) = 0.2 ≤ 0.7 = 0.7 ∧ 0.7 = µC(a) ∧ µC(b),

νD(ab) = 0.8 6≤ 0.2 = 0.1 ∨ 0.2 = νC(a) ∨ νC(b).

(b) Direct sum P1 ⊕P2
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Figure 4.3: Direct Sum of two PFGs.

Definition 4.1 shows that direct sum P1⊕P2 of PFGs P1 = (C1,D1) and P2 = (C2,D2) as displayed
in Figure 4.3 is not a PFG since

µD(ab) = 0.2 ≤ 0.7 = 0.7 ∧ 0.7 = µC(a) ∧ µC(b),

νD(ab) = 0.8 6≤ 0.2 = 0.1 ∨ 0.2 = νC(a) ∨ νC(b).

(c) Residue product P1 • P2

Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) as shown in Figure 4.4.
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Figure 17. Union of two PFGs.

(b) Direct sum P1 ⊕P2

Definition 17 shows that direct sum P1 ⊕P2 of PFGs P1 = (C1,D1) and P2 = (C2,D2) as displayed in
Figure 18 is not a PFG, since

µD(ab) = 0.2 ≤ 0.7 = 0.7∧ 0.7 = µC(a) ∧ µC(b),

νD(ab) = 0.8 6≤ 0.2 = 0.1∨ 0.2 = νC(a) ∨ νC(b).
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Using Definition 4.1, we see that the union P1 ∪ P2 as displayed in Figure 4.2 is not a PFG since

µD(ab) = 0.2 ≤ 0.7 = 0.7 ∧ 0.7 = µC(a) ∧ µC(b),

νD(ab) = 0.8 6≤ 0.2 = 0.1 ∨ 0.2 = νC(a) ∨ νC(b).

(b) Direct sum P1 ⊕P2
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Definition 4.1 shows that direct sum P1⊕P2 of PFGs P1 = (C1,D1) and P2 = (C2,D2) as displayed
in Figure 4.3 is not a PFG since

µD(ab) = 0.2 ≤ 0.7 = 0.7 ∧ 0.7 = µC(a) ∧ µC(b),

νD(ab) = 0.8 6≤ 0.2 = 0.1 ∨ 0.2 = νC(a) ∨ νC(b).

(c) Residue product P1 • P2

Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) as shown in Figure 4.4.
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Figure 18. Direct Sum of two PFGs.

(c) Residue product P1 • P2

Consider two PFGs P1 = (C1,D1) and P2 = (C2,D2) as shown in Figure 19.
Definition 17 shows that Residue product P1 • P2 as displayed in Figure 20 is not a PFG, since

µD((a, d)(b, e)) = 0.4 ≤ 0.6 = 0.9∧ 0.6 = µC((a, d)) ∧ µC((b, e)),

νD((a, d)(b, e)) = 0.7 6≤ 0.6 = 0.2∨ 0.6 = νC((a, d)) ∨ νC((b, e)).
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Figure 4.4: PFGs.
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Figure 4.5: Residue Product of two PFGs.

Definition 4.1 shows that Residue product P1 •P2 as displayed in the Figure 4.5 is not a PFG since

µD((a, d)(b, e)) = 0.4 ≤ 0.6 = 0.9 ∧ 0.6 = µC((a, d)) ∧ µC((b, e)),

νD((a, d)(b, e)) = 0.7 6≤ 0.6 = 0.2 ∨ 0.6 = νC((a, d)) ∨ νC((b, e)).

Remark 4.1. By applying Definition 2.1, it has been shown in [10] that all these operations hold.
Thus we conclude that Definition 2.1 [10] is more powerful than Definition 4.1 [6, 20].

5 Application to Group Decision-Making

In this section, we apply the concept of PFGs to a decision-making problem. A group decision-
making problem concerning the ‘selection of most important investment object’ is solved to illustrate
the applicability of the proposed concept of PFGs in realistic scenario based on Pythagorean fuzzy
preference relations (PFPRs) [10]. The algorithm of the selection of most important investment object
within the framework of PFPR is outlined in Algorithm 1.

