
Article

A Computational Method with MAPLE for a
Piecewise Polynomial Approximation to the
Trigonometric Functions

Le Phuong Quan

Department of Mathematics, College of Natural Sciences, Cantho University, 3/2 Street, Cantho City, Vietnam;
lpquan@ctu.edu.vn

Received: 13 August 2018; Accepted: 16 October 2018; Published: 17 October 2018

Abstract: A complete MAPLE procedure is designed to effectively implement an algorithm for
approximating trigonometric functions. The algorithm gives a piecewise polynomial approximation
on an arbitrary interval, presenting a special partition that we can get its parts, subintervals with
ending points of finite rational numbers, together with corresponding approximate polynomials.
The procedure takes a sequence of pairs of interval–polynomial as its output that we can easily
exploit in some useful ways. Examples on calculating approximate values of the sine function with
arbitrary accuracy for both rational and irrational arguments as well as drawing the graph of the
piecewise approximate functions are presented. Moreover, from the approximate integration on
[a, b] with integrands of the form xm sin x, another MAPLE procedure is proposed to find the desired
polynomial estimates in norm for the best L2-approximation of the sine function in the vector space
P` of polynomials of degree at most `, a subspace of L2(a, b).

Keywords: approximation; approximate value; evaluation error; approximation error; piecewise
approximate polynomial; rational approximation; Taylor’s Theorem

MSC: 41A10; 42A10; 65D17; 65D18

1. Introduction

There are two aspects of implementation of an algorithm. One is the illustration for the validity of
the algorithm, and the other for the efficient exploitation of its steps thanks to the choice of suitable
tools.

Remez’s minimax algorithm is well established (see Section 3.5 in [1]), but all the steps to proceed
it contain the two main obstacles when being performed in practice:

• solving a nonlinear equation and a system of linear equations; and
• using the cosine function to compute the initial set of points.

As a warning to experienced users, they should have close control of the evaluation error at almost
every calculation for the above steps. Therefore, it could be difficult to effectively implement this
algorithm for approximating the trigonometric functions themselves.

Here, we choose Algorithm 2 in [2] to be implemented with MAPLE (or any of Computer Algebra
Systems (CAS), if possible), because it has the great advantage: only using arithmetic calculations on
finite rational numbers and comparisons. The choice of MAPLE is due to its powerfulness of symbolic
computation and its ability to display exact number of significant digits for the obtained numerical
results. The description of Algorithm 2 is clear, but examples on numerical integration and graphical
plots in [2] seem to be as of the first kind of implementation as mentioned above. Therefore, we come
back to the article [2] with aspiration to provide the beginners or occasional users with a complete

Math. Comput. Appl. 2018, 23, 63; doi:10.3390/mca23040063 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0002-8511-2372
http://dx.doi.org/10.3390/mca23040063
http://www.mdpi.com/journal/mca

Math. Comput. Appl. 2018, 23, 63 2 of 11

MAPLE procedure, the output of which being easy and convenient to exploit when implementing
Algorithm 2.

From [2], we have that the function sin x is piecewise approximated on an interval [a, b] by the
polynomials Ai(x) on the subintervals [αi, αi+1], i = 0, . . . , n, such that [a, b] = [a, α1] ∪ [α1, α2] ∪ · · · ∪
[αn, b], where α0 = a and αn+1 = b and

Ai(x) = (−1)(ki−1)/2
bn/2c

∑
m=0

(−1)m

(2m)!
(x− ki pi)

2m,

or

Ai(x) = (−1)ki/2
b(n−1)/2c

∑
m=0

(−1)m

(2m + 1)!
(x− ki pi)

2m+1, i = 0, . . . , n.

These approximations all have the accuracy of 1/10r in absolute value for a given arbitrary positive
integer r. The main purpose of Algorithm 2 is to give the pairs of

[
[αi, αi+1], Ai(x)

]
, i = 0, . . . , n, and,

as a convention, the notations of this output is used in the next sections.
The paper is organized as follows. In Section 2, we construct a complete MAPLE procedure

by blocks of commands so that we can modify them easily. These blocks whose purpose is clearly
explained may be useful to design other procedures. Section 3 is for exploitation of the obtained
results from the output of the procedure. Section 3 is the detailed discussion on how to find a desired
estimate p for the best L2-approximation pbest of the sine function in the vector space P`. In particular,
it is possible to make a complete MAPLE procedure to find p’s with different values of ` from the
existing materials, and we let the reader do it with his or her close control of evaluation error for the
steps containing norms of vectors. Moreover, the crucial components of a procedure that computes
approximate values of integration with integrands of the form xm sin x (m ∈ N) are also provided.
Section 4 is the conclusion.

