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Abstract: Within a given time interval we consider a nonlinear system of differential equations describing
psoriasis treatment. Its phase variables define the concentrations of T-lymphocytes, keratinocytes and
dendritic cells. Two scalar bounded controls are introduced into this system to reflect medication dosages
aimed at suppressing interactions between T-lymphocytes and keratinocytes, and between T-lymphocytes
and dendritic cells. For such a controlled system, a minimization problem of the concentration of
keratinocytes at the terminal time is considered. For its analysis, the Pontryagin maximum principle is
applied. As a result of this analysis, the properties of the optimal controls and their possible types are
established. It is shown that each of these controls is either a bang-bang type on the entire time interval or
(in addition to bang-bang type) contains a singular arc. The obtained analytical results are confirmed by
numerical calculations using the software “BOCOP-2.0.5”. Their detailed analysis and the corresponding
conclusions are presented.

Keywords: psoriasis; nonlinear control system; optimal control; Pontryagin maximum principle;
switching function; Lie brackets; singular arc; chattering control

1. Introduction

Psoriasis is an immune-mediated inflammatory skin disease that affects 2–3% of the population
around the world [1]. The most characteristic features of the pathology are hyperproliferation and disrupted
epidermal differentiation, altered immunological and vascular skin profiles. Manifestations of psoriasis can
vary according to severity: from weak, when only a few characteristic psoriatic plaques are present on the
body of patients, to extremely severe ones, when the lesion affects almost the entire surface of the body and
joints. Disease can significantly reduce the standard of living and performance of patients [2]. There are
established links between psoriasis and other diseases: obesity, diabetes, cardiovascular diseases, metabolic
syndrome, and depression [3]. Molecular-genetic causes of the disease are still not fully established.
At the same time, various polymorphisms associated with psoriasis as well as several environmental
factors that can lead to the manifestation of this disease are identified [4]. To date, about 150 million people
around the world are suffering from psoriasis. In the USA the annual cost of treatment is about $12 billion,
while the existing therapies can only relieve symptoms and increase remission time. In addition, recent
studies have revealed the division of psoriasis into subtypes, depending on which patients may respond
differently to therapy. In some cases, despite costly and prolonged treatment, the patient’s condition may
not improve [5]. In recent years, studies have greatly expanded the understanding of the pathogenesis of
psoriasis and allowed the development of numerous therapies.

In psoriasis, mathematical models are effectively used to predict cellular behavior of the skin in
both normal and pathological conditions. Among all possible models [6], we highlight the models that
are described by systems of differential equations [6–15]. In turn, controlled mathematical models are
used to simulate the use of medication and dosage regimen, compare the effects of various drugs on
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the affected areas of the skin, and to determine the most effective methods of treatment. Within the
framework of a specific model, optimal control theory is used to find the best strategies in one sense or
another for psoriasis treatment.

For mathematical models of psoriasis treatment, optimal control problems were considered in [15–17],
where the optimal treatment strategies minimizing the weighted sum of the total concentration of
keratinocytes and the total cost of the treatment were found numerically. This cost of psoriasis
treatment was expressed by an integral of the square of control, and these models were described using
systems of differential equations linear in control. After applying the Pontryagin maximum principle
as a necessary optimality condition, the corresponding optimal control problems were reduced to
two-point boundary value problems for the maximum principle, which were then solved numerically,
applying standard mathematical software. This was because the right-hand sides of the systems of
differential equations of such boundary value problems were Lipschitz functions of the phase and
adjoint variables.

In the optimal control problems for mathematical models of diseases and the spread of epidemics,
the total cost of treatment can also be expressed by an integral of control [18–21]. In this case, the models
are still described by systems of differential equations that are linear in control. Then, as shown
in [21,22], after applying the Pontryagin maximum principle to such problems, the corresponding
optimal controls can contain singular arcs on which these controls are not uniquely determined from
the maximum condition. After the existence of such singular arcs are established on appropriate
singular intervals, the corresponding optimality conditions are checked, and the concatenations of
singular and nonsingular intervals are found, the finding of specific optimal solutions in optimal
control problems is still performed only numerically. This paper shows that optimal controls can
contain singular arcs in the minimization problem for the mathematical model of psoriasis treatment
even in the absence of the controls in the integral terms of the functional to be minimized responsible
for the cost of this treatment.

This paper is organized as follows. Section 2 is devoted to the description of the mathematical
model of psoriasis treatment and the formulation of the corresponding optimal control problem for it.
Namely, we consider a nonlinear controlled system of three differential equations that presents the
process of treating this disease. Its phase variables determine the concentrations of T-lymphocytes,
keratinocytes, and dendritic cells. The interaction of these types of cells leads to the appearance
and development of psoriasis. There are two scalar bounded controls in the system that reflect all
types of psoriasis treatment: skin creams that prevent or inhibit the formation, development and
spread of psoriatic skin lesions, as well as pills and injections, also aimed at achieving similar results.
At the same time, skin creams suppress the interaction between T-lymphocytes and keratinocytes;
pills and injections weaken the interaction between T-lymphocytes and dendritic cells. All such
medications are aimed at achieving the main goal, which is to reduce the number of keratinocytes.
Therefore, for such a controlled system, at a given time interval the problem of minimizing the
concentration of keratinocytes at the end of the time interval is stated. An optimal solution for such a
problem, consisting of the optimal controls and the corresponding optimal solutions of the system,
is analyzed using the Pontryagin maximum principle. Its application to the considered minimization
problem is discussed in Section 3. Here, also possible types of the optimal controls are discussed:
whether they are only bang-bang functions, or they can contain singular arcs in addition to the
bang-bang intervals. A detailed analysis of the behavior of the optimal controls is given in Section 4.
Here, we study the properties of the corresponding switching functions, which are crucial in such
analysis. Using the Lie brackets of the geometric control theory allows us to obtain the Cauchy
problem for the switching functions. Such a Cauchy problem makes it possible to draw the conclusions
about possible singular arcs of the optimal controls. The first one shows that these controls do not
simultaneously have singular arcs on the same singular intervals. The second of them is that when one
optimal control has a singular arc on some singular interval, the second optimal control is constant on
this interval and takes one of its boundary values. The next two sections, Sections 5 and 6, are devoted
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to a detailed analysis of singular arcs of each optimal control. In these sections it is shown that one
of them can have a singular arc of the order of two, and the other can contain a singular arc of order
one. Also, for each of these singular arcs the corresponding necessary optimality conditions are
checked (Kelly-Cope-Moyer condition and Kelly condition). Finally, the forms of concatenations of the
singular arcs of the optimal controls with nonsingular intervals on which such controls are bang-bang
functions are considered. Since, as previously mentioned, after discussing all such issues, finding the
specific optimal solutions is carried out numerically, then in Section 7 the results of the corresponding
numerical calculations and their discussion are presented. Section 8 contains our conclusions.

2. Mathematical Model and Optimal Control Problem

Let a time interval [0, T] be given, which is the period of psoriasis treatment. We consider on
this interval a mathematical model that establishes the links between the concentrations l(t), k(t),
m(t) of T-lymphocytes, keratinocytes, and dendritic cells, respectively, because interactions between
these types of cells cause a disease such as psoriasis. Such a model is the nonlinear system of
differential equations:

l′(t) = σ− δv(t)l(t)m(t)− γ1u(t)l(t)k(t)− µl(t),
k′(t) = (β + δ)v(t)l(t)m(t) + γ2u(t)l(t)k(t)− λk(t),
m′(t) = ρ− βv(t)l(t)m(t)− νm(t),

(1)

with given initial values:

l(0) = l0, k(0) = k0, m(0) = m0; l0, m0, k0 > 0. (2)

In System (1) we suppose that σ is the constant rate of accumulation for T-lymphocytes and
ρ is the constant accumulation rate of dendritic cells. The rate of activation of T-lymphocytes by
dendritic cells is δ and β is the activation rate of dendritic cells by T-lymphocytes. Also, we consider
that the removal rates of T-lymphocytes, keratinocytes and dendritic cells are denoted by µ, λ and ν,
respectively. Finally, we suppose that γ1 is the rate of activation of keratinocytes by T-lymphocytes
and growth of keratinocytes due to T-lymphocytes occurs at the rate γ2.

Next, in System (1) two control functions u(t) and v(t) are introduced. The control u(t) is at the
places of interaction between T-lymphocytes and keratinocytes and reflects the medication dosage
to restrict the excessive growth of keratinocytes. In a similar way, the control v(t) is at the places
of interaction between T-lymphocytes and dendritic cells and reflects the medication dosage for the
restriction of the excessive growth of keratinocytes as well. The controls u(t) and v(t) subject to the
following restrictions:

0 < umin ≤ u(t) ≤ 1, 0 < vmin ≤ v(t) ≤ 1. (3)

We consider that the set of all admissible controls Ω(T) is formed by all possible pairs of Lebesgue
measurable functions (u(t), v(t)), which for almost all t ∈ [0, T] satisfy Inequality (3).

Let us introduce a region:

Λ =
{
(l, k, m)> ∈ R3 : l > 0, k > 0, m > 0, l + k + m < M

}
,

where M is a positive constant that depends on the parameters σ, ρ, β, δ, µ, λ, ν, γ1, γ2 of System (1)
and its initial values l0, k0, m0 from (2). Here R3 is the Euclidean space consisting of all column vectors
and the sign > means transposition.

Then, the boundedness, positiveness, and continuation of the solutions for System (1) is stated by
the following lemma.
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Lemma 1. Let the inclusion (l0, k0, m0)
> ∈ Λ be valid. Then, for any pair of admissible controls

(u(t), v(t)) the corresponding absolutely continuous solutions l(t), k(t), m(t) for System (1) are defined
on the entire interval [0, T] and satisfy the inclusion:

(l(t), k(t), m(t))> ∈ Λ, t ∈ (0, T]. (4)

Remark 1. Relationship (4) implies that the region Λ is a positive invariant set for System (1). The proof of
Lemma 1 is fairly straightforward, and we omit it. Proofs of such statements are given, for example, in [16,23,24].

