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Abstract: A wide variety of human decision-making is based on double-sided or bipolar judgmental
thinking on a positive side and a negative side. This paper develops a new method called bipolar
fuzzy extended TOPSIS based on entropy weights to address the multi-criteria decision-making
problems involving bipolar measurements with positive and negative values. The extended bipolar
fuzzy TOPSIS method incorporates the capability of bipolar information into the TOPSIS to address
the interactions between criteria and measure the aggregate values on a bipolar scale. In practical
problems, this method can be used to measure the benefits and side effects of medical treatments. We
also discuss some novel applications of bipolar fuzzy competition graphs in food webs and present
certain algorithms to compute the strength of competition between species.

Keywords: bipolar fuzzy food web; bipolar fuzzy common enemy graph; bipolar fuzzy competition
common enemy graph; bipolar fuzzy extended TOPSIS model
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1. Introduction

Multi-criteria decision-making (MCDM) models have been developed and implemented in
various fields such as engineering, economics, management, business and information technology.
The well-known MCDM approach is a TOPSIS technique, which was introduced by Hwang and
Yoon [1]. It determines the performance of given alternatives through similarity with the help of
ideal solutions. The main concept of the technique is that the selected object not only has a minimum
distance form positive ideal solution, but also a farthest from negative ideal solution. The positive
solution contains the best values, and the negative solution consists of the worst values among all the
alternatives. TOPSIS is the most implemented technique for decision-making problems, especially in
medical science, but due to its limitations in dealing with bipolar uncertainty, which is in the perception
of decision-makers and in the given information, it does not give accurate results. It is a very good and
rational approach which gives computational efficiency in a simple mathematical form. In existing
TOPSIS methods, the results of decision-making are determined as numerical values, but in the real
world, the perception about these problems is completely uncertain.

In classical TOPSIS methods, the aggregated values and weights are determined precisely. To deal
with uncertainty and vagueness, Chen [2] discussed the TOPSIS method for a group decision-making
problems under a fuzzy environment. To solve various real-world decision-making problems, fuzzy
and intuitionistic TOPSIS methods were discussed in [3,4]. Alghamdi [5] proposed TOPSIS methods
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for multi-criteria decision-making methods in a bipolar fuzzy environment and illustrated them with
various examples. To deal with the limitations of classical TOPSIS, the researchers in [6–16] have
extended the concept of the TOPSIS method under a fuzzy, intuitionistic fuzzy, interval-valued fuzzy
and bipolar fuzzy environment for the multi-criteria selection of objects.

Medical science has drawn much attention due to its recent advances in research in the last few
years. Dental treatments are often misdiagnosed because the symptoms and their interrelationships are
not considered in the existing methods. Diseases can also be caused by the wrong medical treatments
and the use of metallic instruments. It is however important to diagnose the disease and detect the
disadvantages of various medical treatments. Bipolar fuzziness can be used to detect the diseases
caused by various treatments. In the existing bipolar fuzzy TOPSIS methods, weights to alternatives
are chosen arbitrarily according to the choice of decision-makers. We have extended this technique
using entropy weights.

A fuzzy set [17] is an important mathematical structure to represent a collection of objects whose
boundary is vague. Fuzzy models are becoming useful because of their aim to reduce the differences
between the traditional models used in engineering and science. Nowadays, fuzzy sets are playing a
substantial role in chemistry, economics, computer science, engineering, medicine and decision-making
problems. Zhang [18] introduced the notion of bipolar fuzzy sets as an extension of fuzzy sets. Based
on Zadeh’s fuzzy relations [19], Kaufmann defined in [20] a fuzzy graph. The fuzzy relations between
fuzzy sets were also considered by Rosenfeld [21], and he developed the structure of fuzzy graphs,
obtaining analogs of several graph theoretical concepts. Fuzzy k-competition and p-competition graphs
were introduced by Samanta and Pal [22]. However, all the predator-prey relations cannot only be
represented by fuzzy competition graphs. For example, a species is at the same time strong and weak,
and a prey may be energetic and harmful. This is bipolar information that is fuzzy in nature. This idea
motivates the necessity of bipolar fuzzy competition graphs.

