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Abstract: This article presents the homotopy perturbation method (HPM) employed to investigate the
effects of inclination on the thermal behavior of a porous fin heat sink. The study aims to review the
thermal characterization of heat sink with the inclined porous fin of rectangular geometry. The study
establishes that heat sink of an inclined porous fin shows a higher thermal performance compared
to a heat sink of equal dimension with a vertical porous fin. In addition, the study also shows that
the performance of inclined or tilted fin increases with decrease in length–thickness aspect ratio.
The study further reveals that increase in the internal heat generation variable decreases the fin
temperature gradient, which invariably decreases the heat transfer of the fin. The obtained results
using HPM highlights the accuracy of the present method for the analysis of nonlinear heat transfer
problems, as it agrees well with the established results of Runge–Kutta.

Keywords: approximate analytical analysis; heat sink; porous fin; homotopy perturbation method

1. Introduction

With the increasing demand for high-performance electronic systems of miniaturized packaging,
electronic cooling, and subsequently, the thermal enhancement of heat transfer components is rapidly
gaining more attention. To achieve miniaturized packaging, the challenge to trade off size with
efficiency often comes at a design cost. One key design consideration is the issue of excess heat
building up within the thermal components, which could lead to the eventual damage of the electronic
circuitry and overall functional breakdown of such electronic systems.

A key approach to achieve compact, thermally efficient electronic systems is to effectively improve
heat dissipation between the device surface and the surrounding environment using extended surface
or fin. Fin application is identified as a viable approach for enhancing thermal performance of
different systems following the research breakthrough of [1]. Consequently, research on heat transfer
using porous fin has become one of the emerging research areas for engineers and scientists, since,
for the same weight, porous fin is established to show better performance than solid fins of equal
dimension [2,3].

Different authors have applied different methods including analytical, numerical, and hybrid;
i.e. a combination of two or more methods to investigate the thermal behaviour of fin under different
operating conditions. Example of these methods include: Runge–Kutta [4–6], Galerkin’s method
of weighted residual [7,8], least squares method [9], and various collocation methods, including
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Haar wavelet [10,11], spectral [12], Chebychev [13–15], spectral element [16], Legendre [17], Adomian
decomposition method [18,19], differential transform method [20–22], variational iteration method [23],
homotopy analysis method [24], and hybrid methods [25–27].

Furthermore, in the quest to enhance the performance of fins, especially porous fins, different
authors are investigating various thermal characteristics of porous fin including material, geometry,
orientation, and composition are investigated to achieve heat transfer enhancement and augmentation.
Since the heat sink is a critical component of most electronic systems, several authors have carried out
different investigations on how the orientation of the heat sink as a composite unit affects its overall
thermal performance [28,29]. Nevertheless, to the best of our knowledge, a study on the effect of
inclination on the thermal performance of solid or porous fin heat sinks have not been carried out in
the literature.

In this article, the homotopy perturbation method (HPM) is applied to theoretically investigate
the effect of inclination and internal heat generation on the thermal behavior of a porous fin heat
sink. HPM is an efficient approximate analytical approach useful for boundary value problems as
shown in the present work and is independent on a small parameter in the governing equation.
Furthermore, HPM handles the conditions at the boundaries without necessarily representing them,
thereby obtaining the solution at every point without the presence of an unknown. The study aims at
thermal characterization of heat sink with inclined porous fins of rectangular geometry. The rest of
the article is organised as follows: The physical model of the process will be presented in Section 2.
In Section 3, the developed nonlinear governing equation is solved using HPM. The parametric results
of the study are discussed in Section 4. The summarized conclusions from the analysis are presented
in Section 5.

2. Problem Formulation

Figure 1 shows a heat sink of vertical fins. The geometry of the porous fin is of the length L,
thickness t and is exposed on both faces to a convective–radiative environment at temperature T∞.
To simplify the formulation of fin problem, we made the following assumptions:

• Porous media is homogeneous and saturated with single-phase fluid.
• The interaction between the saturated fluid and medium is governed by Darcy’s model.
• Thermo-physical characteristics of the porous fin with that of the fluid are constant.
• Fin tip is adiabatic.
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Figure 1. (a) Porous heat sink; (b) schematic of the heat process; (c) plain view of vertical fins heat sink;
(d) plain view of inclined porous fins heat sink.