2. Implementation by MAPLE Procedures

We list here the MAPLE commands that appear in our procedures. They are all very important and
frequently used in MAPLE programming: add, coeff, Digits, ERROR, evalf, floor, for, irem, int,
nops, op, piecewise, RETURN, seq, sort, and while. A declaration to create a function, e.g., f, such as
f:=x->F(x) or f:=unapply(F(x),x), where F(x) is an expression in x, is a very useful and convenient
tool in MAPLE procedures for doing calculations. In addition, the conditional structure if–then is
indispensable in branch programming, whereas the type list is a flexible ordered arrangement of
operands (or things and elements). See [3,4] and MAPLE help pages in each session to know more
details about meaning, syntax and usage of these commands, structures and types.

In the following, we consider in succession the steps to perform Algorithm 2 in [2] with their
content and corresponding MAPLE codes. However, we modify some steps in Algorithm 2 to get the
extraction results conveniently from its output. Firstly, we recall the two blocks of commands (inside
steps) for getting the degree n of the approximate polynomial Pc

n(x) of the function sin x (Block 1),
which satisfies the accuracy of 1/10r, and for finding the approximate values of π/2, which appear in
Pc

n(x).

Block 1
n:=0: d:=1:
while (d>0) do
n:=n+1:
d:=(0.8)^(n+1)*10^(r+1)-(n+1)!;
end do:

Math. Comput. Appl. 2018, 23, 63 3 of 11

Block 2 is nothing but the full content of FindPoint, a procedure to determine nodes of the form
kp′, where k ∈ Z and p′ is an approximate value of π/2 (see [2]). These nodes are ending points of
subintervals in the partition of an arbitrary interval [a, b]. The output of FindPoint from its argument
y also gives the approximate polynomial F. Moreover, we have them all together, k, p′ and F from
a list of three components; that is, we may write FindPoint(y) = [k,p′,P] with p′ ≈ p = π/2,
| sin x− P(x)| < 1/10r for all x ∈ [kp′ − p′/2, kp′ + p′/2] and |y− kp′| < 0.8.

Block 2
m:=r+2:
while ((b+3.2)*10^(r+3)-10^m>0) do
m:=m+1:
end do:
Digits:=m+4:
q:=evalf[m+3](Pi/2):
T:=x/q-floor(x/q):
if (T=0.5) then
k0:=floor(x/q):
else
while (2.4*10^m*min(T,0.5-T)-abs(x)<0) and
(2.4*10^m*min(1-T,T-0.5)-abs(x)<0) do

m:=m+1: Digits:=m+4:
q:=evalf[m+3](Pi/2):
T:=x/q-floor(x/q):
end do:
end if:
if (0.5<T) then
k0:=floor(x/q)+1:
else
k0:=floor(x/q):
end if:
if (irem(k0-1,2)=0) then
F:=unapply((-1)^((k0-1)/2)*add((-1)^s*(t-k0*q)^(2*s)/((2*s)!),

s=0..floor(n/2)),t):
else
F:=unapply((-1)^(k0/2)*add((-1)^s*(t-k0*q)^(2*s+1)/((2*s+1)!),

s=0..floor((n-1)/2)),t):
end if:
[k0,q,F];

Next, Block 3 that may be the most important one is designed to find approximate polynomials
Aj(x), corresponding to intervals [αj−1, αj], where αj, j = 1, . . . , i, are the nodes mentioned above.
This block gives a so-called spreading technique that takes nodes together with the polynomials Aj(x),
by using Block 2 successively, as clearly described in [2]. We choose the output of Block 3 as a function
of a finite sequence of lists given in the form of

H := x →
[
[α0, α1], A0(x)

]
,
[
[α1, α2], A1(x)

]
, . . . ,

[
[αi−1, αi], Ai−1(x)

]
.

This output has the advantages of a function itself or a sequence of terms, because we can take its
values H(x) and H(−x), or its components (or operands) hj(x) =

[
[αj−1, αj], Aj−1(x)

]
as we want.