This research article is a continuation of [23–27]. We present certain algorithms of bipolar fuzzy
competition graphs in food webs to compute the strength of competition between species. We also
present the bipolar fuzzy extended TOPSIS multi-criteria decision-making model based on entropy
weights for the selection of teeth replacement options with minimum side effects and maximum
benefits. For other terminologies and applications that are not mentioned in this paper, readers may
refer to [28–33].

2. Bipolar Fuzzy Competition Graphs

Definition 1. [24] A bipolar fuzzy graph is a pair G = (C, D) where C = (µ
p
C, µn

C) is a bipolar fuzzy set on
X and D = (µ

p
D, µn

D) is a bipolar fuzzy relation in X such that:

µ
p
D(xy) ≤ µ

p
C(x) ∧ µ

p
C(y) and µn

D(xy) ≥ µn
C(x) ∨ µn

C(y) for all x, y ∈ X.

Note that D is a bipolar fuzzy relation on C and µ
p
D(xy) > 0, µn

D(xy) < 0 for xy ∈ X × X,
µ

p
D(xy) = µn

D(xy) = 0 for xy ∈ X× X− E.

Definition 2. [23] A bipolar fuzzy digraph on a crisp digraph G∗ = (X,
#»

E) is a pair G = (C,
#»

D) where
C = (µ

p
C, µn

C) is a bipolar fuzzy set on X and
#»

D = (µ
p
#»
D

, µn
#»
D
) is a bipolar fuzzy relation on X such that:

µ
p
#»
D
(xy) ≤ µ

p
C(x) ∧ µ

p
C(y) and µn

#»
D
(xy) ≥ µn

C(x) ∨ µn
C(y), for all x, y ∈ X.

Definition 3. [23] The bipolar fuzzy out neighborhood of a vertex x of a bipolar fuzzy digraph
#»

G = (C,
#»

D) is a
bipolar fuzzy set N+(x) = (X+

x , µ
p
Cx

, µn
Cx
) where X+

x = {y|µp
#»
D
(xy) > 0, µn

#»
D
(xy) < 0}, µ

p
Cx

: X+
x → [0, 1]

and µn
Cx

: X+
x → [−1, 0] are defined by µ

p
Cx
(y) = µ

p
#»
D
(xy) and µn

Cx
(y) = µn

#»
D
(xy). The bipolar fuzzy in

neighborhood of a vertex x of a bipolar fuzzy digraph
#»

G = (C,
#»

D) is a bipolar fuzzy setN−(x) = (X−x , µ
p
Cx

, µn
Cx
)
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where X−x = {y|µp
#»
D
(yx) > 0, µn

#»
D
(yx) < 0} and µ

p
Cx

: X−x → [0, 1] and µn
Cx

: X−x → [−1, 0] are defined by

µ
p
Cx
(y) = µ

p
#»
D
(yx) and µn

Cx
(y) = µn

#»
D
(yx).

Definition 4. [23] Let C = (µ
p
C, µn

C) be a bipolar fuzzy set on a non-empty crisp set X. The height of C is
defined as: h(C) = {µp

C(x)|x ∈ X}.

Definition 5. [23] The bipolar fuzzy competition graph of a bipolar fuzzy digraph
#»

G = (C,
#»

D) is an undirected
graph C( #»

G) = (C, R), which has the same vertex set as in
#»

G, and there is an edge between two vertices x and y
if N+(x) ∩N+(y) is non-empty. The positive membership and negative membership values of the edge xy are
defined as:

µ
p
R(xy) = (µ

p
#»
D
(x) ∧ µ

p
#»
D
(y))h(N+(x) ∩N+(y)),

µn
R(xy) = (µn

#»
D
(x) ∨ µn

#»
D
(y))h(N+(x) ∩N+(y)).

Example 1. Let
#»

G = (C,
#»

D) be a bipolar fuzzy digraph with C = {(a, 0.3,−0.4), (b, 0.5,−0.6),
(c, 0.4,−0.7), (d, 0.6,−0.5), (e, 0.8,−0.4), ( f , 0.7,−0.6), (g, 0.7,−0.8)}. The membership values of the
directed edges are represented by the adjacency matrix in Table 1. The bipolar fuzzy digraph is shown in
Figure 1.

Table 1. Adjacency matrix.