5.1 Selection of most important investment object

A risk preference investor wants to put an idle fund into in the Shanghai Stock Exchange as a long-
term investment. He thinks that six companies, zi(i = 1, 2, . . . , 6), which represent six different
industries, are very promising. Given that his time and energy are limited, he plans to choose from
these options the most important investment object. Therefore, he consults his investment adviser
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Figure 19. PFGs.
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Figure 4.5: Residue Product of two PFGs.

Definition 4.1 shows that Residue product P1 •P2 as displayed in the Figure 4.5 is not a PFG since

µD((a, d)(b, e)) = 0.4 ≤ 0.6 = 0.9 ∧ 0.6 = µC((a, d)) ∧ µC((b, e)),

νD((a, d)(b, e)) = 0.7 6≤ 0.6 = 0.2 ∨ 0.6 = νC((a, d)) ∨ νC((b, e)).

Remark 4.1. By applying Definition 2.1, it has been shown in [10] that all these operations hold.
Thus we conclude that Definition 2.1 [10] is more powerful than Definition 4.1 [6, 20].

5 Application to Group Decision-Making

In this section, we apply the concept of PFGs to a decision-making problem. A group decision-
making problem concerning the ‘selection of most important investment object’ is solved to illustrate
the applicability of the proposed concept of PFGs in realistic scenario based on Pythagorean fuzzy
preference relations (PFPRs) [10]. The algorithm of the selection of most important investment object
within the framework of PFPR is outlined in Algorithm 1.

5.1 Selection of most important investment object

A risk preference investor wants to put an idle fund into in the Shanghai Stock Exchange as a long-
term investment. He thinks that six companies, zi(i = 1, 2, . . . , 6), which represent six different
industries, are very promising. Given that his time and energy are limited, he plans to choose from
these options the most important investment object. Therefore, he consults his investment adviser
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Figure 20. Residue Product of two PFGs.

Remark 2. By applying Definition 1, it has been shown in [27] that all these operations hold. Thus, we conclude
that Definition 1 [27] is more powerful than Definition 17 [29,31].

5. Application to Group Decision-Making

In this section, we apply the concept of PFGs to a decision-making problem. A group
decision-making problem concerning the “selection of most important investment object” is solved to
illustrate the applicability of the proposed concept of PFGs in a realistic scenario based on Pythagorean
fuzzy preference relations (PFPRs) [27]. The algorithm of the selection of the most important investment
object within the framework of a PFPR is outlined in Algorithm 1.

Selection of the Most Important Investment Object

A risk preference investor wants to put an idle fund into in the Shanghai Stock Exchange as a
long-term investment. He thinks that six companies, zi (i = 1, 2, . . . , 6), which represent six different
industries, are very promising. Given that his time and energy are limited, he plans to choose the
most important investment object from these options. Therefore, he consults his investment adviser
e1 and three stock specialists e2, e3, and e4. The decision makers compare six companies with respect
to the possibility of the increasing trend of the stock prices and the appraisements of these corporate
stocks, and provide their preference information on zi (i = 1, 2, . . . , 6), which are represented by the
Pythagorean fuzzy element (PFE) p(k)ij which indicates the preferences of experts ek (k = 1, 2, 3, 4) over

each pair of stocks [32]. The corresponding PFPRs Rk = (p(k)ij )6×6 are shown as follows.
The PFDGs Di corresponding to PFPRs Rk (k = 1, 2, 3, 4) given in Tables 1–4 are shown in

Figure 21.
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Table 4: PFPR of the third stock specialist.