Now, let us consider for System (1) on the set of admissible controls Ω(T) the following
minimization problem:

J(u(·), v(·)) = k(T)→ min
(u(·),v(·))∈Ω(T)

, (5)

which consists in minimizing the concentration of keratinocites at the final moment T of psoriasis
treatment. As already noted in [25], the optimal control problem (5) differs from problems that
are typically considered in the literature on the control of psoriasis models [15–17,26] in that the
functional from (5) does not include an integral of the weighted sum of the squares of the controls
u(t) and v(t), which is responsible for the total cost of drug dosages. In psoriasis treatment, in most
cases, either a skin cream, or an oral medication are used. Both prescribed medications have regular
daily dosage and are not as harmful for patients as the drugs used in chemotherapy for cancer
treatment [21]. Therefore, the total cost of psoriasis treatment in the meaning “harm” to a patient and
that usually mathematically is described by an integral of the weighted sum of the squares of the
controls, can be ignored. Moreover, using the terminal functional from (5) instead of corresponding
integral functional [15–17,26] simplifies the subsequent analytical arguments.

The existence in the minimization problem (5) of the optimal controls (u∗(t), v∗(t)) and the
corresponding optimal solutions l∗(t), k∗(t), m∗(t) for System (1) follows from Lemma 1 and
Theorem 4 ([27], Chapter 4).

Finally, based on the results from [17,23,26], we assume that the following assumption is true.

Assumption 1. Let the inequalities:

γ1 6= γ2, (β + δ)γ1 > δγ2, λ > µ, λ > ν (6)

be valid.

Let us introduce the constants:

α = γ1γ−1
2 (β + δ)− δ, ε = α(λ− ν) + δ(λ− µ).

By this assumption, it is easy to see that these constants are positive.

3. Pontryagin Maximum Principle

We apply the Pontryagin maximum principle [28] to analyze the optimal controls u∗(t), v∗(t) and
the corresponding optimal solutions l∗(t), k∗(t), m∗(t). Firstly, let us define the Hamiltonian:

H(l, m, k, u, v,ψ1, ψ2, ψ3) = (σ− δvlm− γ1ulk− µl)ψ1

+ ((β + δ)vlm + γ2ulk− λk)ψ2 + (ρ− βvlm− νm)ψ3,

where ψ1, ψ2, ψ3 are the adjoint variables.
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Secondly, we calculate the required partial derivatives:

H′l (l, m, k, u, v, ψ1, ψ2, ψ3) = uk(γ2ψ2 − γ1ψ1)

+ vm(−δψ1 + (β + δ)ψ2 − βψ3)− µψ1,

H′k(l, m, k, u, v, ψ1, ψ2, ψ3) = ul(γ2ψ2 − γ1ψ1)− λψ2,

H′m(l, m, k, u, v, ψ1, ψ2, ψ3) = vl(−δψ1 + (β + δ)ψ2 − βψ3)− νψ3,

H′u(l, m, k, u, v, ψ1, ψ2, ψ3) = lk(γ2ψ2 − γ1ψ1),

H′v(l, m, k, u, v, ψ1, ψ2, ψ3) = lm(−δψ1 + (β + δ)ψ2 − βψ3).

Then, in accordance with the Pontryagin maximum principle, for the optimal controls
u∗(t), v∗(t) and the optimal solutions l∗(t), k∗(t), m∗(t) there exists a vector-function ψ∗(t) =

(ψ∗1 (t), ψ∗2 (t), ψ∗3 (t))
> such that:

• ψ∗(t) is a nontrivial solution of the adjoint system:

ψ∗1
′(t) = −u∗(t)k∗(t)(γ2ψ∗2 (t)− γ1ψ∗1 (t))

−v∗(t)m∗(t)(−δψ∗1 (t) + (β + δ)ψ∗2 (t)− βψ∗3 (t)) + µψ∗1 (t),
ψ∗2
′(t) = −u∗(t)l∗(t)(γ2ψ∗2 (t)− γ1ψ∗1 (t)) + λψ∗2 (t),

ψ∗3
′(t) = −v∗(t)l∗(t)(−δψ∗1 (t) + (β + δ)ψ∗2 (t)− βψ∗3 (t)) + νψ∗3 (t),

ψ∗1 (T) = 0, ψ∗2 (T) = −1, ψ∗3 (T) = 0;

(7)

• the controls u∗(t) and v∗(t) maximize the Hamiltonian

H(l∗(t), k∗(t), m∗(t), u, v, ψ∗1 (t), ψ∗2 (t), ψ∗3 (t))

with respect to variables u ∈ [umin, 1] and v ∈ [vmin, 1] for almost all t ∈ [0, T], and therefore they
satisfy the relationships:

u∗(t) =


1 , if Lu(t) > 0,
any u ∈ [umin, 1] , if Lu(t) = 0,
umin , if Lu(t) < 0;

(8)

v∗(t) =


1 , if Lv(t) > 0,
any v ∈ [vmin, 1] , if Lv(t) = 0,
vmin , if Lv(t) < 0;

(9)

where the functions:

Lu(t) = l∗(t)k∗(t)(γ2ψ∗2 (t)− γ1ψ∗1 (t)),
Lv(t) = l∗(t)m∗(t)(−δψ∗1 (t) + (β + δ)ψ∗2 (t)− βψ∗3 (t))

(10)

are the switching functions describing the behavior of the controls u∗(t) and v∗(t) in accordance
with Formulas (8) and (9), respectively.

Analysis of Formulas (8) and (9) shows possible types of the optimal controls u∗(t) and v∗(t).
They can only have a bang-bang type and switch between the corresponding values umin and 1,
vmin and 1. This occurs, when passing through the points at which the switching functions Lu(t) and
Lv(t) are zero, the sign of these functions changes. Or, in addition to intervals of a bang-bang type,
the controls u∗(t) and v∗(t) can also contain singular arcs [22,29]. This occurs when the switching
functions Lu(t) and Lv(t) individually or both simultaneously vanish identically on certain subintervals
of the interval [0, T]. Furthermore, such subintervals we will call as singular intervals. The following
sections are devoted to a detailed study of singular arcs for the optimal controls u∗(t) and v∗(t).
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Now, we establish the important property of the controls u∗(t) and v∗(t). Namely, by Lemma 1,
the initial values of System (7), Formula (10), and the continuity of the switching functions Lu(t) and
Lv(t), the following lemma is valid.

Lemma 2. There exist such values tu
? , tv

? ∈ [0, T) that the inequalities Lu(t) < 0 and Lv(t) < 0 hold for all t
from the corresponding intervals (tu

? , T] and (tv
?, T].

Corollary 1. Lemma 2 and Formulas (8) and (9) imply the following relationships for the optimal controls
u∗(t) and v∗(t):

u∗(t) = umin, t ∈ (tu
? , T]; v∗(t) = vmin, t ∈ (tv

?, T].

4. Differential Equations of the Switching Functions

Let us obtain differential equations for the switching functions Lu(t) and Lv(t). To do this,
we draw on the concepts and notations of geometric control theory from [21,22].

Again, we consider the Euclidean space R3 in which the value 〈τ, s〉 is the scalar product of its
elements. Let z = (l, k, m)> ∈ R3. Then, we rewrite System (1) as follows

z′(t) = f (z(t)) + u(t)g(z(t)) + v(t)h(z(t)), (11)

where

f (z) =

 σ− µl
−λk

ρ− νm

 , g(z) =

−γ1lk
γ2lk

0

 , h(z) =

 −δlm
(β + δ)lm
−βlm

 (12)

with f (z) the drift and g(z), h(z) the control vector fields of this system. Here z(t) is the column vector
consisting of the solutions l(t), k(t), m(t) that correspond to the admissible controls u(t) and v(t),
that is z(t) = (l(t), k(t), m(t))> ∈ R3. Let D f (z), Dg(z) and Dh(z) be the Jacobian matrices of the
vector functions f (z), g(z) and h(z), respectively. By Formula (12), we find the following relationships:

D f (z) =

−µ 0 0
0 −λ 0
0 0 −ν

 , Dg(z) =

−γ1k −γ1l 0
γ2k γ2l 0

0 0 0

 ,

Dh(z) =

 −δm 0 −δl
(β + δ)m 0 (β + δ)l
−βm 0 −βl

 .

(13)

Then, using the introduced concepts and notations, it is easy to see that z∗(t) =

(l∗(t), k∗(t), m∗(t))> is the optimal trajectory for System (11) corresponding to the optimal controls
u∗(t) and v∗(t); ψ∗(t) = (ψ∗1 (t), ψ∗2 (t), ψ∗3 (t))

> is the appropriate nontrivial solution for the adjoint
System (7), or in the new notations: ψ′∗(t) = −

(
D f (z∗(t)) + u∗(t)Dg(z∗(t) + v∗(t)Dh(z∗(t))

)>
ψ∗(t),

ψ∗(T) = (0,−1, 0)>.
(14)

The Hamiltonian

H(t) = H(l∗(t), k∗(t), m∗(t), u∗(t), v∗(t), ψ∗1 (t), ψ∗2 (t), ψ∗3 (t))

takes the form:

H(t) = 〈ψ∗(t), f (z∗(t))〉+ u∗(t)〈ψ∗(t), g(z∗(t))〉+ v∗(t)〈ψ∗(t), h(z∗(t))〉.
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The switching functions Lu(t) and Lv(t), defined by Formula (10), become the scalar products of
the adjoint function ψ∗(t) with the corresponding control fields g(z∗(t)) and h(z∗(t)):

Lu(t) = 〈ψ∗(t), g(z∗(t))〉, Lv(t) = 〈ψ∗(t), h(z∗(t))〉. (15)

Now, according to [21,22], we introduce for the drift and control vector fields f (z), g(z) and h(z)
the corresponding Lie brackets:

[ f , g](z) = Dg(z) f (z)− D f (z)g(z), (16)

[ f , h](z) = Dh(z) f (z)− D f (z)h(z), (17)

[g, h](z) = Dh(z)g(z)− Dg(z)h(z). (18)

Using (11) and (14)–(18), the derivatives of the switching functions Lu(t) and Lv(t) can be obtained
as follows

L′u(t) = 〈ψ∗(t), [ f , g](z∗(t))〉+ v∗(t)〈ψ∗(t), [h, g](z∗(t))〉, (19)

L′v(t) = 〈ψ∗(t), [ f , h](z∗(t))〉+ u∗(t)〈ψ∗(t), [g, h](z∗(t))〉. (20)

Now, using (12) and (13) in (16)–(18), we compute the Lie brackets [ f , g](z), [ f , h](z) and [g, h](z).
As a result, we find the formulas:

[ f , g](z) =

−γ1k(σ− λl)
γ2k(σ− µl)

0

 , [g, h](z) =

 γ1(β + δ)l2m
−γ2(β + δ)l2m− αγ2lkm

γ1βlkm

 ,

[ f , h](z) =

 −δ((ρl + σm)− νlm)

(β + δ)((ρl + σm) + (λ− µ− ν)lm)

−β((ρl + σm)− µlm)

 .