X a b c d e f g

a (0, 0) (0.3,−0.4) (0.3,−0.4) (0, 0) (0.3,−0.4) (0, 0) (0, 0)
b (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.5,−0.5) (0, 0)
c (0, 0) (0, 0) (0, 0) (0.4,−0.5) (0, 0) (0.4,−0.6) (0.4,−0.6)
d (0, 0) (0, 0) (0, 0) (0, 0) (0.5,−0.4) (0, 0) (0, 0)
e (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.7,−0.4) (0.7,−0.4)
f (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
g (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Table 1: Adjacency Matrix
X a b c d e f g

a (0, 0) (0.3,−0.4) (0.3,−0.4) (0, 0) (0.3,−0.4) (0, 0) (0, 0)
b (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.5,−0.5) (0, 0)
c (0, 0) (0, 0) (0, 0) (0.4,−0.5) (0, 0) (0.4,−0.6) (0.4,−0.6)
d (0, 0) (0, 0) (0, 0) (0, 0) (0.5,−0.4) (0, 0) (0, 0)
e (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.7,−0.4) (0.7,−0.4)
f (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
g (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Example 2.6. Let
#»

G = (C,
#»

D) be a bipolar fuzzy digraph with C = {(a, 0.3,−0.4), (b, 0.5,−0.6),
(c, 0.4,−0.7), (d, 0.6,−0.5), (e, 0.8,−0.4), (f, 0.7,−0.6), (g, 0.7,−0.8)}. The membership values of
the directed edges are represented by the adjacency matric in Table. 1. The bipolar fuzzy di-
graph is shown in Figure.2.1. The bipolar fuzzy out neighbourhood are given in Table.2.

Table 2: Bipolar fuzzy in neighbouhood
u ∈ X N+(u)

a {(b, 0.3,−0.4), (c, 0.3,−0.4), (e, 0.3,−0.4)}
b {(f, 0.5,−0.5)}
c {(d, 0.4,−0.5), (f, 0.4,−0.5), (g, 0.4,−0.6)}
d {(e, 0.5,−0.4)}
e {(f, 0.7,−0.4), (g, 0.7,−0.4)}
f ∅
g ∅

The bipolar fuzzy competition graph of bipolar fuzzy digraph is shown in Fig.2.2.
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Theorem 2.7. Let G be a bipolar fuzzy graph then adding sufficient number of isolated vertices
to G produces a bipolar fuzzy competition graph of some bipolar fuzzy digraph.
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Figure 1. Bipolar fuzzy digraph.
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The bipolar fuzzy outneighborhood is given in Table 2.

Table 2. Bipolar fuzzy inneighborhood.

u ∈ X N+(u)

a {(b, 0.3,−0.4), (c, 0.3,−0.4), (e, 0.3,−0.4)}
b {( f , 0.5,−0.5)}
c {(d, 0.4,−0.5), ( f , 0.4,−0.5), (g, 0.4,−0.6)}
d {(e, 0.5,−0.4)}
e {( f , 0.7,−0.4), (g, 0.7,−0.4)}
f ∅
g ∅

The bipolar fuzzy competition graph of the bipolar fuzzy digraph is shown in Figure 2.

Table 1: Adjacency Matrix
X a b c d e f g

a (0, 0) (0.3,−0.4) (0.3,−0.4) (0, 0) (0.3,−0.4) (0, 0) (0, 0)
b (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.5,−0.5) (0, 0)
c (0, 0) (0, 0) (0, 0) (0.4,−0.5) (0, 0) (0.4,−0.6) (0.4,−0.6)
d (0, 0) (0, 0) (0, 0) (0, 0) (0.5,−0.4) (0, 0) (0, 0)
e (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.7,−0.4) (0.7,−0.4)
f (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
g (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Example 2.6. Let
#»

G = (C,
#»

D) be a bipolar fuzzy digraph with C = {(a, 0.3,−0.4), (b, 0.5,−0.6),
(c, 0.4,−0.7), (d, 0.6,−0.5), (e, 0.8,−0.4), (f, 0.7,−0.6), (g, 0.7,−0.8)}. The membership values of
the directed edges are represented by the adjacency matric in Table. 1. The bipolar fuzzy di-
graph is shown in Figure.2.1. The bipolar fuzzy out neighbourhood are given in Table.2.