The steady-state one-dimensional thermal model of a single porous fin heat sink is established
from our previous works [8,11,15,30] is expressed as:

d2T
dx2 −

ρcpgKβth

ke f f tv
(T − Ta)

2 −
he f f

ke f f t
(T − Ta) +

q(T)
ke f f Acr

= 0 (1)

The boundary conditions are
x = 0, dT

dx = 0
x = L, T = Tb

(2)

where the temperature-dependent internal heat generation is given as:

q(T) = q0[1 + λ(T − T∞)] (3)

If we substitute Equation (3) into Equation (1), we arrive at

d2T
dx2 −

ρcpgKβth

ke f f tv
(T − Ta)

2 −
he f f

ke f f t
(T − Ta) +

qo

ke f f Acr
[1 + λ(T − T∞)] = 0 (4)

The effective convective heat transfer coefficient (he f f = (kNu)/L) is found from the correlations

Nu =


0.68 + 0.67[(Grcosβ)Pr]0.25{

1+( 0.492
Pr )

0.5625}0.444 (Grcosβ)Pr < 104

0.59[(Grcosβ)Pr]0.25 104 < (Grcosβ)Pr < 109

(5)

Alternatively, for all values of (Gr(cosβ))Pr

Nu =

0.825 +
0.387[(Grcosβ)Pr]0.167{
1 +

(
0.492

Pr

)0.5625
}0.296


2

(6)

where the inclination angle is expressed as “β” which is “0” for the vertical fin.
On introducing the dimensionless parameters in Equation (7) into Equation (4)
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X = x
L , θ = T−Ta

Tb−Ta
, Sh =

ρcpgkβth L2(Tb−Ta)
tvke f f

, M2 =
he f f L2

ke f f t ,

Q = q0L2t
ke f f Ae f f (Tb−Ta)

, γ = λ(Tb − Ta)
(7)

We arrive at
d2θ

dX2 − Shθ2 −M2
aθ + M2Q(1 + γθ) = 0 (8)

Therefore, Equation (8) becomes the nonlinear dimensionless thermal model, and the
dimensionless boundary condition becomes

X = 0, dθ
dX = 0

X = 1, θ = 1
(9)

3. Method of Solution using HPM

The dimensionless nonlinear thermal equation of Equation (8) is solved using HPM. Therefore,
to solve the present problem, a homotopy construction for Equation (8) is generated as:

H(θ, p) = (1− p)
[

d2θ

dX2

]
+ p

[
d2θ

dX2 − Shθ2 −M2θ + M2Q(1 + γθ)

]
(10)

Here p ∈ [0, 1] is an embedding parameter, and for p = 0 and p = 1, we have

θ(X, 0) = θ0(X), θ(X, 1) = θ1(X) (11)

It is worth noting that as p increases from 0 to 1, θ(X, p) changes from θ0(X) to θ1(X).
Assume the solution of Equation (8) is expressed as a series in p as:

θ(X) = θ0(X) + pθ1(X) + p2θ2(X) + p3θ2(X) + . . . =
n

∑
i=0

piθi(X) (12)

Then by substituting Equation (12) into Equation (10) and expanding the equation while terms of
the same order of p are collected together, the resulting expression will appear in form of a polynomial
in p. Moreover, by equating the coefficients of the polynomial in p to zero, we derive a set of differential
equations and their corresponding boundary conditions as

p0 :
d2θ0

dX2 (X) = 0, θ0(0) = 1 θ′0(1) = 0 (13)

p1 :
d2θ1

dX2 + M2Qγθ0 − Shθ2
0 −M2θ0 + M2Q = 0, θ1(0) = 0 θ′1(1) = 0 (14)

p2 :
d2θ2

dX2 + M2Qγθ1 − Shθ0θ1 −M2θ1 = 0, θ2(0) = 0 θ′2(1) = 0 (15)

p3 :
d2θ3

dX2 + M2Qγθ2 − Shθ2
1 − 2Shθ0θ2 −M2θ1 + M2Q = 0, θ3(0) = 0 θ′3(1) = 0 (16)

p4 :
d2θ4

dX2 −M2θ3 − 2Shθ1θ2 − 2Shθ0θ3 + M2Qγθ3 = 0, θ4(0) = 0 θ′4(1) = 0 (17)

p5 :
d2θ5

dX2 − Shθ1θ3 + M2Qγθ4 −M2θ4 − Shθ2
2 − 2Shθ0θ4 = 0, θ5(0) = 0 θ′5(1) = 0 (18)

p6 :
d2θ6

dX2 + M2Qγθ5 − 2Shθ0θ5 − 2Shθ1θ4 −M2θ5 − 2Shθ2θ3 = 0, θ6(0) = 0 θ′6(1) = 0 (19)
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p7 :
d2θ7