(21)

Let us write these Lie brackets in a more convenient form for the subsequent analysis. For this,
we introduce the following linearly independent vectors:

p =

−γ1

γ2

0

 , q =

 −δ

β + δ

−β

 , r =

1
0
0

 .

It is easy to see that the following representations for the control vector fields g(z) and h(z)
are valid:

g(z) = lk · p, h(z) = lm · q.

Using these relationships, Formula (15) for the switching functions Lu(t) and Lv(t) can be
rewritten as

Lu(t) = l∗(t)k∗(t)〈ψ∗(t), p〉, Lv(t) = l∗(t)m∗(t)〈ψ∗(t), q〉. (22)

Now, let us find the decompositions of the Lie brackets [ f , g](z), [ f , h](z) and [g, h](z),
defined by (21), by the vectors p, q, r. As a result, we have the representations:

[ f , g](z) = k(σ− µl) · p + γ1(λ− µ)lk · r, (23)

[ f , h](z) = γ−1
2 (β + δ)(λ− ν)lm · p + (ρl + σm− µlm) · q + εlm · r, (24)

[g, h](z) = −lm((β + δ)l − δk) · p− γ1lkm · q. (25)



Math. Comput. Appl. 2018, 23, 45 8 of 30

Next, let us introduce the auxiliary function G(t) = 〈ψ∗(t), r〉 = ψ∗1 (t), and define the following
absolutely continuous functions:

au(t) = l−1
∗ (t)(σ− µl∗(t)), av(t) = γ−1

2 (β + δ)(λ− ν)k−1
∗ (t)m∗(t),

bv(t) = l−1
∗ (t)m−1

∗ (t)(ρl∗(t) + σm∗(t)− µl∗(t)m∗(t)),

cu(t) = γ1(λ− µ)l∗(t)k∗(t), cv(t) = εl∗(t)m∗(t),

d(t) = k−1
∗ (t)m∗(t)((β + δ)l∗(t)− δk∗(t)), e(t) = γ1k∗(t).

(26)

It is easy to see that the functions cu(t) and cv(t) are positive on the interval [0, T].
Finally, substituting (23)–(25) into (19), (20) and using (22), (26), we find the required differential

equations for the switching functions Lu(t) and Lv(t):

L′u(t) = au(t)Lu(t) + cu(t)G(t) + v∗(t)(d(t)Lu(t) + e(t)Lv(t)),

L′v(t) = av(t)Lu(t) + bv(t)Lv(t) + cv(t)G(t)

− u∗(t)(d(t)Lu(t) + e(t)Lv(t)).

We add to these equations the first equation of System (7), written with use of the functions Lu(t),
Lv(t), G(t):

G′(t) = −u∗(t)l−1
∗ (t)Lu(t)− v∗(t)l−1

∗ (t)Lv(t) + µG(t),

as well as the corresponding initial values:

Lu(T) = −γ2l∗(T)k∗(T), Lv(T) = −(β + δ)l∗(T)m∗(T), G(T) = 0.

As a result, we obtain the Cauchy problem for the switching functions Lu(t), Lv(t) and the
function G(t): 

L′u(t) = au(t)Lu(t) + cu(t)G(t) + v∗(t)(d(t)Lu(t) + e(t)Lv(t)),
L′v(t) = av(t)Lu(t) + bv(t)Lv(t) + cv(t)G(t)

−u∗(t)(d(t)Lu(t) + e(t)Lv(t)),
G′(t) = −u∗(t)l−1

∗ (t)Lu(t)− v∗(t)l−1
∗ (t)Lv(t) + µG(t),

Lu(T) = −γ2l∗(T)k∗(T), Lv(T) = −(β + δ)l∗(T)m∗(T), G(T) = 0,

(27)

which we will use to justify the properties of the functions Lu(t) and Lv(t).
Now, let us establish the properties of the switching functions Lu(t) and Lv(t).

Firstly, the following lemma is true.

Lemma 3. There is no subinterval of the interval [0, T] at which both switching functions Lu(t) and Lv(t) are
identically zero.

Proof of Lemma 3. We suppose the contrary. Let there be the interval ∆u,v ⊂ [0, T] on which the
functions Lu(t) and Lv(t) identically equal to zero. Then, their derivatives L′u(t) and L′v(t) almost
everywhere on this subinterval also vanish. From the first two differential equations of the Cauchy
problem (27) we find that G(t) = 0 everywhere on the subinterval ∆u,v. Hence, on this subinterval the
derivative G′(t) is almost everywhere zero. Therefore, the third differential equation of the Cauchy
problem (27) is also satisfied. Using the definition of the function G(t), Lemma 1 and Formula (10),
we find that the adjoint function ψ∗(t) vanishes identically on the subinterval ∆u,v. Since the system of
linear differential equations (7) is homogeneous, then ψ∗(t) = 0 identically everywhere on the interval
[0, T], which is contradictory. Hence, our assumption was wrong, and the subinterval ∆u,v ⊂ [0, T] on
which both switching functions Lu(t) and Lv(t) are identically zero, does not exist. This completes
the proof.
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Secondly, the following lemma holds.

Lemma 4. Let the subinterval ∆u ⊂ [0, T] be a singular interval of the optimal control u∗(t).
Then, everywhere on this subinterval, the optimal control v∗(t) is constant and takes one of the values {vmin; 1}.

Proof of Lemma 4. On the subinterval ∆u the switching function Lu(t) is identically zero, and its
derivative L′u(t) vanishes almost everywhere on this interval. Then, the first differential equation of
the Cauchy problem (27) yields the equality:

cu(t)G(t) + v∗(t)e(t)Lv(t) = 0, t ∈ ∆u. (28)

Let us suppose that the switching function Lv(t) is zero at some point tu
0 ∈ ∆u, that is

Lv(tu
0 ) = 0. (29)

Then, (28) implies the equality:
G(tu

0 ) = 0. (30)

The identical equality to zero of the function Lu(t) on the subinterval ∆u and (29), (30) lead
us to the equality ψ∗(tu

0 ) = 0. A further repetition of the corresponding arguments from Lemma 3
gives a contradiction. Hence, our assumption was wrong, and the switching function Lv(t) does
not vanish at any point of the subinterval ∆u. Therefore, it is sign-definite on this subinterval,
and, by Formula (9), the optimal control v∗(t) corresponding to it, is constant and takes one of
the values {vmin; 1}. This completes the proof.

Furthermore, performing arguments similar to the arguments of Lemma 4, one can show that the
following lemma is valid.

Lemma 5. Let the subinterval ∆v ⊂ [0, T] be a singular interval of the optimal control v∗(t).
Then, everywhere on this subinterval, the optimal control u∗(t) is constant and takes one of the values {umin; 1}.

Now, we strengthen the result obtained in Lemma 4. Namely, the following lemma holds.

Lemma 6. Let the subinterval ∆u = (tu
1 , tu

2 ) ⊂ [0, T], where tu
1 > 0, be a singular interval of the optimal

control u∗(t). Then, there exists a number εu > 0 such that on the interval (tu
1 − εu, tu

2 + εu) the optimal
control v∗(t) is constant and takes one of the values {vmin; 1}.

Proof of Lemma 6. It suffices to show that the ends of the subinterval ∆u = (tu
1 , tu

2 ) cannot be zeros of
the switching function Lv(t), which is an absolutely continuous function. Indeed, if such a fact holds,
that is the inequalities:

Lv(tu
1 ) 6= 0, Lv(tu

2 ) 6= 0

are true, then Lemma 6 immediately follows from the Theorem on the stability of the sign of a
continuous function [30]. Therefore, for definiteness, we consider the right end tu

2 of the subinterval
∆u. Let us suppose the contrary. This means that the equality:

Lv(tu
2 ) = 0 (31)

is valid. Then, for the function G(t) the following two cases are possible.
Case 1. Let G(tu

2 ) = 0. The definition of the function G(t), Lemma 1 and the second formula
of (10) imply the relationship:

(β + δ)ψ∗2 (t
u
2 ) = βψ∗3 (t

u
2 ). (32)
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If ψ∗2 (t
u
2 ) = 0, then (32) yields ψ∗3 (t

u
2 ) = 0. This fact leads to contradictory equality ψ∗(tu

2 ) = 0,
as the proofs of Lemmas 3 and 4 show. If ψ∗2 (t

u
2 ) 6= 0, then again the definition of the function G(t),

Lemma 1 and the first formula of (10) imply Lu(tu
2 ) 6= 0. The absolutely continuity of the function Lu(t)

and the Theorem on the stability of the sign of a continuous function [30] lead to the existence of a left
neighborhood of the point tu

2 at which the switching function Lu(t) is sign-definite. This contradicts
the fact that such a left neighborhood of the point tu

2 belongs to the subinterval ∆u, which is a singular
portion of the optimal control u∗(t). Thus, Case 1 is impossible.

Case 2. Let G(tu
2 ) 6= 0. For definiteness, we consider that the inequality:

G(tu
2 ) > 0 (33)

is true. As it was already noted, Lv(t) and G(t) are the absolutely continuous functions. In Lemma 4
it was established that the control v∗(t) is constant on the subinterval ∆u, that is v∗(t) = v∗.
Therefore, by (31), (33) and the Theorem on the stability of the sign of a continuous function [30],
there exists the interval (t̃u

2 , tu
2 ) ⊂ ∆u on which the inequality:

cu(t)G(t) + v∗e(t)Lv(t) > 0 (34)

is valid. Let t̃u
0 be the midpoint of this interval. We rewrite the first differential equation from the

Cauchy problem (27) as

L′u(t) = (au(t) + v∗d(t))Lu(t) + (cu(t)G(t) + v∗e(t)Lv(t)).