R4 z1 z2 z3 z4 z5 z6
z1 (0.5, 0.5) (0.3, 0.9) (0.4, 0.7) (0.6, 0.3) (0.7, 0.6) (0.1, 0.8)
z2 (0.9, 0.3) (0.5, 0.5) (0.9, 0.4) (0.5, 0.8) (0.6, 0.8) (0.5, 0.7)
z3 (0.7, 0.4) (0.4, 0.9) (0.5, 0.5) (0.7, 0.4) (0.5, 0.8) (0.9, 0.3)
z4 (0.3, 0.6) (0.8, 0.5) (0.4, 0.7) (0.5, 0.5) (0.9, 0.3) (0.4, 0.6)
z5 (0.6, 0.7) (0.8, 0.6) (0.8, 0.5) (0.3, 0.9) (0.5, 0.5) (0.9, 0.4)
z6 (0.8, 0.1) (0.7, 0.5) (0.3, 0.9) (0.6, 0.4) (0.4, 0.9) (0.5, 0.5)

The PFDGs Di corresponding to PFPRs Rk (k = 1, 2, 3, 4) given in Tables 1–4, are shown in
Figure 5.1.
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Figure 21. Pythagorean fuzzy digraphs.

Table 1. Pythagorean fuzzy preference relation (PFPR) of the investment adviser.

R1 z1 z2 z3 z4 z5 z6

z1 (0.5, 0.5) (0.4, 0.7) (0.9, 0.1) (0.7, 0.2) (0.3, 0.8) (0.5, 0.8)
z2 (0.7, 0.4) (0.5, 0.5) (0.4, 0.8) (0.6, 0.7) (0.1, 0.5) (0.8, 0.6)
z3 (0.1, 0.9) (0.8, 0.4) (0.5, 0.5) (0.2, 0.9) (0.7, 0.5) (0.3, 0.7)
z4 (0.2, 0.7) (0.7, 0.6) (0.9, 0.2) (0.5, 0.5) (0.1, 0.3) (0.8, 0.3)
z5 (0.8, 0.3) (0.5, 0.1) (0.5, 0.7) (0.3, 0.1) (0.5, 0.5) (0.7, 0.7)
z6 (0.8, 0.5) (0.6, 0.8) (0.7, 0.3) (0.3, 0.8) (0.7, 0.7) (0.5, 0.5)

Table 2. PFPR of the first stock specialist.

R2 z1 z2 z3 z4 z5 z6

z1 (0.5, 0.5) (0.8, 0.6) (0.5, 0.7) (0.8, 0.4) (0.7, 0.6) (0.3, 0.6)
z2 (0.6, 0.8) (0.5, 0.5) (0.3, 0.8) (0.2, 0.9) (0.7, 0.5) (0.8, 0.3)
z3 (0.7, 0.5) (0.8, 0.3) (0.5, 0.5) (0.7, 0.4) (0.2, 0.6) (0.9, 0.2)
z4 (0.4, 0.8) (0.9, 0.2) (0.4, 0.7) (0.5, 0.5) (0.8, 0.5) (0.3, 0.7)
z5 (0.6, 0.7) (0.5, 0.7) (0.6, 0.2) (0.5, 0.8) (0.5, 0.5) (0.6, 0.8)
z6 (0.6, 0.3) (0.3, 0.8) (0.2, 0.9) (0.7, 0.3) (0.8, 0.6) (0.5, 0.5)
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Table 3. PFPR of the second stock specialist.

R3 z1 z2 z3 z4 z5 z6

z1 (0.5, 0.5) (0.2, 0.8) (0.7, 0.6) (0.5, 0.8) (0.3, 0.9) (0.7, 0.6)
z2 (0.8, 0.2) (0.5, 0.5) (0.1, 0.4) (0.6, 0.6) (0.8, 0.5) (0.5, 0.4)
z3 (0.6, 0.7) (0.4, 0.1) (0.5, 0.5) (0.1, 0.7) (0.3, 0.8) (0.9, 0.2)
z4 (0.8, 0.5) (0.6, 0.6) (0.7, 0.1) (0.5, 0.5) (0.6, 0.8) (0.2, 0.7)
z5 (0.9, 0.3) (0.5, 0.8) (0.8, 0.3) (0.8, 0.6) (0.5, 0.5) (0.8, 0.3)
z6 (0.6, 0.7) (0.4, 0.5) (0.2, 0.9) (0.7, 0.2) (0.3, 0.8) (0.5, 0.5)

Table 4. PFPR of the third stock specialist.