Math. Comput. Appl. 2018, 23, 63 4 of 11

We design a MAPLE procedure named ApproxFunct to give the approximate function P for the
sine function on an interval [a, b] for a ≥ 0. In the cases of 0 ≤ a < b ≤ 0.8 and 0 ≤ a < 0.8 < b,
we may set P = G on [a, b] and P = G on [a, 0.8], respectively, where

G(x) =
b(n−1)/2c

∑
m=0

(−1)m

(2m + 1)!
x2m+1

and n is determined by Block 1. Before giving the MAPLE codes of Block 3 chosen as the full content
of TempApproxFunct, the procedure to give the approximation to the sine function on [a, b] only for
a ≥ 0.8, we recall here (from [2]) the important remark: if α, β ∈ [a, b] are numbers such that

FindPoint(α)[1] = FindPoint(β)[1] = k

with p′ = FindPoint(α)[2], p′′ = FindPoint(β)[2], then we have |α− kp′′| < 0.8 and |β− kp′| < 0.8.

Block 3
n0:=FindPoint(b)[1]:
p0:=FindPoint(b)[2]:
B0:=FindPoint(b)[3]:
i:=0:
k[i]:=FindPoint(a)[1]:
p[i]:=FindPoint(a)[2]:
A[i]:=FindPoint(a)[3]:
u:=k[i]:
if n0<=u then
H:=x->[[a,b],A[0](x)]:
RETURN(H);
end if:
while u<n0 do
i:=i+1:
k[i]:=FindPoint(k[i-1]*p[i-1]+p[i-1])[1]:
p[i]:=FindPoint(k[i-1]*p[i-1]+p[i-1])[2]:
A[i]:=FindPoint(k[i-1]*p[i-1]+p[i-1])[3]:
u:=k[i]:
end do:
if i=1 then
if b<=k[0]*p[0]+p[0]/2 then

H:=x->[[a,b],A[0](x)]:
RETURN(H);
elif b<=k[0]*p[0]+p[0] then

H:=x->([[a,k[0]*p[0]+p[0]/2],A[0](x)],[[k[0]*p[0]+p[0]/2,b],A[1](x)]):
RETURN(H);
else

H:=x->([[a,k[0]*p[0]+p[0]/2],A[0](x)],[[k[0]*p[0]+p[0]/2,k[0]*p[0]+p[0]],
A[1](x)],[[k[0]*p[0]+p[0],b],B0(x)]):
RETURN(H);
end if:

elif i=2 then
if b<=k[1]*p[1]+p[1]/2 then

H:=x->([[a,k[0]*p[0]+p[0]/2],A[0](x)],[[k[0]*p[0]+p[0]/2,b],A[1](x)]):
continued on the next page

Math. Comput. Appl. 2018, 23, 63 5 of 11

Block 3 (continued)
RETURN(H);
elif b<=k[1]*p[1]+p[1] then

H:=x->([[a,k[0]*p[0]+p[0]/2],A[0](x)],[[k[0]*p[0]+p[0]/2,k[1]*p[1]+p[1]/2],
A[1](x)],[[k[1]*p[1]+p[1]/2,b],A[2](x)]):
RETURN(H);
else

H:=x->([[a,k[0]*p[0]+p[0]/2],A[0](x)],[[k[0]*p[0]+p[0]/2,k[1]*p[1]+p[1]/2],
A[1](x)],[[k[1]*p[1]+p[1]/2,k[1]*p[1]+p[1]],A[2](x)],[[k[1]*p[1]+p[1],b],B0(x)]):
RETURN(H);
end if:

else
if b<=k[i-1]*p[i-1]+p[i-1]/2 then

H:=x->([[a,k[0]*p[0]+p[0]/2],A[0](x)],seq([[k[m-1]*p[m-1]+p[m-1]/2,
k[m]*p[m]+p[m]/2],A[m](x)],m=1..i-2),[[k[i-2]*p[i-2]+p[i-2]/2,b],A[i-1](x)]):
RETURN(H);
elif b<=k[i-1]*p[i-1]+p[i-1] then

H:=x->([[a,k[0]*p[0]+p[0]/2],A[0](x)],seq([[k[m-1]*p[m-1]+p[m-1]/2,
k[m]*p[m]+p[m]/2],A[m](x)],m=1..i-1),[[k[i-1]*p[i-1]+p[i-1]/2,b],A[i](x)]):
RETURN(H);
else

H:=x->([[a,k[0]*p[0]+p[0]/2],A[0](x)],seq([[k[m-1]*p[m-1]+p[m-1]/2,
k[m]*p[m]+p[m]/2],A[m](x)],m=1..i-1),[[k[i-1]*p[i-1]+p[i-1]/2,k[i]*p[i-1]],
A[i](x)],[[k[i]*p[i-1],b],B0(x)]):
RETURN(H);
end if:

end if:

Note that TempApproxFunct takes three arguments in order as a, b and r. Next, we combine
Block 1 and Block 3 with some conditional commands to form Block 4, which is the content of the
ApproxFunct.