Then, we integrate this equation on the interval (t̃u
2 , tu

2 ) with the initial value Lu(t̃u
0 ) = 0.

As a result, the following formula can be found:

Lu(t) =
t∫

t̃u
0

e

t∫
s
(au(ξ)+v∗d(ξ))dξ

(cu(s)G(s) + v∗e(s)Lv(s)) ds. (35)

By (34) and (35), we obtain the positivity of the function Lu(t) for t > t̃u
0 and the negativity of this

function for t < t̃u
0 on the interval (t̃u

2 , tu
2 ). This is again contradictory. Hence, Case 2 is also impossible.

Thus, our assumption was wrong, and the switching function Lv(t) does not vanish at the point
tu
2 . This completes the proof.

Furthermore, carrying out arguments similar to the arguments of Lemma 6, we can show that the
following lemma holds, which strengthens the result of Lemma 5.

Lemma 7. Let the subinterval ∆v = (tv
1, tv

2) ⊂ [0, T], where tv
1 > 0, be a singular interval of the optimal

control v∗(t). Then, there exists a number εv > 0 such that on the interval (tv
1 − εv, tv

2 + εv) the optimal control
u∗(t) is constant and takes one of the values {umin; 1}.

Remark 2. From Lemmas 4–7 we conclude that when a singular arc occurs for one of the optimal controls,
u∗(t) or v∗(t), System (1) becomes on the corresponding singular interval a system with one control, because
the other control is constant.

Next, in Sections 5 and 6, we separately study the existence of singular arcs of the optimal
controls u∗(t) and v∗(t), applying the approach from [21]. It consists in the sequential differentiation
on a singular interval of the corresponding switching function. We carry out this differentiation
if the derivative of even order does not have a nonzero term containing control. If such a term
appears in a second order derivative, then we say that a singular arc is of the order of one. If it
occurs in a derivative of the fourth order, then it is considered that the singular arc is of the order
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of two. Then, the corresponding optimality condition of a singular arc is checked. If it is satisfied,
we find the formulas of the optimal control and the corresponding optimal solutions of System (1)
on a singular interval corresponding to such a singular arc. Also, the type of concatenation of this
singular arc with non-singular intervals is studied, where the considered optimal control is bang-bang.
Finally, we demonstrate a singular arc of the optimal control through the results of a numerical solution
of the minimization problem (5), presented in Section 7.

5. Investigation of a Singular Arc of the Optimal Control u*(t)

Let us study the existence of a singular arc of the optimal control u∗(t). According to [22,29],
this means the existence of a subinterval ∆u ⊂ [0, T] on which the corresponding switching function
Lu(t) identically vanishes. By Lemma 4, everywhere on this subinterval the optimal control v∗(t) is a
constant function taking one of the values {vmin; 1}, that is,

v∗(t) = v∗ ∈ {vmin; 1}, t ∈ ∆u.

Then, Formula (19) of the first derivative L(1)
u (t) of the switching function Lu(t) is rewritten in

the form:
L(1)

u (t) = 〈ψ∗(t), [ f + v∗h, g](z∗(t))〉, t ∈ ∆u. (36)

Let us transform the right-hand side of this formula. To do this, we rewrite (23) and (25) as

[ f , g](z) = θ f ,g(z)p + χ f ,g(z)r, [h, g](z) = θh,g(z)p + ηh,g(z)q, (37)

where
θ f ,g(z) = (σ− µl)k, χ f ,g(z) = γ1(λ− µ)lk,

θh,g(z) = lm((β + δ)l − δk), ηh,g(z) = γ1lkm.

Then, using (37), we can write the Lie bracket [ f + v∗h, g](z) as follows

[ f + v∗h, g](z) = θu(z)p + ηu(z)q + χu(z)r, (38)

where
θu(z) = θ f ,g(z) + v∗θh,g(z) = (σ− µl)k + v∗lm((β + δ)l − δk),

ηu(z) = v∗ηh,g(z) = γ1v∗lkm,

χu(z) = χ f ,g(z) = γ1(λ− µ)lk.

Substituting (38) into the right-hand side of (36), we obtain the relationship:

L(1)
u (t) = θu(z∗(t))〈ψ∗(t), p〉+ ηu(z∗(t))〈ψ∗(t), q〉+ χu(z∗(t))〈ψ∗(t), r〉, t ∈ ∆u. (39)

Now, differentiating (36), we find the formula for the second derivative L(2)
u (t) of the switching

function Lu(t):
L(2)

u (t) = 〈ψ∗(t), [ f + v∗h, [ f + v∗h, g]](z∗(t))〉
+ u∗(t)〈ψ∗(t), [g, [ f + v∗h, g]](z∗(t))〉, t ∈ ∆u.

(40)

Let us transform the terms of this formula. First, we consider the second term and its factor

〈ψ∗(t), [g, [ f + v∗h, g]](z∗(t))〉. (41)

By analogy with (16)–(18), we have equality:

[g, [ f + v∗h, g]](z) = D[ f + v∗h, g](z)g(z)− Dg(z)[ f + v∗h, g](z), (42)
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where D[ f + v∗h, g](z) is the Jacobi matrix of the vector function [ f + v∗h, g](z). Using (38), we find
the relationship:

D[ f + v∗h, g](z) = D(θu(z)p) + D(ηu(z)q) + D(χu(z)r)

= p(∇θu(z))> + q(∇ηu(z))> + r(∇χu(z))>,
(43)

where ∇θu(z), ∇ηu(z), ∇χu(z) are the column gradients of the functions θu(z), ηu(z), χu(z),
respectively. In addition, the representations:

Dg(z) = p(τg(z))>, Dh(z) = q(τh(z))> (44)

are valid, where the vector functions τg(z), τh(z) are defined as

τg(z) =

k
l
0

 , τh(z) =

m
0
l

 .

We substitute (43) and the first representation of (44) into (42). After the necessary transformations,
the following relationship can be obtained:

[g, [ f + v∗h, g]](z) =
(
〈∇θu(z), g(z)〉 − 〈[ f + v∗h, g](z), τg(z)〉

)
p

+〈∇ηu(z), g(z)〉q + 〈∇χu(z), g(z)〉r.

Substituting this expression into (41), we find the formula:

〈ψ∗(t), [g,[ f + v∗h, g]](z∗(t))〉

=
(
〈∇θu(z∗(t)), g(z∗(t))〉 − 〈[ f + v∗h, g](z∗(t)), τg(z∗(t))〉

)
〈ψ∗(t), p〉

+ 〈∇ηu(z∗(t)), g(z∗(t))〉〈ψ∗(t), q〉+ 〈∇χu(z∗(t)), g(z∗(t))〉〈ψ∗(t), r〉.

(45)

In (39) the function χu(z∗(t)) is positive on the interval [0, T]. Therefore, let us express the scalar
product 〈ψ∗(t), r〉 through the remaining terms as follows

〈ψ∗(t), r〉 = χ−1
u (z∗(t))L(1)

u (t)− χ−1
u (z∗(t))θu(z∗(t))〈ψ∗(t), p〉

− χ−1
u (z∗(t))ηu(z∗(t))〈ψ∗(t), q〉,

(46)

and then, we substitute this expression into (45). After the necessary transformations, the following
relationship finally can be obtained:

〈ψ∗(t), [g, [ f + v∗h, g]](z∗(t))〉 = χ−1
u (z∗(t))〈∇χu(z∗(t)), g(z∗(t))〉L(1)

u (t)

+ χ−1
u (z∗(t))

{
〈χu(z∗(t))∇θu(z∗(t))− θu(z∗(t))∇χu(z∗(t)), g(z∗(t))〉

− χu(z∗(t))〈[ f + v∗h, g](z∗(t)), τg(z∗(t))〉
}
〈ψ∗(t), p〉

+ χ−1
u (z∗(t))〈χu(z∗(t))∇ηu(z∗(t))− ηu(z∗(t))∇χu(z∗(t)), g(z∗(t))〉〈ψ∗(t), q〉.

(47)

On the subinterval ∆u the switching function Lu(t) vanishes identically, that is

Lu(t) = l∗(t)k∗(t)〈ψ∗(t), p〉 = 0, (48)
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and therefore its first derivative L(1)
u (t) is also zero everywhere on this subinterval:

L(1)
u (t) = 0. (49)

Then, Formula (47) is simplified and takes the following form:

〈ψ∗(t), [g, [ f + v∗h, g]](z∗(t))〉
= χ−1

u (z∗(t))〈χu(z∗(t))∇ηu(z∗(t))− ηu(z∗(t))∇χu(z∗(t)), g(z∗(t))〉〈ψ∗(t), q〉.
(50)

Let us calculate the right-hand side of this formula. For this, we consider the expression
(χu(z)∇ηu(z)− ηu(z)∇χu(z)). Calculating the column gradients∇ηu(z),∇χu(z) of the corresponding
functions ηu(z), χu(z), the following equality can be found:

χu(z)∇ηu(z)− ηu(z)∇χu(z) = γ1(λ− µ)v∗

 0
0

l2k2

 . (51)

Multiplying this expression scalarly by the vector function g(z) from (12), we conclude that the
scalar product

〈χu(z)∇ηu(z)− ηu(z)∇χu(z), g(z)〉

is zero. Consequently, (50) has the form:

〈ψ∗(t), [g, [ f + v∗h, g]](z∗(t))〉 = 0, t ∈ ∆u. (52)

Now, let us consider the first term on the right-hand side of (40):

〈ψ∗(t), [ f + v∗h, [ f + v∗h, g]](z∗(t))〉. (53)

By analogy with (42), we have the equality:

[ f + v∗h, [ f + v∗h, g]](z) = D[ f + v∗h, g](z)( f + v∗h)(z)− D( f + v∗h)(z)[ f + v∗h, g](z). (54)