Table 2: Bipolar fuzzy in neighbouhood
u ∈ X N+(u)

a {(b, 0.3,−0.4), (c, 0.3,−0.4), (e, 0.3,−0.4)}
b {(f, 0.5,−0.5)}
c {(d, 0.4,−0.5), (f, 0.4,−0.5), (g, 0.4,−0.6)}
d {(e, 0.5,−0.4)}
e {(f, 0.7,−0.4), (g, 0.7,−0.4)}
f ∅
g ∅

The bipolar fuzzy competition graph of bipolar fuzzy digraph is shown in Fig.2.2.
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Theorem 2.7. Let G be a bipolar fuzzy graph then adding sufficient number of isolated vertices
to G produces a bipolar fuzzy competition graph of some bipolar fuzzy digraph.

3

Figure 2. Bipolar fuzzy competition graph.

Theorem 1. Let G be a bipolar fuzzy graph, then adding a sufficient number of isolated vertices to G produces
a bipolar fuzzy competition graph of some bipolar fuzzy digraph.

Proof. Let G = (C, R) be a bipolar fuzzy graph of the crisp graph G∗ = (X, E) where C = (µ
p
C, µn

C) is
a bipolar fuzzy set on the set of vertices X and R = (µ

p
R, µn

R) is a bipolar fuzzy set on the set of edges E.
Construct the bipolar fuzzy digraph

#»

G = (C,
#»

D) as follows: Let x, y ∈ X be any two vertices of G such
that µ

p
C(xy) > 0 or µn

C(xy) < 0. Add a vertex βxy; remove the edge xy; and draw directed edges from
x and y to βxy such that:

µ
p
C(βxy) = min{µp

C(x), µ
p
C(y)}, µ

p
#»
D
(xβxy) = µ

p
#»
D
(yβxy) =

µ
p
R(xy)

min{µp
C(x), µ

p
C(y)}

,

µn
C(βxy) = max{µn

C(x), µn
C(y)}, µn

#»
D
(xβxy) = µn

#»
D
(yβxy) =

µn
R(xy)

max{µn
C(x), µn

C(y)}

Continuing this process, we obtain a bipolar fuzzy digraph
#»

G such that C( #»

G) = G ∪ I where I is
the bipolar fuzzy set of isolated vertices added to G.
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3. Decision-Making Approach of Competition Graphs and the Extended TOPSIS Method Based
on Bipolar Fuzzy Sets

We now present several applications of bipolar fuzzy competition graphs in food webs.

3.1. Bipolar Fuzzy Competition Graph in Food Webs

Food webs are the graphical representations of the natural interconnection of food chains between
different species. Competition graphs arose in connection with an application to food webs. In a food
web, vertices represent species, and there is a directed edge between two species x and y if y is a food
for x. Bipolar fuzzy graphs are more realistic to represent the competition between species.

Let
#»

G = (C,
#»

D) represent a bipolar fuzzy food web of a crisp food web
#»

G∗ = (X,
#»

E) in which
vertices represent the species and # »xy ∈ #»

E if x preys on y. Bipolar fuzzy food webs can play an
important role in investigating the flow of energy and the predator-prey relationship in the ecosystem.
The bipolar fuzzy competition graph can be constructed from the bipolar fuzzy food web to study to
what extent species compete for common prey. It is defined as: Let

#»

G = (C,
#»

D) be a bipolar fuzzy food
web. The bipolar fuzzy competition graph C( #»

G) = (C, R) has the same vertices as
#»

G, and there is an
edge between two vertices x and y if N−(x) ∩N−(y) 6= ∅ and:

µ
p
R(xy) = (µ

p
C(x)(x) ∧ µ

p
C(y))h(N−(x) ∩N−(y)),

µn
R(xy) = (µn

C(x)(x) ∨ µn
C(y))h(N−(x) ∩N−(y)).

We present an algorithm that is used to calculate the strength of competition between species in
an ecosystem.

Algorithm 1.