Block 4
G:=unapply(add((-1)^s*t^(2*s+1)/((2*s+1)!),s=0..floor((n-1)/2)),t):
if (a<0) then ERROR(‘1st argument must be nonegative‘);
elif (a<0.8) then
if (b<=0.8) then
[[a,b],G];
else
([[a,0.8],G],TempApproxFunct(0.8,b,r));
end if:

else
TempApproxFunct(a,b,r);
end if:

Now, we may call ApproxFunct(a,b,r) to fully access all subintervals together with approximate
polynomials for the accuracy of 1/10r on an interval [a, b], a ≥ 0. In particular, if we want to
extract the jth interval and its corresponding approximate polynomial, use the calling sequence
ApproxFunct(a,b,r)(x)[j], where j is chosen from the output ApproxFunct(a,b,r)(x).

Math. Comput. Appl. 2018, 23, 63 6 of 11

Finally, from the above analysis, we obtain the desired procedure named PiecewiseFunct (see the
supplementary material accompanying this paper for MAPLE codes), which gives a special partition
of an arbitrary interval [a, b] into subintervals [αj−1,αj] together with corresponding approximate
polynomials Aj(x), where

| sin x− Aj(x)| < 1
10r for all x ∈ [αj−1,αj], j = 1, . . . , N,

with N = nops([PiecewiseFunct(a,b,r)]). Here, there is a warning that, in MAPLE, if A:=a,b,c,d
or A:=(a,b,c,d), we cannot determine nops(A); however, we can if A:=[a,b,c,d], so nops(A) = 4.
To all three settings for A, we can select ordered elements of A, namely A[3] = c, for example.

Thus, a complete MAPLE procedure to perform Algorithm 2 in [2] is suggested to be

The PiecewiseFunct procedure
PiecewiseFunct:=proc(a::realcons,b::realcons,r::posint)
local ApproxFunct,j,n,d,G,num,funct,intrv;
ApproxFunct:=proc(a::realcons,b::realcons,r::posint)
local TempApproxFunct,n,d,G;option remember;
TempApproxFunct:=proc(a::realcons,b::realcons,r::posint)
local i,p0,n0,B0,u,p,k,A,H,FindPoint;option remember;
FindPoint:=proc(x::realcons)
local m,q,n,d,k0,F,T;option remember;
Block 1
Block 2
end proc:
Block 3
end proc:
Block 1
Block 4
end proc:
Block 1
G:=unapply(add((-1)^s*t^(2*s+1)/((2*s+1)!),s=0..floor((n-1)/2)),t):
if (0<=a) then
ApproxFunct(a,b,r)(x);
elif (-0.8<=a) then
if (b<=0) then
[[a,b],G(x)];
else
([[a,0],G(x)],ApproxFunct(0,b,r)(x));
end if:

else
if (b<=0) then
num:=nops([ApproxFunct(-b,-a,r)(-x)]):
for j from 1 to num do
funct[j]:=op(2,(-1)*ApproxFunct(-b,-a,r)(-x)[j]):
intrv[j]:=sort(op(1,(-1)*ApproxFunct(-b,-a,r)(-x)[j])):
end do:
seq([intrv[num+1-i],funct[num+1-i]],i=1..num);
else
num:=nops([ApproxFunct(0,-a,r)(-x)]):
for j from 1 to num do

continued on the next page

Math. Comput. Appl. 2018, 23, 63 7 of 11

The PiecewiseFunct procedure (continued)
funct[j]:=op(2,(-1)*ApproxFunct(0,-a,r)(-x)[j]):
intrv[j]:=sort(op(1,(-1)*ApproxFunct(0,-a,r)(-x)[j])):
end do:
(seq([intrv[num+1-i],funct[num+1-i]],i=1..num),ApproxFunct(0,b,r)(x));
end if:

end if:
end proc:

The last part of the PiecewiseFunct procedure might need to be explained in more detail. In the
case a < b ≤ 0, we make a partition first for the interval [−b,−a]; then, from the result of the partition,
we take a sample of the form

[
[β j−1, β j], Bj(x)

]
and convert it into its symmetric part in the partition

of [a, b]:
[
[−β j,−β j−1],−Bj(−x)

]
. Such a sample in MAPLE language is given by the declaration:

[intrv[j],funct[j]], where

intrv[j]:=sort(op(1,(-1)*ApproxFunct(-b,-a,r)(-x)[j])),

funct[j]:=op(2,(-1)*ApproxFunct(-b,-a,r)(-x)[j]).