dX2 + M2Qγθ6 − 2Shθ1θ5 − 2Shθ0θ6 −M2θ6 − 2Shθ2θ4 = 0, θ7(0) = 0 θ′7(1) = 0 (20)

p8 :
d2θ8

dX2 + M2Qγθ7 − 2Shθ3θ4 − 2Shθ1θ6 −M2θ7 − 2Shθ0θ7 − 2Shθ2θ5 = 0, θ8(0) = 0 θ′8(1) = 0 (21)

p9 :
d2θ9

dX2 − 2Shθ0θ8 − 2Shθ2θ6 + M2Qγθ8 − Shθ2
4 − 2Shθ3θ5 − 2Shθ1θ7 −M2θ8 = 0, θ9(0) = 0 θ′9(1) = 0 (22)

On solving the above Equations (13)–(22), we arrived at

θ0(X) = 1 (23)

θ1(X) =

[
M2[1−Q(1 + γ)] + Sh

]
2

(
X2 − 1

)
(24)

θ2(X) =

[
M2[1−Q(1 + γ)] + Sh

](
M2 + 2Sh −M2Qγ

)
24

(
X4 − 6X2 + 5

)
(25)

θ3(X) =



 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

(M2+2Sh−M2Qγ)
12

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
X6

30−

 2Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

(M2+2Sh−M2Qγ)
2

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
X4

12 +

 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

5(M2+2Sh−M2Qγ)
12

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
X2

2 −


11
30 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

61(M2+2Sh−M2Qγ)
360

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)




(26)

In the same manner, the expressions for θ4(X), θ5(X), θ6(X), θ7(X), θ8(X) are obtained. However,
these expressions are too large to be included in this paper.

Nevertheless, from the above definition, the solution of Equation (8) in HPM domain can, therefore,
be expressed as:

θ(X) = θ0(X) + pθ1(X) + p2θ2(X) + p3θ3(X) + p4θ4(X) + p5θ5(X)+

p6θ6(X) + p7θ7(X) + p8θ8(X) + p9θ9(X) + . . .
(27)

Again, it worth noting that for all values of p between 0 and 1, we obtain the best result at p = 1.
Therefore, by using p = 1 produces the approximate expression of Equation (27),

θ(X) = lim
p→1

θ(X) = θ0(X) + θ1(X) + θ2(X) + θ3(X) + θ4(X) + θ5(X)+

θ6(X) + θ7(X) + θ8(X) + θ9(X) + . . .
(28)

Furthermore, by substituting Equations (23)–(26) into Equation (28), we arrive at:
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θ(X) = 1− [M2[1−Q(1+γ)]+Sh]
2

(
1− X2)+ [M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

24
(
X4 − 6X2 + 5

)

+



 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

(M2+2Sh−M2Qγ)
12

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
X6

30−

 2Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

(M2+2Sh−M2Qγ)
2

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
X4

12 +

 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

5(M2+2Sh−M2Qγ)
12

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
X2

2 −


11
30 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

61(M2+2Sh−M2Qγ)
360

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)




(29)

The fin efficiency is obtained from the integration shown below:

η =

1∫
0



1− [M2[1−Q(1+γ)]+Sh]
2

(
1− X2)+ [M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

24
(
X4 − 6X2 + 5

)

+



 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

(M2+2Sh−M2Qγ)
12

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
X6

30−

 2Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

(M2+2Sh−M2Qγ)
2

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
X4

12 +

 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

5(M2+2Sh−M2Qγ)
12

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
X2

2 −


11
30 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

61(M2+2Sh−M2Qγ)
360

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)




+ . . .



∂x (30)
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η = 1− [M2[1−Q(1+γ)]+Sh]
2 +

2[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)
15

+



1
210

 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

(M2+2Sh−M2Qγ)
12

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
−

1
60

 2Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

(M2+2Sh−M2Qγ)
2

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
+

1
6

 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

5(M2+2Sh−M2Qγ)
12

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)
−


11
30 Sh

(
[M2[1−Q(1+γ)]+Sh]

2

)2
+

61(M2+2Sh−M2Qγ)
360

(
[M2[1−Q(1+γ)]+Sh](M2+2Sh−M2Qγ)

2

)




(31)

4. Results and Discussion

The developed analytical solutions presented in Section 3 are simulated in MATLAB and the
results are presented in Figures 2–7.