R4 z1 z2 z3 z4 z5 z6

z1 (0.5, 0.5) (0.3, 0.9) (0.4, 0.7) (0.6, 0.3) (0.7, 0.6) (0.1, 0.8)
z2 (0.9, 0.3) (0.5, 0.5) (0.9, 0.4) (0.5, 0.8) (0.6, 0.8) (0.5, 0.7)
z3 (0.7, 0.4) (0.4, 0.9) (0.5, 0.5) (0.7, 0.4) (0.5, 0.8) (0.9, 0.3)
z4 (0.3, 0.6) (0.8, 0.5) (0.4, 0.7) (0.5, 0.5) (0.9, 0.3) (0.4, 0.6)
z5 (0.6, 0.7) (0.8, 0.6) (0.8, 0.5) (0.3, 0.9) (0.5, 0.5) (0.9, 0.4)
z6 (0.8, 0.1) (0.7, 0.5) (0.3, 0.9) (0.6, 0.4) (0.4, 0.9) (0.5, 0.5)

Compute the averaged PFE p(k)i of the company zi over all the other companies for the experts
ek(k = 1, 2, 3, 4) by the Pythagorean fuzzy averaging (PFA) operator:

p(k)i = PFA(p(k)i1 , p(k)i2 , . . . , p(k)in ) =




√√√√√1−



n

∏
j=1

(
1− µ2

ij

)



1/n

,




n

∏
j=1

νij




1/n

 , i = 1, 2, 3, . . . , n.

The aggregation results of the experts ek (k = 1, 2, 3, 4) are as follows:

e1 : p(1)1 = (0.6413, 0.4060), p(1)2 = (0.5942, 0.5681), p(1)3 = (0.5464, 0.6198), p(1)4 = (0.6780, 0.3947),

p(1)5 = (0.5977, 0.3004), p(1)6 = (0.6427, 0.5681);
e2 : p(2)1 = (0.6567, 0.5582), p(2)2 = (0.5897, 0.5924), p(2)3 = (0.7185, 0.3915), p(2)4 = (0.6587, 0.5192),

p(2)5 = (0.5542, 0.5616), p(2)6 = (0.5897, 0.5185);
e3 : p(3)1 = (0.5388, 0.6854), p(3)2 = (0.6332, 0.4107), p(3)3 = (0.5996, 0.3971), p(3)4 = (0.6204, 0.4509),

p(3)5 = (0.7659, 0.4318), p(3)6 = (0.4988, 0.5415);
e4 : p(4)1 = (0.4949, 0.5972), p(4)2 = (0.7334, 0.5473), p(4)3 = (0.6822, 0.5085), p(4)4 = (0.6587, 0.5161),

p(4)5 = (0.7281, 0.5793), p(4)6 = (0.6018, 0.4481).

To determine the weights of the experts, we first utilize the Pythagorean fuzzy Hamming distance
between two PFEs:

D(p1, p2) =
1
2

(
|µ2

p1
− µ2

p2
|+ |ν2

p1
− ν2

p2
|+ |π2

p1
− π2

p2
|
)

,

where πp1 =
√

1− µ2
p1
− ν2

p1
, πp2 =

√
1− µ2

p2
− ν2

p2
,

to compute d(p(l)ij , p(k)ij ), i, j = 1, 2, . . . , 6; l, k = 1, 2, 3, 4 and obtain the difference matrix Dlk =

(d(lk)ij )n×n = d(p(l)ij , p(k)ij )n×n as follows:

D12 = D21 =




0 0.4800 0.5600 0.2700 0.4000 0.4400
0.4800 0 0.0700 0.3200 0.4800 0.2700
0.5600 0.0700 0 0.6500 0.4500 0.7200
0.2700 0.3200 0.6500 0 0.7900 0.5500
0.4000 0.4800 0.4500 0.7900 0 0.1500
0.4400 0.2700 0.7200 0.5500 0.1500 0