Because the converted intervals should be arranged in the correct order on the real axis, we use
the calling sequence seq([intrv[num+1-i],funct[num+1-i]],i=1..num).

In fact, PiecewiseFunct contains a technique that indirectly solves a difficult problem “How to
reduce values of arguments when doing calculations with the trigonometric functions”. There was a
great attempt to solve the problem and perhaps [1] would be one of the best reference books on this
fact. However, this technique is only a suitable remedy for applying Taylor’s Theorem, which has not
been considered a good way in approximation theory.

PiecewiseFunct can be also used to give pointwise approximate values of the sine function, so we
do not need to recall here Algorithm 1 (see [2]). A hint: Combine Block 1, Block 2 and the illustrated
MAPLE codes for the distinction between “r-th decimal digit” and “r significant digits” on [2] to make
a procedure, e.g., Sine, to implement Algorithm 1.

3. Exploitation of the Output of the PiecewiseFunct Procedure

Firstly, we save the result from performing PiecewiseFunct in a variable chosen as a list of
lists A:=[PiecewiseFunct(a,b,r)], then put num:=nops(A). Now, we number the ending points of
subintervals and corresponding approximate polynomials, for instance, by a for-loop:

for i from 1 to num do
a[i]:=op(1,op(1,A[i])):
b[i]:=op(2,op(1,A[i])):
F[i]:=op(2,A[i]):

end do:

(1)

For a given number α ∈ [a, b], we can choose the index i such that the interval [a[i], b[i]]
contains α, hence we put g := unapply(F[i],x). Note that F[i] is still an expression in x as default,
not a function; besides, we cannot set g := x->F[i] because x here and x in F[i] are not the same by
MAPLE’s rule. Then, sin α ≈ g(α) with the accuracy of 1/10r. In MAPLE, we can use the command
piecewise for a sequence of conditional settings to get the piecewise polynomial approximation to the
sine function on [a, b] by putting

f := x->piecewise(seq([a[j]<=x and x<=b[j],F[j]][],j=1..num),NULL): (2)

Now, we have sin x ≈ f (x) for all x ∈ [a, b] with the accuracy of 1/10r.

Math. Comput. Appl. 2018, 23, 63 8 of 11

In the following, we take examples on approximating values of the sine function at rational and
irrational arguments and getting the graph of approximate functions on an arbitrary intervals with
various accuracy. Moreover, the approximation of integration on [a, b] with integrands of the form
xm sin x (m ∈ N) is considered in both theoretical and practical aspects.

To find the approximate value of sin(123.45) with the accuracy of 1/1020, we put A :=
[PiecewiseFunct(123,124,20)]. Then, nops(A) = 2 and the interval [123, 124] is partitioned into the
subintervals [123, 123.3075117] and [123.3075117, 124]. Thus, we take f := unapply(op(2,A[2]),x)
and obtain

f (x) =− 1 +
(x− x0)

2

2
− (x− x0)

4

24
+

(x− x0)
6

720
− (x− x0)

8

40320

+
(x− x0)

10

3628800
− (x− x0)

12

479001600
+

(x− x0)
14

87178291200
− (x− x0)

16

20922789888000

+
(x− x0)

18

6402373705728000
− (x− x0)

20

2432902008176640000
,

where x0 = 123.092909816796832919274413636. Hence, we have the desired approximation

sin(123.45) ≈ evalf[20](f (123.45)) = −0.80035463532671180916.

Now, with an irrational number x, how do we approximate the value of sin x with the accuracy
of 1/10r? In principle, we can find a rational number x′ such that |x − x′| < 1/10r+1 and use the
PiecewiseFunct procedure to determine a polynomial P that satisfies | sin(x′)− P(x′)| < 1/10r+1.
Then, we have the estimate | sin x− P(x′)| < 1/10r. For example, we approximate the value of sin(

√
3)

with the accuracy of 1/1050 by first taking

√
3 ≈ x′ = 1.732050807568877293527446341505872366942805253810381.