Let us find the Jacobi matrix D( f + v∗h)(z). The Jacobi matrix Dh(z) of the vector function h(z) is
given by the second formula of (44). The use of direct calculations allows us to find the representation
of the Jacobi matrix D f (z) from (13) in the following form:

D f (z) = p

 0
−γ−1

2 λ

−γ−1
2 β−1(β + δ)ν


>

+ q

 0
0

β−1ν


>

+ r

 −µ

−γ1γ−1
2 λ

−β−1αν


>

. (55)

Then, we obtain the required representation of the Jacobi matrix D( f + v∗h)(z) as

D( f + v∗h)(z) = p(τu
p )
> + q(τu

q (z))
> + r(τu

r )
>, (56)

where

τu
p =

 0
−γ−1

2 λ

−γ−1
2 β−1(β + δ)ν

 , τu
q (z) =

 v∗m
0

β−1ν + v∗l

 , τu
r =

 −µ

−γ1γ−1
2 λ

−β−1αν

 .
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We substitute (43) and (56) into (54). After the necessary transformations, the following formula
can be found:

[ f + v∗h, [ f + v∗h, g]](z) =
(
〈∇θu(z), ( f + v∗h)(z)〉 − 〈[ f + v∗h, g](z), τu

p 〉
)

p

+
(
〈∇ηu(z), ( f + v∗h)(z)〉 − 〈[ f + v∗h, g](z), τu

q (z)〉
)

q

+
(
〈∇χu(z), ( f + v∗h)(z)〉 − 〈[ f + v∗h, g](z), τu

r 〉
)

r.

Substituting this formula into (53), we obtain the expression:

〈ψ∗(t), [ f + v∗h, [ f + v∗h, g]](z∗(t))〉

=
(
〈∇θu(z∗(t)), ( f + v∗h)(z∗(t))〉 − 〈[ f + v∗h, g](z∗(t)), τu

p 〉
)
〈ψ∗(t), p〉

+
(
〈∇ηu(z∗(t)), ( f + v∗h)(z∗(t))〉 − 〈[ f + v∗h, g](z∗(t)), τu

q (z∗(t))〉
)
〈ψ∗(t), q〉

+
(
〈∇χu(z∗(t)), ( f + v∗h)(z∗(t))〉 − 〈[ f + v∗h, g](z∗(t)), τu

r 〉
)
〈ψ∗(t), r〉.

(57)

Finally, let us substitute (46) into (57). After the necessary transformations, we find the relationship:

〈ψ∗(t), [ f + v∗h, [ f + v∗h, g]](z∗(t))〉

= χ−1
u (z∗(t))

{
〈∇χu(z∗(t)), ( f + v∗h)(z∗(t))〉 − 〈[ f + v∗h, g](z∗(t)), τu

r 〉
}

L(1)
u (t)

+ χ−1
u (z∗(t))

{
〈χu(z∗(t))∇θu(z∗(t))− θu(z∗(t))∇χu(z∗(t)), ( f + v∗h)(z∗(t))〉

− 〈[ f + v∗h, g](z∗(t)), χu(z∗(t))τu
p − θu(z∗(t))τu

r 〉
}
〈ψ∗(t), p〉

+ χ−1
u (z∗(t))

{
〈χu(z∗(t))∇ηu(z∗(t))− ηu(z∗(t))∇χu(z∗(t)), ( f + v∗h)(z∗(t))〉

− 〈[ f + v∗h, g](z∗(t)), χu(z∗(t))τu
q (z∗(t))− ηu(z∗(t))τu

r 〉
}
〈ψ∗(t), q〉.

(58)

On the subinterval ∆u Equalities (48) and (49) are valid. Then, Formula (58) is simplified and
takes the following form:

〈ψ∗(t), [ f + v∗h, [ f + v∗h, g]](z∗(t))〉

= χ−1
u (z∗(t))

{
〈χu(z∗(t))∇ηu(z∗(t))− ηu(z∗(t))∇χu(z∗(t)), ( f + v∗h)(z∗(t))〉

− 〈[ f + v∗h, g](z∗(t)), χu(z∗(t))τu
q (z∗(t))− ηu(z∗(t))τu

r 〉
}
〈ψ∗(t), q〉.

(59)

Let us calculate the right-hand side of this formula. The expression (χu(z)∇ηu(z)− ηu(z)∇χu(z))
is given by (51). Multiplying this expression scalarly by the vector function ( f + v∗h)(z), defined by the
vector functions f (z) and h(z) from (12), we obtain the following formula for the first term in braces:

〈χu(z)∇ηu(z)− ηu(z)∇χu(z), ( f + v∗h)(z)〉
= γ2

1(λ− µ)v∗l2k2(ρ− νm− βv∗lm).
(60)

For the second term in braces, we first find the relationship:

χu(z)τu
q (z)− ηu(z)τu

r = γ1lk

 λv∗m
γ1γ−1

2 λv∗m
β−1(λ− µ)ν + (λ− µ)v∗l + β−1ανv∗m

 ,



Math. Comput. Appl. 2018, 23, 45 15 of 30

and then, by (38), obtain the representation:

[ f + v∗h, g](z) =


γ1

(
(σ− µl)k + v∗((β + δ)l − δk)lm

)
+ γ1(λ− µ)lk− γ1δv∗lkm

γ2

(
(σ− µl)k + v∗((β + δ)l − δk)lm

)
+ γ1(β + δ)v∗lkm

−γ1βv∗lkm

 .

Multiplying the last two expressions scalarly and taking into account (60), we have the following
expression for the relationship in braces of (59):

− γ2
1v∗l2k2

(
α(λ− ν)v∗m2 + λ(λ− µ)m− ρ(λ− µ)

)
. (61)

Let us define the quadratic function:

w2(m) = α(λ− ν)v∗m2 + λ(λ− µ)m− ρ(λ− µ).

We use this function, when substitute (61) together with the formula of the function χu(z) into (59).
After the necessary transformations, this formula is written as follows

〈ψ∗(t), [ f + v∗h, [ f + v∗h, g]](z∗(t))〉
= −γ1(λ− µ)−1v∗l∗(t)k∗(t)w2(m∗(t))〈ψ∗(t), q〉, t ∈ ∆u.

(62)

Finally, let us substitute (52) and (62) into (40). As a result, we have the formula of the second
derivative L(2)

u (t) of the switching function Lu(t):

L(2)
u (t) = −γ1(λ− µ)−1v∗l∗(t)k∗(t)w2(m∗(t))〈ψ∗(t), q〉, t ∈ ∆u. (63)

On the subinterval ∆u not only the switching function Lu(t) itself and its first derivative L(1)
u (t)

vanish, but also the second derivative L(2)
u (t). By Lemma 1, the linear independence of the vectors p, q,

r and the non-triviality of the adjoint function ψ∗(t), the relationship:

L(2)
u (t) = 0, t ∈ ∆u

implies equality:
w2(m∗(t)) = 0, t ∈ ∆u. (64)

By Assumption 1, the discriminant of the quadratic function w2(m) is positive, and w2(0) < 0,
and therefore, it has a unique positive root msing, defined by the formula:

msing =
−(λ− µ)λ +

√
(λ− µ)2λ2 + 4αρv∗(λ− µ)(λ− ν)

2α(λ− ν)v∗
.

This root is the value of the solution m∗(t) on the subinterval ∆u. We note the important properties
of the value msing:

msing ∈
(

0, ρν−1
)

, w′2(msing) > 0. (65)

Analyzing (63), we see that on the subinterval ∆u the second derivative L(2)
u (t) of the switching

function Lu(t) does not contain the control u∗(t). It means that the order of the singular arc is
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greater than one [22,29]. Therefore, we continue to differentiate the switching function Lu(t) on this
subinterval, and using (63) find its third derivative L(3)

u (t):

L(3)
u (t) =− γ1(λ− µ)−1v∗

{
l∗(t)k∗(t)w′2(m∗(t))m

′
∗(t)〈ψ∗(t), q〉

+ w2(m∗(t))
(

l∗(t)k∗(t)〈ψ∗(t), q〉
)′}

.
(66)

On the subinterval ∆u Equality (64) is valid, and therefore the second term in braces of (66)
is zero. Substituting the formula for m′∗(t) from System (1) into the first term of (66), we find the
required formula:

L(3)
u (t) =− γ1(λ− µ)−1v∗l∗(t)k∗(t)w′2(msing)

×
(

ρ− νmsing − βv∗l∗(t)msing

)
〈ψ∗(t), q〉, t ∈ ∆u.

(67)

On the subinterval ∆u the third derivative L(3)
u (t) is also zero that leads to the equality:

m′∗(t) = 0. (68)

It allows us to find a value lsing that is the value of the solution l∗(t) on this subinterval:

lsing =
ρ− νmsing

βv∗msing
. (69)

We note that due to the inclusion of (65), the value lsing is positive.

Finally, on the subinterval ∆u let us calculate the fourth derivative L(4)
u (t) of the switching function

Lu(t) using (66). Some of the terms that are obtained with such a differentiation vanish by virtue of (64)
and (68). As a result, the following relationship can be obtained:

L(4)
u (t) = γ1(λ− µ)−1βv2

∗lsingk∗(t)msingw′2(msing)

×
(

σ− µlsing − δv∗lsingmsing − γ1u∗(t)lsingk∗(t)
)
〈ψ∗(t), q〉, t ∈ ∆u,

(70)

which implies the expression:

∂

∂u
L(4)

u (t) = −γ2
1(λ− µ)−1βv2

∗l
2
singk2

∗(t)msingw′2(msing)〈ψ∗(t), q〉

= −γ2
1(λ− µ)−1βv2

∗lsingk2
∗(t)w

′
2(msing)Lv(t), t ∈ ∆u.