,
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D13 = D31 =




0 0.1500 0.3500 0.6000 0.1700 0.2800
0.1500 0 0.6300 0.1300 0.6300 0.5900
0.3500 0.6300 0 0.3500 0.4000 0.7200
0.6000 0.1300 0.3500 0 0.9000 0.6000
0.1700 0.6300 0.4000 0.9000 0 0.4000
0.2800 0.5900 0.7200 0.6000 0.4000 0




,

D14 = D41 =




0 0.3200 0.6500 0.1300 0.4000 0.2400
0.3200 0 0.6500 0.1500 0.7400 0.3900
0.6500 0.6500 0 0.6500 0.3900 0.7200
0.1300 0.1500 0.6500 0 0.8000 0.4800
0.4000 0.7400 0.3900 0.8000 0 0.3300
0.2400 0.3900 0.7200 0.4800 0.3300 0




,

D23 = D32 =




0 0.6000 0.2400 0.4800 0.4500 0.4000
0.6000 0 0.5600 0.4500 0.1500 0.3900
0.2400 0.5600 0 0.4800 0.3300 0
0.4800 0.4500 0.4800 0 0.3900 0.0500
0.4500 0.1500 0.3300 0.3900 0 0.5500
0.4000 0.3900 0 0.0500 0.5500 0




,

D24 = D42 =




0 0.5500 0.0900 0.3500 0 0.2800
0.5500 0 0.7200 0.2100 0.3900 0.4000
0.0900 0.7200 0 0 0.4900 0.0500
0.3500 0.2100 0 0 0.1700 0.1300

0 0.3900 0.4900 0.1700 0 0.4800
0.2800 0.4000 0.0500 0.1300 0.4800 0




,

D34 = D43 =




0 0.2200 0.3300 0.5500 0.4500 0.4800
0.2200 0 0.8000 0.2800 0.3900 0.3300
0.3300 0.8000 0 0.4800 0.1600 0.0500
0.5500 0.2800 0.4800 0 0.5500 0.1300
0.4500 0.3900 0.1600 0.5500 0 0.2400
0.4800 0.3300 0.0500 0.1300 0.2400 0




,

D11 = D22 = D33 = D44 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




.

Utilize Equation (1) to determine the average values of the difference matrix

d̄lk =
1
n2

n

∑
i=1

n

∑
j=1

d(lk)ij (1)

d̄12 = d̄21 =
13.2000

36
= 0.3667, d̄13 = d̄31 =

13.8000
36

= 0.3833, d̄14 = d̄41 =
14.0798

36
= 0.3911,

d̄23 = d̄32 =
11.0400

36
= 0.3067, d̄24 = d̄42 =

8.6199
36

= 0.2394, d̄34 = d̄43 =
10.8798

36
= 0.3022.

Using dl =
s
∑

k=1,k 6=l
d̄lk, we determine the deviation of the expert e1 from the reaming experts

as follows:
d1 = 1.1411, d2 = 0.9128, d3 = 34.6900, d4 = 0.9328.
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Utilizing Equation (2), we determine the weights of the experts.

wl =
(dl)

−1

s
∑

l=1
(dl)−1

, l = 1, 2, . . . , s (2)

w1 = 0.0303, w2 = 0.0242, w3 = 0.9207, w4 = 0.0248.

Compute a collective PFE pi (i = 1, 2, . . . , n) of the company zi over all the other companies using
the Pythagorean fuzzy weighted averaging (PFWA) operator [4]

pi = PFWA(p(1)i , p(2)i , . . . , p(s)i ) =

(√
1−

s

∏
k=1

(
1− (µ2

i )
)wi ,

s

∏
k=1

(νi)
wi

)
.

That is,

p1 = (0.5450, 0.6690), p2 = (0.6342, 0.4214), p3 = (0.6041, 0.4048),

p4 = (0.6243, 0.4521), p5 = (0.7579, 0.4329), p6 = (0.5099, 0.5392).