1. Given any bipolar fuzzy food web.
2. Construct the table of bipolar fuzzy in neighborhoods of all the species.
3. Construct the bipolar fuzzy competition graph G = (C, R) using the above definition.
4. If N−(x) ∩N−(y) 6= ∅ for any two species x and y, then the strength of competition between x

and y for common food is:

S(x, y) =
µ

p
C(x) + µ

p
C(y) + µ

p
R(xy) + (3− µn

C(x)− µn
C(y)− µn

R(xy))
6

. (1)

Consider the example of bipolar fuzzy food web of 13 species: giraffe, lion, vulture, rhinoceros,
African skunk, fiscal shrike, grasshopper, baboon, leopard, snake, caracal, mouse and impala. The
positive degree of membership of each species represents to what extent the species is strong according
to its power and can defend itself to exist in the animal kingdom. The negative degree of membership
of a species represents its weakness that it can be killed or dominated by other species. The bipolar
fuzzy food web is shown in Figure 3.

The degree of membership of lion is (0.95,−0.1), which shows that lion is 95% strong in its
kingdom according to hunting power and 10% weak because a group of animals together can dominate
a lion. The directed edge between giraffe and lion has degree of membership (0.7,−0.1), which
represents that a lion obtains 70% energy from giraffe, and a giraffe is 10% harmful for a lion because it
can kill a lion with its long legs.
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Consider the example of bipolar fuzzy food web of 13 species giraffe, lion, vulture, rhinoceros,
African skunk, fiscal shrike, grasshopper, baboon, leopard, snake, caracal, mouse and impala.
The positive degree of membership of each specie represents that to what extent the specie is
strong according to its power and can defend itself to exist in the animal kingdom. The negative
degree of membership of specie represents its weakness that it can be killed or dominated by
other species. The bipolar fuzzy food web is shown in Fig.2.3.
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Figure 2.3: Bipolar fuzzy web

The degree of membership of lion is (0.95,−0.1), which shows that lion is 95% strong in its
kingdom according to hunting power and 10% weak because a group of animals together can
dominate a lion. The directed edge between giraffe and lion has degree of membership (0.7,−0.1)
which represents that lion obtain 70% energy from giraffe and a giraffe is 10% harmful for lion
because it can kill a lion with its long legs.

This is an acyclic bipolar fuzzy digraph. A bipolar fuzzy competition graph can be con-
structed to investigate the strength of competition between species for common food\ prey. The
bipolar fuzzy in neighbourhoods are given in Table.3.

Table 3:

species N−(u) : u is a specie

giraffe ∅
lion {(giraffe, 0.7,−0.1), (rhinoceros, 0.7,−0.1)}

Continued on next page

5

Figure 3. Bipolar fuzzy web.

This is an acyclic bipolar fuzzy digraph. A bipolar fuzzy competition graph can be constructed to
investigate the strength of competition between species for common food prey. The bipolar fuzzy in
neighborhoods are given in Table 3.

Table 3. The bipolar fuzzy in neighborhoods.

Species N−(u) : u Is a Species

giraffe ∅
lion {(giraffe, 0.7,−0.1), (rhinoceros, 0.7,−0.1)}

rhinoceros ∅
vulture {(rhinoceros, 0.6,−0.1), (African skunk, 0.6,−0.1), (leopard, 0.8,−0.1)}

African skunk {(fiscal shrike, 0.6,−0.1)}
fiscal shrike {grasshopper, 0.3,−0.05}
grasshopper ∅

baboon {(grasshopper, 0.3,−0.09), (snake, 0.3,−0.4)}
leopard {(baboon, 0.75,−0.1), (impala, 0.7,−0.09)}
snake {(caracal, 0.7,−0.1), (mouse, 0.5,−0.4)}

caracal {(mouse, 0.4,−0.2), (impala, 0.7,−0.2)}
mouse ∅
impala ∅

The bipolar fuzzy competition graph is shown in Figure 4. There is food competition between
lion and vulture, fiscal shrike and baboon, snake and caracal, leopard and caracal. The membership
value of the edge between two species represents the degree of the benefits and harm of common food.
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Table 3 – Continued from previous page

rhinoceros ∅
vulture {(rhinoceros, 0.6,−0.1), (African skunk, 0.6,−0.1), (leopard, 0.8,−0.1)}
African skunk {(fiscal shrike, 0.6,−0.1)}
fiscal shrike {grasshopper, 0.3,−0.05}
grasshopper ∅
baboon {(grasshopper, 0.3,−0.09), (snake, 0.3,−0.4)}
leopard {(baboon, 0.75,−0.1), (impala, 0.7,−0.09)}
snake {(caracal, 0.7,−0.1), (mouse, 0.5,−0.4)}
caracal {(mouse, 0.4,−0.2), (impala, 0.7,−0.2)}
mouse ∅
impala ∅