(71)

Here we applied the second formula of (22). It is easy to see that this expression is sign-definite
everywhere on the subinterval ∆u. Therefore, firstly, the order of the singular arc equals two.
Secondly, the necessary optimality condition of the singular arc, the Kelly-Cope-Moyer condition [29],
is either carried out in a strengthened form, and then the singular arc exists, or it is not satisfied,
and then the singular arc does not exist. By [29] and (71), the strengthened Kelly-Cope-Moyer condition
leads to the inequality:

γ2
1(λ− µ)−1βv2

∗lsingk2
∗(t)w

′
2(msing)Lv(t) > 0, t ∈ ∆u. (72)

By Assumption 1, Lemma 1, and the inequality of (65), Relationship (72) implies the inequality
Lv(t) > 0, which in turn, by Formula (9), implies v∗ = 1 everywhere on the subinterval ∆u.
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Remark 3. On the subinterval ∆u ⊂ [0, T], which is the singular interval of the optimal control u∗(t),
the optimal control v∗(t) is constant and takes the value 1. This leads to the corresponding correction of the
formulations of Lemmas 4 and 6.

Next, Formula (70) and the vanishing of the fourth derivative L(4)
u (t) of the switching function

Lu(t) yield the following relationship for the control using(t) and function ksing(t):

using(t)ksing(t) =
σ− µlsing − δlsingmsing

γ1lsing
, (73)

which are the control u∗(t) and solution k∗(t) on the subinterval ∆u. Formula (69) allows us to
rewrite (73) as follows

using(t)ksing(t) =
w4(msing)

γ1lsing
, t ∈ ∆u. (74)

Here w4(m) is the quadratic function given by the formula:

w4(m) = δνm2 + (σβ + νµ− δρ)m− µρ.

By the inclusion of (65), we consider this function on the interval
[
0, ρν−1]. The relationships:

w4(0) = −µρ < 0, w4

(
ρν−1

)
= ρν−1σβ > 0

lead to the conclusion that the function w4(m) has exactly one zero m? ∈
(
0, ρν−1). In turn, this fact

implies the validity of the formula:

w4(m)


< 0 , if 0 ≤ m < m?,
= 0 , if m = m?,
> 0 , if m? < m ≤ ρν−1.

We apply this formula in analysis of (74). Positivity of the product on its left-hand side and the
inclusion of (65) imply the validity of the inclusion:

msing ∈
(

m?, ρν−1
)

,

which is a necessary condition for the existence of the singular arc.
Finally, let us discuss the behavior of the optimal control u∗(t) over the entire interval [0, T].

When the inclusion using(t) ∈ [umin, 1] holds for all t ∈ ∆u, the control using(t) is admissible. Corollary 1
shows that the singular arc of the optimal control u∗(t) is concatenated with the nonsingular interval,
where this control is bang-bang. Let ξ ∈ (0, T) be the time moment, where such a concatenation occurs.
Then, as it follows from [22,29], when using(t) ∈ (umin, 1) for all t ∈ ∆u, the nonsingular interval
contains at least the countable number of switchings of the control u∗(t), accumulating to the point
ξ. This behavior of the optimal control u∗(t) on nonsingular intervals is called a chattering [22,29],
and will be observed on both sides of the subinterval ∆u.

Thus, the above arguments of this section lead us to the validity of the following proposition.

Proposition 1. The optimal control u∗(t) on a singular interval can contain a singular arc of order two,
which concatenates with bang-bang intervals of this control using chattering. On such an interval the optimal
control v∗(t) is constant and takes the value 1.
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6. Investigation of a Singular Arc of the Optimal Control v∗(t)

Now, let us carry out arguments similar to those presented in the previous section to study the
existence of a singular arc for the optimal control v∗(t). According to [22,29], this means the existence
of a subinterval ∆v ⊂ [0, T] on which the corresponding switching function Lv(t) identically vanishes.
By Lemma 5, everywhere on this subinterval the optimal control u∗(t) is a constant function that takes
one of the values {umin; 1}, that is,

u∗(t) = u∗ ∈ {umin; 1}, t ∈ ∆v.

Then, Formula (20) for the first derivative L(1)
v (t) of the switching function Lv(t) is rewritten in

the form:
L(1)

v (t) = 〈ψ∗(t), [ f + u∗g, h](z∗(t))〉, t ∈ ∆v. (75)

Let us transform the right-hand side of this formula. To do this, we rewrite (24) and (25) as

[ f , h](z) = θ f ,h(z)p + η f ,h(z)q + χ f ,h(z)r, [g, h](z) = θg,h(z)p + ηg,h(z)q, (76)

where
θ f ,h(z) = γ−1

2 (β + δ)(λ− ν)lm, η f ,h(z) = ρl + σm− µlm, χ f ,h(z) = εlm,

θg,h(z) = −θh,g(z) = −lm((β + δ)l − δk), ηg,h(z) = −ηh,g(z) = −γ1lkm.

Then, using (76), we can write the Lie bracket [ f + u∗g, h](z) as follows

[ f + u∗g, h](z) = θv(z)p + ηv(z)q + χv(z)r, (77)

where
θv(z) = θ f ,h(z) + u∗θg,h(z) = lm(γ−1

2 (β + δ)(λ− ν)− u∗((β + δ)l − δk)),

ηv(z) = η f ,h(z) + u∗ηg,h(z) = ρl + σm− µlm− γ1u∗lkm,

χv(z) = χ f ,h(z) = εlm.

Substituting (77) into the right-hand side of (75), we obtain the relationship:

L(1)
v (t) = θv(z∗(t))〈ψ∗(t), p〉+ ηv(z∗(t))〈ψ∗(t), q〉+ χv(z∗(t))〈ψ∗(t), r〉, t ∈ ∆v. (78)

Now, differentiating (75), we find the formula for the second derivative L(2)
v (t) of the switching

function Lv(t):
L(2)

v (t) = 〈ψ∗(t), [ f + u∗g, [ f + u∗g, h]](z∗(t))〉
+ v∗(t)〈ψ∗(t), [h, [ f + u∗g, h]](z∗(t))〉, t ∈ ∆v.

(79)

Let us transform the terms of this formula. First, we consider the second term and its factor

〈ψ∗(t), [h, [ f + u∗g, h]](z∗(t))〉. (80)

By analogy with (16)–(18), we have equality:

[h, [ f + u∗g, h]](z) = D[ f + u∗g, h](z)h(z)− Dh(z)[ f + u∗g, h](z), (81)

where D[ f + u∗g, h](z) is the Jacobi matrix of the vector function [ f + u∗g, h](z). Using (77), we find
the relationship:

D[ f + u∗g, h](z) = D(θv(z)p) + D(ηv(z)q) + D(χv(z)r)

= p(∇θv(z))> + q(∇ηv(z))> + r(∇χv(z))>,
(82)
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where ∇θv(z), ∇ηv(z), ∇χv(z) are the column gradients of the functions θv(z), ηv(z), χv(z),
respectively. We substitute expression (82) and the second representation of (44) into (81). After the
necessary transformations, the following relationship can be obtained:

[h, [ f + u∗g, h]](z) = 〈∇θv(z), h(z)〉p
+
(
〈∇ηv(z), h(z)〉 − 〈[ f + u∗g, h](z), τh(z)〉

)
q + 〈∇χv(z), h(z)〉r.

Substituting this expression into (80), we find the formula:

〈ψ∗(t), [h, [ f + u∗g, h]](z∗(t))〉 = 〈∇θv(z∗(t)), h(z∗(t))〉〈ψ∗(t), p〉

+
(
〈∇ηv(z∗(t)), h(z∗(t))〉 − 〈[ f + u∗g, h](z∗(t)), τh(z∗(t))〉

)
〈ψ∗(t), q〉

+ 〈∇χv(z∗(t)), h(z∗(t))〉〈ψ∗(t), r〉.

(83)

In (78), the function χv(z∗(t)) is positive on the interval [0, T]. Therefore, let us express the scalar
product 〈ψ∗(t), r〉 through the remaining terms as follows

〈ψ∗(t), r〉 = χ−1
v (z∗(t))L(1)

v (t)− χ−1
v (z∗(t))θv(z∗(t))〈ψ∗(t), p〉

− χ−1
v (z∗(t))ηv(z∗(t))〈ψ∗(t), q〉,

(84)

and then, we substitute this expression into (83). After the necessary transformations, the following
relationship finally can be obtained:

〈ψ∗(t), [h, [ f + u∗g, h]](z∗(t))〉 = χ−1
v (z∗(t))〈∇χv(z∗(t)), h(z∗(t))〉L(1)

v (t)

+ χ−1
v (z∗(t))〈χv(z∗(t))∇θv(z∗(t))− θv(z∗(t))∇χv(z∗(t)), h(z∗(t))〉〈ψ∗(t), p〉

+ χ−1
v (z∗(t))

{
〈χv(z∗(t))∇ηv(z∗(t))− ηv(z∗(t))∇χv(z∗(t)), h(z∗(t))〉

− χv(z∗(t))〈[ f + u∗g, h](z∗(t)), τh(z∗(t))〉
}
〈ψ∗(t), q〉.

(85)

On the subinterval ∆v the switching function Lv(t) vanishes identically, that is

Lv(t) = l∗(t)m∗(t)〈ψ∗(t), q〉 = 0, (86)

and therefore its first derivative L(1)
v (t) is also zero everywhere on this subinterval:

L(1)
v (t) = 0. (87)

Then, Formula (85) is simplified and takes the following form:

〈ψ∗(t), [h, [ f + u∗g, h]](z∗(t))〉
= χ−1

v (z∗(t))〈χv(z∗(t))∇θv(z∗(t))− θv(z∗(t))∇χv(z∗(t)), h(z∗(t))〉〈ψ∗(t), p〉.
(88)

Let us calculate the right-hand side of this formula. For this, we consider the expression
(χv(z)∇θv(z)− θv(z)∇χv(z)). Calculating the column gradients∇θv(z),∇χv(z) of the corresponding
functions θv(z), χv(z), the following equality can be found:

χv(z)∇θv(z)− θv(z)∇χv(z) = εu∗

−(β + δ)l2m2

δl2m2

0

 . (89)
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Multiplying this expression scalarly by the vector function h(z) from (12), we conclude that the
following relationship holds:

〈χv(z)∇θv(z)− θv(z)∇χv(z), h(z)〉 = 2εδ(β + δ)u∗l3m3.