Since nops(A) = 1, with A := [PiecewiseFunct(1.73,2,51)], we set f := unapply(op(2,A[1]),x).
Then, we have the needed estimate

sin(
√

3) ≈ evalf[51](f (x′)) = 0.987026644990353783993324392439670388957092614144764.

There are many algorithms in the literature to find rational approximations to an irrational number
with the desired accuracy, mostly using continued fractions. The theoretical basis of this classic problem
can be found in the two great books [5] and [6]. CAS of course have their built-in commands to compute
such approximations. Here, we may take x′ by the calling sequence evalf[51](sqrt(3)).

Besides, from Equation (1) with the declaration in Equation (2), we derive the graph of piecewise
polynomial approximation to the sine function by the command plot(f(x),x=a..b,numpoints=500).
We choose the large values r = 150 and r = 500 for the intervals [−200,−50] and [−100, 600],
respectively. Let us try the case r = 500 to see the display of 448 pairs of interval–polynomial with the
accuracy of 1/10500. The corresponding graphs are depicted in Figure 1.

We may also exploit PiecewiseFunct from the other side of our approximation. We have used
Taylor polynomials with larger degrees when higher accuracy is required thus far. If we want to
confine approximate polynomials to a fixed degree, we might relate this determination to the vector
space P`, a subspace of L2(a, b). We know that in P` there is the best polynomial approximation pbest
of the sine function in L2-norm ‖ · ‖ = 〈·, ·〉1/2 of L2(a, b), which is endowed with the inner product

〈ϕ, ψ〉 =
∫ b

a
ϕ(x)ψ(x)dx.

Math. Comput. Appl. 2018, 23, 63 9 of 11

Figure 1. The graphs of f with: r = 150 (left); and r = 500 (right).

Now, we use the Gram–Schmidt procedure to find an orthonormal basis {p0, p1, . . . , p`} for P`
from the basis {1, x, x2, . . . , x`}, according to the recursion

p0 := 1/‖1‖ = 1/
√

b− a, qk := xk −
k−1

∑
i=0
〈xk, pi〉pi, pk := qk/‖qk‖, k = 1, . . . , `. (3)

Once the orthonormal basis has been found, we obtain

pbest = 〈sin, p0〉p0 + 〈sin, p1〉p1 + · · ·+ 〈sin, p`〉p` =
`

∑
k=0
〈sin, pk〉pk.

To give an estimate for ‖ sin−F‖, where F is our piecewise polynomial approximation to the sine
function on [a, b], we first approximate 〈sin, pk〉 by

〈sin, pk〉 =
∫ b

a
pk(x) sin xdx ≈ 〈F, pk〉 =

∫ b

a
pk(x)F(x)dx.

These estimates have the absolute error

|〈sin, pk〉 − 〈F, pk〉| = |〈sin−F, pk〉| ≤ ‖ sin−F‖,

where

‖ sin−F‖ =
(∫ b

a
| sin x− F(x)|2dx

)1/2
≤
(b− a

102r

)1/2
=

√
b− a
10r .

Therefore, we may choose

pc
best :=

`

∑
k=0
〈F, pk〉pk (4)

as an approximation of pbest. Then, we have the following estimation for the error norm

‖pbest − pc
best‖ =

∥∥∥ `

∑
k=0
〈sin−F, pk〉pk

∥∥∥ ≤ `

∑
k=0
|〈sin−F, pk〉| ≤

(`+ 1)
√

b− a
10r . (5)

Math. Comput. Appl. 2018, 23, 63 10 of 11

Hence, we may take r = blg((`+ 1)
√

b− a)c+ 1 + u to obtain the estimate

‖pbest − pc
best‖ <

1
10u .