Compute the score function s(pi) = µ2
i − ν2

i [7] of pi(i = 1, 2, 3, 4, 5, 6), and rank all the companies
zi(i = 1, 2, 3, 4, 5, 6) according to the values of s(pi)(i = 1, 2, 3, 4, 5, 6):

s(p1) = −0.1505, s(p2) = 0.2246, s(p3) = 0.2011, s(p4) = 0.1854, s(p5) = 0.3870, s(p6) = −0.0307.

Then, z5 � z2 � z3 � z4 � z6 � z1. Thus, the optimal choice is z5.
We present our proposed method in the following Algorithm.

Algorithm 1: A discrete set of alternatives Z = {z1, z2, . . . , zn}, a set of experts e =

{e1, e2, . . . , em}, and construction of PFPR Rk = (p(k)ij )n×n for each expert.

1. Begin

2. Aggregate all p(k)ij (j = 1, 2, . . . , n) corresponding to the alternative zi and get the PFE p(k)i of the
alternative zi over all the other alternatives for the expert ek by using the PFA operator.

3. Compute d(p(l)ij , p(k)ij ), i, j = 1, 2, . . . , 6; l, k = 1, 2, 3, 4 and obtain the difference matrix

Dlk = (d(lk)ij )n×n = d(p(l)ij , p(k)ij )n×n using the Pythagorean fuzzy Hamming distance between
two PFEs

D(p1, p2) =
1
2

(
|µ2

p1
− µ2

p2
|+ |ν2

p1
− ν2

p2
|+ |π2

p1
− π2

p2
|
)

.

4. Compute the average value of the matrix Dlk by utilizing d̄lk =
1

n2

n
∑

i=1

n
∑

j=1
d(lk)ij

5. Determine the deviation of the expert el from the rest of the experts using dl =
s
∑

k=1,k 6=l
dlk.

6. Calculate the weight vector for decision organizations by utilizing wl =
(dl)

−1

s
∑

l=1
(dl)−1

, l = 1, 2, . . . , s.

7. Aggregate all p(k)i (k = 1, 2, . . . , m) into a collective PFE pi for the alternative zi using the
PFWA operator.

8. Compute the score functions s(pi) of pi(i = 1, 2, . . . , n).
9. Rank all the alternatives zi(i = 1, 2, . . . , n) according to s(pi)(i = 1, 2, . . . , n).
10. Output: The selection of the optimal object.
11. End
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6. Conclusions

A Pythagorean fuzzy set model is suitable for modeling problems with uncertainty, indeterminacy,
and inconsistent information in which human knowledge is necessary and human evaluation is needed.
Pythagorean fuzzy models give more precision, flexibility, and compatibility to the system as compared
to the classical, fuzzy, and intuitionistic fuzzy models. A fuzzy graph can well describe the uncertainty
of all kinds of networks. In this paper, we introduced new operations, including rejection, symmetric
difference, residue product, and maximal product of Pythagorean fuzzy graphs. These graph products
are suggestive of some aspects of network design. They may be useful for the configuration processing
of space structures. The repeated application of these operations in constructing a network generates
graphs that display fractal properties. Next, we introduced certain notions, including intuitionistic
fuzzy graphs of 3-type (IFGs3T), intuitionistic fuzzy graphs of 4-type (IFGs4T), and intuitionistic fuzzy
graphs of n-type (IFGsnT), and proved that every intuitionistic fuzzy graph of (n− 1)-th type is an
intuitionistic fuzzy graph of n-th type (for n ≥ 2). We are planing to extend our research work to (1)
interval-valued Pythagorean fuzzy graphs; (2) simplified interval-valued Pythagorean fuzzy graphs;
(3) hesitant Pythagorean fuzzy graphs.

Author Contributions: M.A., A.H., F.I. and J.M.D. conceived and designed the experiments; A.H., F.I. and J.M.D.
wrote the paper.
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