Substituting this relationship together with the formula of the function χv(z) into (88), we see
that it has the form:

〈ψ∗(t), [h, [ f + u∗g, h]](z∗(t))〉 = 2δ(β + δ)u∗l2
∗(t)m∗(t)

2〈ψ∗(t), p〉, t ∈ ∆v. (90)

Now, let us consider the first term on the right-hand side of (79):

〈ψ∗(t), [ f + u∗g, [ f + u∗g, h]](z∗(t))〉. (91)

By analogy with (81), we have the equality:

[ f + u∗g, [ f + u∗g, h]](z) = D[ f + u∗g, h](z)( f + u∗g)(z)− D( f + u∗g)(z)[ f + u∗g, h](z). (92)

Let us find the Jacobi matrix D( f + u∗g)(z). The Jacobi matrices D f (z) and Dg(z) of the
corresponding vector functions f (z) and g(z) from (12) are given by the representation (55) and
the first formula of (44). Then, the required representation can be written as

D( f + u∗g)(z) = p(τv
p (z))

> + q(τv
q )
> + r(τv

r )
>, (93)

where

τv
p (z) =

 u∗k
−γ−1

2 λ + u∗l
−γ−1

2 β−1(β + δ)ν

 , τv
q =

 0
0

β−1ν

 , τv
r = τu

r =

 −µ

−γ1γ−1
2 λ

−β−1αν

 .

We substitute (82) and (93) into (92). After the necessary transformations, the following formula
can be found:

[ f + u∗g, [ f + u∗g, h]](z) =
(
〈∇θv(z), ( f + u∗g)(z)〉 − 〈[ f + u∗g, h](z), τv

p (z)〉
)

p

+
(
〈∇ηv(z), ( f + u∗g)(z)〉 − 〈[ f + u∗g, h](z), τv

q 〉
)

q

+
(
〈∇χv(z), ( f + u∗g)(z)〉 − 〈[ f + u∗g, h](z), τv

r 〉
)

r.

Substituting this formula into (91), we obtain the expression:

〈ψ∗(t), [ f + u∗g, [ f + u∗g, h]](z∗(t))〉

=
(
〈∇θv(z∗(t)), ( f + u∗g)(z∗(t))〉 − 〈[ f + u∗g, h](z∗(t)), τv

p (z∗(t))〉
)
〈ψ∗(t), p〉

+
(
〈∇ηv(z∗(t)), ( f + u∗g)(z∗(t))〉 − 〈[ f + u∗g, h](z∗(t)), τv

q 〉
)
〈ψ∗(t), q〉

+
(
〈∇χv(z∗(t)), ( f + u∗g)(z∗(t))〉 − 〈[ f + u∗g, h](z∗(t)), τv

r 〉
)
〈ψ∗(t), r〉.

(94)
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Now, let us substitute (84) into (94). After the necessary transformations, we have the relationship:

〈ψ∗(t), [ f + u∗g, [ f + u∗g, h]](z∗(t))〉

= χ−1
v (z∗(t))

{
〈∇χv(z∗(t)), ( f + u∗g)(z∗(t))〉 − 〈[ f + u∗g, h](z∗(t)), τv

r 〉
}

L(1)
v (t)

+ χ−1
v (z∗(t))

{
〈χv(z∗(t))∇θv(z∗(t))− θv(z∗(t))∇χv(z∗(t)), ( f + u∗g)(z∗(t))〉

− 〈[ f + u∗g, h](z∗(t)), χv(z∗(t))τv
p (z∗(t))− θv(z∗(t))τv

r 〉
}
〈ψ∗(t), p〉

+ χ−1
v (z∗(t))

{
〈χv(z∗(t))∇ηv(z∗(t))− ηv(z∗(t))∇χv(z∗(t)), ( f + u∗g)(z∗(t))〉

− 〈[ f + u∗g, h](z∗(t)), χv(z∗(t))τv
q − ηv(z∗(t))τv

r 〉
}
〈ψ∗(t), q〉.

(95)

On the subinterval ∆v equalities (86) and (87) are valid. Then, formula (95) is simplified and takes
the following form:

〈ψ∗(t), [ f + u∗g, [ f + u∗g, h]](z∗(t))〉

= χ−1
v (z∗(t))

{
〈χv(z∗(t))∇θv(z∗(t))− θv(z∗(t))∇χv(z∗(t)), ( f + u∗g)(z∗(t))〉

− 〈[ f + u∗g, h](z∗(t)), χv(z∗(t))τv
p (z∗(t))− θv(z∗(t))τv

r 〉
}
〈ψ∗(t), p〉.

(96)

Let us calculate the right-hand side of this formula. The expression (χv(z)∇θv(z)− θv(z)∇χv(z))
is given by (89). Multiplying this expression scalarly by the vector function ( f + u∗g)(z), defined by the
vector functions f (z) and g(z) from (12), we obtain the following formula for the first term in braces:

〈χv(z)∇θv(z)− θv(z)∇χv(z), ( f + u∗g)(z)〉
= −εu∗l2m2((β + δ)(σ− µl − γ1u∗lk) + δk(λ− γ2u∗l)).

(97)

Now, substituting (77) into the second term in braces, we find the expression:

〈[ f + u∗g, h](z), χv(z)τv
p (z)− θv(z)τv

r 〉

= θv(z)χv(z)〈τv
p (z), p〉+ ηv(z)χv(z)〈τv

p (z), q〉+ χ2
v(z)〈τv

p (z), r〉

− θ2
v(z)〈τv

r , p〉 − θv(z)ηv(z)〈τv
r , q〉 − θv(z)χv(z)〈τv

r , r〉.

(98)

Using the formulas of the vectors p, q, r, τv
r , the vector function τv

p (z) and the functions θv(z),
ηv(z), χv(z), we calculate all the terms of (98). As a result, the following expression can be obtained:

〈[ f + u∗g, h](z), χv(z)τv
p (z)− θv(z)τv

r 〉

= l2m2
{

γ1γ−2
2 (λ− µ)

(
(β + δ)(λ− ν)− γ2u∗((β + δ)l − δk)

)2

− γ−1
2 ε((λ− µ)− u∗(γ2l − γ1k))

×
(
(β + δ)(λ− ν)− γ2u∗((β + δ)l − δk)

)
+ ε2u∗k

}
.

(99)

We substitute (97) and (99) into (96). After the necessary transformations in this formula and the
substitution of the quadratic function Φ(l, k) defined by the relationship:

Φ(l, k) = γ1γ−2
2 (λ− µ)

(
(β + δ)(λ− ν)− γ2u∗((β + δ)l − δk)

)2

− γ−1
2 ε((λ− µ)− u∗(γ2l − γ1k))

(
(β + δ)(λ− ν)− γ2u∗((β + δ)l − δk)

)
+ εu∗

(
(β + δ)σ− ((β + δ)µl − (ε + δλ)k)− u∗(γ1(β + δ) + γ2δ)lk

)
,
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as well as the formula of the function χv(z), we have for (96) the following expression:

〈ψ∗(t), [ f + u∗g, [ f + u∗g, h]](z∗(t))〉 = −ε−1l∗(t)m∗(t)Φ(l∗(t), k∗(t))〈ψ∗(t), p〉. (100)

Now, substituting (90) and (100) into (79), we finally find the formula for the second derivative
L(2)

v (t) of the switching function Lv(t) as

L(2)
v (t) = l∗(t)m∗(t)

(
−ε−1Φ(l∗(t), k∗(t))

+ 2δ(β + δ)u∗v∗(t)l∗(t)m∗(t)
)
〈ψ∗(t), p〉, t ∈ ∆v.

(101)

This formula implies the relationship:

∂

∂v
L(2)

v (t) = 2δ(β + δ)u∗l2
∗(t)m

2
∗(t)〈ψ∗(t), p〉

= 2δ(β + δ)u∗l∗(t)k−1
∗ (t)m2

∗(t)Lu(t), t ∈ ∆v.
(102)

Here we applied the first formula of (22). It is easy to see that this expression is sign-definite
everywhere on the subinterval ∆v. Therefore, firstly, the order of the singular arc equals one.
Secondly, the necessary optimality condition of the singular arc, the Kelly condition [29], is either
carried out in a strengthened form, and then the singular arc exists, or it is not satisfied, and then the
singular arc does not exist. By [29] and (102), the strengthened Kelly condition leads to the inequality:

2δ(β + δ)u∗l∗(t)k−1
∗ (t)m2

∗(t)Lu(t) > 0, t ∈ ∆v. (103)

By Lemma 1, Relationship (103) implies the inequality Lu(t) > 0, which in turn, by Formula (8),
implies u∗ = 1 everywhere on the subinterval ∆v.

Remark 4. On the subinterval ∆v ⊂ [0, T], which is the singular interval of the optimal control v∗(t),
the optimal control u∗(t) is constant and takes the value 1. This leads to the corresponding correction of the
formulations of Lemmas 5 and 7.

Next, Formula (101) and the vanishing of the second derivative L(2)
v (t) of the switching function

Lv(t) yield the following relationship for the control vsing(t):

vsing(t) =
Φ(lsing(t), ksing(t))

2εδ(β + δ)lsing(t)msing(t)
,

which is the control v∗(t) on the subinterval ∆v. Here the functions lsing(t), ksing(t), msing(t) are the
corresponding solutions l∗(t), k∗(t), m∗(t) on this subinterval. When the inclusion vsing(t) ∈ [vmin, 1]
holds for all t ∈ ∆v, the control vsing(t) is admissible. Corollary 1 shows that the singular arc of the
optimal control v∗(t) is concatenated with the nonsingular interval, where this control is bang-bang.
Let ξ ∈ (0, T) be the time moment, where such a concatenation occurs. Then, as it follows from [22,29],
when vsing(t) ∈ (vmin, 1) for all t ∈ ∆v, such concatenations are allowed and will be observed on both
sides of the subinterval ∆v.

Thus, the above arguments of this section lead us to the validity of the following proposition.