From Figure 2, the inclination effect on the performance of the porous fin is highlighted. It can
be seen from Figure 2 that the inclined porous fin exhibits improved thermal performance than the
corresponding vertical heat sink of equal dimension. In addition, the thermal performance of the
inclined or tilted fin increases with decrease in the length–thickness aspect ratio of the fin. In addition,
Figure 3 shows the effect of porosity on the temperature distribution of the fin. From Figure 3, it can be
observed that the temperature of the porous fin decreases and drops rapidly as the porosity parameter
increases. This overall implication of this effect is that increase in porosity improves the performance
of the fin.
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Figure 2. Inclination effect on the fin performance.

Figure 4 shows the effect of heat generated internally on the temperature distribution of porous
fin, whilst Figure 5 presents the influence of the temperature-dependent internal heat generation
on the temperature distribution of the fin. From both Figures 4 and 5, it can be observed that as
the temperature gradient of the fins decreases, the internal heat generation parameters increases,
which consequently decreases the rate of heat transferred in the fin.
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From Figures 6 and 7, we highlight the effects of thermo-geometric and porosity variable on the
efficiency ratio of the inclined fin to vertical fin. From the figures, it can be observed that the efficiency
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ratio of the inclined fin to the vertical fin is greater than one for all cases considered. Moreover, the
increased temperature distribution by convection in the inclined porous fin is due to the effective
shorter length of the fin caused by the tilted angle, β as depicted in Figure 1c.
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Figure 7. Porosity variable effect on efficiency ratio of inclined to vertical porous fins.

From Table 1, we highlight a comparison of the present study using HPM with an established
numerical result of Runge–Kutta. From Table 1, it could be seen that the result of HPM agrees
excellently with the established result of Runge–Kutta which validates the accuracy of the present
method for analysis of nonlinear heat transfer problem.

Table 1. Comparison of results.

x Numerical Method (Runge-Kutta) HPM (Present Study) Absolute Error

0.00 0.863499231 0.863499664 0.000000433
0.05 0.863828568 0.863829046 0.000000478
0.10 0.864817090 0.864817539 0.000000449
0.15 0.866466182 0.866465743 0.000000439
0.20 0.868776709 0.868776261 0.000000448
0.25 0.871751555 0.871751104 0.000000451
0.30 0.875393859 0.875393404 0.000000455
0.35 0.879707472 0.879707010 0.000000462
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Table 1. Cont.

x Numerical Method (Runge-Kutta) HPM (Present Study) Absolute Error

0.40 0.884696967 0.884696500 0.000000467
0.45 0.890367650 0.890367181 0.000000469
0.50 0.896725569 0.896725096 0.000000473
0.55 0.903777531 0.903777060 0.000000471
0.60 0.911531120 0.911530658 0.000000462
0.65 0.919994710 0.919994259 0.000000451
0.70 0.929177488 0.929177056 0.000000432
0.75 0.939089476 0.939089079 0.000000397
0.80 0.949741555 0.949741203 0.000000352
0.85 0.961145491 0.961145189 0.000000302
0.90 0.973313964 0.973313764 0.000000200
0.95 0.986260599 0.986260549 0.000000005
1.00 1.000000000 1.000000000 0.000000000

5. Conclusions

In this article, the effect of inclination on the thermal behavior of a porous fin heat sink has been
investigated using HPM. From the analysis, it is established that the inclined porous fin in heat sink
shows improved thermal performance than the corresponding vertical heat sink of the same size and
geometry. In addition, the thermal performance of the inclined or tilted fin increases as the aspect ratio
of the fin decreases. Furthermore, the study reveals that as the internal heat generation parameter
increases the dimensionless temperature profile of the porous fin increases, which consequently,
increases the rate of heat transfer in the fin. The obtained results using HPM in this work highlight the
efficiency of the method for the analysis of nonlinear heat transfer problems.
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Abbreviations

Terminology
A Fin cross-sectional area
Ab Base area of the fin
As Fin surface area
heff Heat coefficient at fin base
cp Specific heat of the fluid passing through the porous fin
K Permeability
M Thermo-geometric parameter
.

m Saturated fluid mass flowage
Nu Nusselt number
P Fin perimeter
t Fin thickness
q Rate of heat transfer
X Dimensionless length
q Internal heat generation
Gr Grashoff’s number
β Inclination angle.
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Sh Porosity term.
M Convective heat parameter
T Temperature
Ta Ambient temperature
Tb Temperature at the base of the fin
V Average velocity of the fluid passing through the porous fin
Greek Symbols
β Inclination angle
θ Temperature (Dimensionless)
η Fin efficiency
βth Coefficient of thermal expansion
υ Kinematic viscosity
ρ Fluid density
Subscripts
s Solid properties
f Fluid properties
eff Effective porous properties
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