To determine pc
best with MAPLE, it would be better to write the polynomial pk in the form of

pk := ∑k
s=0 aksxs, hence we have

〈F, pk〉 =
k

∑
s=0

aks〈F, xs〉, with 〈F, xs〉 =
∫ b

a
xsF(x)dx =

n

∑
i=0

∫ αi+1

αi

xs Ai(x)dx. (6)

According to the initial settings in Equation (1), the coefficients aks and the inner products 〈F, xs〉
can be computed by the following commands

aks → coeff(p[k],x,s)

〈F, xs〉 → add(int(x^s*F[i],x=a[i]..b[i]),i=1..num)

We can make a procedure named PowerIntApprox only to compute 〈F, xs〉, s = 0, . . . , `.
This procedure, which has one more argument, e.g., “deg”, for the chosen degree of pbest, may take
all the blocks of PiecewiseFunct, but replacing the output of Block 3, Block 4 and the last part of
PiecewiseFunct with the commands recapped in the following. For the output RETURN of Block 3,
we take the sum of integrals of xs Ai(x) on [αi, αi+1], instead of giving the sequence of

[
[αi, αi+1], Ai

]
;

and we do similarly for the output of Block 4. The last part of PiecewiseFunct may be replaced with
the commands

if 0<=a then
evalf[r](ApproxInt(a,b,deg,r));
elif b<=0 then
evalf[r]([seq((-1)^(i+1)*ApproxInt(-b,-a,deg,r)[i+1],i=0..deg)]);
else
evalf[r]([seq((-1)^(i+1)*ApproxInt(0,-a,deg,r)[i+1],i=0..deg)]

+ApproxInt(0,b,deg,r));
end if:

and the reason we do so can be easily recognized. Here, ApproxInt has a similar role as ApproxFunct,
but is simpler to use.

Now, we have enough materials derived from Equations (3)–(6) to make a procedure for finding a
desired approximation on [a, b] in L2-norm to the best approximation pbest of the sine function in P`
with a given positive integer `. The procedure takes four arguments, a, b, ` and u, to give p ∈ P` as its
output such that ‖p− pbest‖ < 1/10u. As mentioned above, if we named the procedure BestApprox,
hence it takes PowerIntApprox as its local variable, then it would be interesting to run BestApprox
with different values of its input. However, as warned in Section 1, we should pay much attention to
the cases of large values of ` and u to take an appropriate regulation.

4. Conclusions

There could be some more useful ways to exploit the output of PiecewiseFunct and its corollary,
PowerIntApprox, as well as Sine. Although these procedures are designed only for the sine function,
we can make some appropriate changes to the blocks of commands to obtain their “cosine” version.
It is hoped that some application results of our procedures would supply some more improved
computational tools in applied mathematics.

Supplementary Materials: The MAPLE codes of the PiecewiseFunct procedure are available at http://www.
mdpi.com/2297-8747/23/4/63/s1.

http://www.mdpi.com/2297-8747/23/4/63/s1
http://www.mdpi.com/2297-8747/23/4/63/s1

Math. Comput. Appl. 2018, 23, 63 11 of 11

Acknowledgments: The author is very grateful to Professor Henk Pijls (University of Amsterdam, the Netherlands)
for his valuable advice and constant encouragement since 1998, and also wants to express his thankfulness to the
Maplesoft experts for their great work on developing MAPLE, a powerful and user-friendly product.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Muller, J.M. Elementary Functions—Algorithms and Implementation, 2nd ed.; Birkhäuser Boston: New York, NY,
USA, 2006.

2. Quan, L.P.; Nhan, T.A. Applying Computer Algebra Systems in Approximating the Trigonometric Functions.
Math. Comput. Appl. 2018, 23, 37. [CrossRef]

3. Monagan, M.B.; Geddes, K.O.; Heal, K.M.; Labahn, G.; Vorkoetter, S.M.; McCarron, J.; DeMarco, P. MAPLE
Introductory Programming Guide; Waterloo MAPLE Inc.: Ontario, ON, Canada, 2008.

4. Monagan, M.B.; Geddes, K.O.; Heal, K.M.; Labahn, G.; Vorkoetter, S.M.; McCarron, J.; DeMarco, P. MAPLE
Advanced Programming Guide; Waterloo MAPLE Inc.: Ontario, ON, Canada, 2008.

5. Hardy, G.H.; Wright, E.M.; Wiles, A. An Introduction to the Theory of Numbers, 6th ed.; Heath-Brown, R.,
Silverman, J., Eds.; Oxford University Press: Oxford, UK, 2008.

6. Niven, I.; Zuckerman, H.S.; Montgomery, H.L. An Introduction to the Theory of Numbers, 5th ed.; John Wiley &
Sons, Inc.: New York, NY, USA, 1991.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/mca23030037
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Implementation by MAPLE Procedures
	Exploitation of the Output of the PiecewiseFunct Procedure
	Conclusions
	References