Proposition 2. The optimal control v∗(t) on a singular interval can contain a singular arc of order one,
which concatenates with bang-bang intervals of this control. On such an interval the optimal control u∗(t) is
constant and takes the value 1.
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7. Numerical Results

Here we demonstrate the results of a numerical solution of the minimization problem (5).
For numerical calculations the following values of the parameters of System (1), the initial values (2)
and the control constraints (3) taken from [17,26] were used:

σ = 15.0 ρ = 3.6 β = 0.4 δ = 0.005
λ ∈ {0.3; 1.2} µ = 0.01 ν = 0.02 T = 100.0
γ1 = 0.8 γ2 = 0.05 umin = 0.3 vmin = 0.3
l0 = 100.0 k0 = 40.0 m0 = 50.0

(104)

These numerical calculations were conducted using “BOCOP–2.0.5” [31]. It is an optimal control
interface, implemented in MATLAB, for solving optimal control problems with general path and
boundary constraints, and free or fixed final time. By a time discretization, such problems are
approximated by finite-dimensional optimization problems, which are then solved by well-known
software IPOPT, using sparse exact derivatives computed by ADOL-C. IPOPT is an open-source
software package for large-scale nonlinear optimization.

Considering the time interval of 100 days (T = 100.0), a time grid with 8000 nodes was created,
i.e., for t ∈ [0, 100.0] we get 4t = 0.0125. Since our problem is solved by a direct method and,
consequently, using an iterative approach, we impose at each step the acceptable convergence tolerance
of εrel = 10−15. Moreover, we use the sixth-order Lobatto III C discretization rule. In this respect,
for more details we refer to [31].

The corresponding results of the numerical calculations are presented in Figures 1 and 2. In each
figure for a specific value of λ we give the graphs of the optimal controls u∗(t), v∗(t), the corresponding
optimal solutions l∗(t), k∗(t), and m∗(t); J∗ is the minimum value of the functional J(u, v) of (5).
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Figure 1. Optimal solutions and optimal controls for λ = 0.3: (upper row) l∗(t), k∗(t), m∗(t);
(lower row) u∗(t), v∗(t); J∗ = 10.48323.
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Figure 2. Optimal solutions and optimal controls for λ = 1.2: (upper row) l∗(t), k∗(t), m∗(t);
(lower row) u∗(t), v∗(t); J∗ = 2.643956.

It is important to note that the controls u(t) and v(t) are auxiliary. They are introduced into
System (1) to simplify analytical analysis. The corresponding actual controls ũ(t) and ṽ(t) in the same
system are related to the controls u(t) and v(t) by the formulas:

ũ(t) = 1− u(t), ṽ(t) = 1− v(t). (105)

Therefore, where the auxiliary optimal control u∗(t) has a maximum value of 1, the appropriate
actual optimal control ũ∗(t) takes a minimum value of 0, and vice versa. Similar remark is
also valid for the auxiliary optimal control v∗(t) and the appropriate actual optimal control ṽ∗(t).
Moreover, the controls ũ∗(t) and ṽ∗(t) are the optimal strategies of psoriasis treatment.

The conducted numerical calculations show the performance of software “BOCOP–2.0.5” in the
study of such a complex (from computational point of view) phenomenon as chattering of the optimal
control u∗(t). We note that the corresponding actual optimal control ũ∗(t) also has such behavior.
This type of psoriasis treatment does not make sense. However, there is no reason for concern because
there are approaches for chattering approximation presented, for example, in [21,32–34].

Taking into account Formula (105) related to the actual optimal controls ũ∗(t) and ṽ∗(t) and
the optimal controls u∗(t) and v∗(t) corresponding to them, and after analyzing the graphs of these
controls (see Figures 1 and 2), we conclude that the medication intake schedule during 100 days of
psoriasis treatment is as follows.

At small values of λ (for example, λ = 0.3), for most of the entire treatment period (95 days),
a drug, which suppresses the interaction between T-lymphocytes and keratinocytes must be taken at
the maximum dosage. In this case, a drug suppressing the interaction between T-lymphocytes and
dendritic cells, must be taken at the minimum dosage. Then, on the 96th day, the medication schedule
changes to the opposite one and for the next three days it looks like this: a medication suppressing
the interaction between T-lymphocytes and keratinocytes is taken at the minimum dosage and a drug
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that suppresses the interaction between T-lymphocytes and dendritic cells is, on the contrary, taken at
the maximum dosage. Finally, on the 99th day, the schedule of taking a drug, which suppresses the
interaction between T-lymphocytes and keratinocytes, is again reversed. It is taken at the maximum
dosage until the end of the treatment period. The schedule of taking a drug, which suppresses
the interaction between T-lymphocytes and dendritic cells, does not change. It is still taken at the
maximum dosage.

With the increase of the value of λ (for example, λ = 1.2), the actual optimal control ũ∗(t)
responsible for taking a drug that suppresses the interaction between T-lymphocytes and keratinocytes
during most of the entire treatment period (95 days) has an interval corresponding to a smooth
increase in the dosage of the used medication (singular arc). At the beginning and at the end of
such an interval of psoriasis treatment there are the periods with increasing number of switchings
from the lower intensity to the greatest intensity and vice versa (chattering). In addition, the whole
process of this treatment ends with the interval of the greatest intensity (maximum dosage of the
medication intake). Moreover, the schedule of taking a drug that suppresses the interaction between
T-lymphocytes and dendritic cells does not qualitatively change. Almost during the entire period of
psoriasis treatment (98 days), it is taken at the minimum dosage. Then, on the 99th day of the treatment
period, the schedule for taking such a drug changes to the opposite. During the remaining two days it
is taken at the maximum dosage.

Next, it was found that with the decrease or increase of the length of psoriasis treatment
(for example, 10 days or 190 days), the above schedule of the drugs intake does not qualitatively
change. It should be noted only that with the reduction in the duration of this period, the first change
in the schedule of taking medications begins to occur earlier (see Figures 3 and 4 for 10 days), and with
an increase in the duration of such a period, on the contrary, later (for example, 190 days).
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Figure 3. Optimal solutions and optimal controls for λ = 0.3: (upper row) l∗(t), k∗(t), m∗(t);
(lower row) u∗(t), v∗(t); J∗ = 14.09275.
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Figure 4. Optimal solutions and optimal controls for λ = 1.2: (upper row) l∗(t), k∗(t), m∗(t);
(lower row) u∗(t), v∗(t); J∗ = 2.644754.

From the comparison of the schedule of the medication intake for 100 days psoriasis treatment,
one can conclude that a drug that suppresses the interaction between T-lymphocytes and keratinocytes
predominates over a drug that suppresses the interaction between T-lymphocytes and dendritic cells.
To show that this predominance is not absolute in psoriasis treatment, we (along with the values of the
parameters of System (1), the initial values (2) and the control constraints (3) presented in (104), use
the following values taken from [13]:

σ = 9.0 ρ = 14.0 β = 0.065 δ = 0.01
λ = 0.4 µ = 0.07 ν = 0.02 T = 100.0
γ1 = 0.0032 γ2 = 0.0002 umin = 0.3 vmin = 0.3
l0 = 100.0 k0 = 40.0 m0 = 50.0

The corresponding results of the numerical calculations are given in Figure 5, which include the
graphs of the optimal controls u∗(t), v∗(t), the corresponding optimal solutions l∗(t), k∗(t), and m∗(t),
and the minimum value of the functional J(u, v) of (5). From the analysis of the graphs of controls
u∗(t), v∗(t) and Formula (105), we conclude that for the majority of 100 days psoriasis treatment we
use the maximum dosage of a drug suppressing the interaction between T-lymphocytes and dendritic
cells. A drug that suppresses the interaction between T-lymphocytes and keratinocytes, should be used
at the minimum dosage for 99 days and only on the last day the schedule of taking this medication
should be changed to the maximum dosage. This is the first conclusion we draw from Figure 5.
The second conclusion is that unlike the results shown in Figures 1 and 3, the first change in the
schedule of taking drugs does not occur simultaneously in both, but only in one, which suppresses the
interaction between T-lymphocytes and dendritic cells.
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Figure 5. Optimal solutions and optimal controls for T = 100.0: (upper row) l∗(t), k∗(t), m∗(t);
(lower row) u∗(t), v∗(t); J∗ = 33.185501.

Figure 6 shows that with increasing duration of the period of psoriasis treatment (for example,
to 150 days), the actual optimal control ṽ∗(t) responsible for taking a drug that suppresses the
interaction between T-lymphocytes and dendritic cells has a period with a smooth increase in the
dosage of the used medication (singular arc).
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Figure 6. Optimal solutions and optimal controls for T = 150.0: (upper row) l∗(t), k∗(t), m∗(t);
(lower row) u∗(t), v∗(t); J∗ = 33.185511.
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Finally, the graphs of the optimal solution k∗(t) from Figures 1–6 show that the optimal
concentration of keratinocytes k∗(t) reaches at the end T of the interval [0, T] the level, which is
the minimal for the entire period [0, T] of psoriasis treatment. This fact is very important for the
treatment of the disease.

8. Conclusions

On a given time interval, a nonlinear system of three differential equations describing psoriasis
treatment was considered. It established the relationships between the concentrations of T-lymphocytes,
keratinocytes, and dendritic cells, which were its phase variables. Also, two scalar bounded controls
were introduced into the system that reflected the doses of drugs aimed at suppressing interactions
between T-lymphocytes and keratinocytes, as well as between T-lymphocytes and dendritic cells.
The problem of minimizing the concentration of keratinocytes at the final moment of the time interval
was stated for such a system. To analyze the optimal solution of the minimization problem consisting
of the optimal controls and the corresponding optimal solutions of the original system, the Pontryagin
maximum principle was applied. It allowed to obtain the Cauchy problem for the switching functions
describing the behavior of the optimal controls. An analysis of this Cauchy problem showed that
such controls could be either bang-bang functions, or, in addition to bang-bang intervals, they could
contain singular arcs. Next, the possibility of simultaneous existence of singular arcs of the optimal
controls was studied. The orders of singular arcs of such controls were found, the corresponding
necessary optimality conditions for them were checked. Also, the forms of concatenations of singular
arcs with nonsingular intervals (where the optimal controls are bang-bang functions) were investigated.
After that, the finding of specific optimal solution to the considered minimization problem was carried
out numerically using “BOCOP–2.0.5”. The corresponding results of calculations and their discussion
were provided.
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