The bipolar fuzzy competition graph is shown in Fig.2.4. There is food competition between
lion and vulture, fiscal shrike and baboon, snake and caracal, leopard and caracal. The mem-
bership value of edge between two species represents the degree of benefits and harm of common
food.
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Figure 2.4: Bipolar fuzzy competition graph

The strength of competition between species x and y calculated using the formula 1 are given
in Table.4.
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Figure 4. Bipolar fuzzy competition graph.

The strength of competition between species x and y calculated using Formula (1) is given in
Table 4.

Table 4. Strength of competition between species.

Species Strength of Competition Species Strength of Competition

lion, vulture 0.9983 shrike, baboon 0.855
snake, caracal 0.9633 caracal, leopard 1.0483

According to Table 4, there is a strong competition between caracal and leopard for common food
with respect to hunting powers and weaknesses.

3.2. Bipolar Fuzzy Common Enemy Graph

Bipolar common enemy graphs can be constructed from bipolar fuzzy food webs to study the
strength of common enemies between species. It is defined as:

Let
#»

G = (C,
#»

D) be a bipolar fuzzy food web. The bipolar fuzzy common enemy graph
C( #»

G) = (C, R) has the same set of species as
#»

G, and there is an edge between two species x and
y if N+(x) ∩N+(y) 6= ∅, i.e., x and y has a common predator and:

µ
p
R(xy) = (µ

p
C(x) ∧ µ

p
C(y))h(N+(x) ∩N+(y)),

µn
R(xy) = (µn

C(x) ∨ µn
C(y))h(N+(x) ∩N+(y)).

We present the method of calculating the strength of common enemies between species in an
ecosystem as an algorithm.

Algorithm 2.

1. Given any bipolar fuzzy food web.
2. Construct the table of bipolar fuzzy out neighborhoods of all the species.
3. Construct the bipolar fuzzy competition graph G = (C, R) using the above definition.
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4. If N+(x) ∩N+(y) 6= ∅ for any two species x and y, then the strength of competition between x
and y for common food is:

S(x, y) =
µ

p
C(x) + µ

p
C(y) + µ

p
R(xy) + (3− µn

C(x)− µn
C(y)− µn

R(xy))
6

. (2)

Consider the example of a bipolar fuzzy food web of 13 species as shown in Figure 3. The bipolar
fuzzy out neighborhoods are given in Table 5.

Table 5. Bipolar fuzzy out neighborhoods.

Species N+(u) : u Is a Species

giraffe {(lion, 0.7,−0.1)}
lion ∅

rhinoceros {(lion, 0.7,−0.1), (vulture, 0.6,−0.1)}
vulture ∅

African skunk {(vulture, 0.6,−0.1)}
fiscal shrike {(African skunk, 0.6,−0.1)}
grasshopper {(fiscal shrike, 0.3,−0.05), (baboon, 0.3,−0.09)}

baboon {(leopard, 0.75,−0.1)}
leopard {(vulture, 0.8,−0.1)}
snake {(baboon, 0.3,−0.4)}

caracal {(snake, 0.7,−0.1)}
mouse {(caracal, 0.4,−0.2)}
impala {(caracal, 0.7,−0.2), (leopard, 0.7,−0.09)}

The bipolar fuzzy common enemy graph is shown in Figure 5. There are common enemies
between giraffe and rhinoceros, rhinoceros and African skunk, rhinoceros and leopard, African skunk
and leopard, grasshopper and snake, mouse and impala and baboon and impala. The positive
membership value of the edge between two species represents the degree of energy both provide to
common predator-enemy, and the negative degree of membership shows to what extent they can harm
their common enemy.
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Figure 2.5: 4−polar fuzzy common enemy graph

Let x and y are any two species then the strength of common enemies between x and y is
calculated using formula 2. The strength of having common enemies between all the species
is given in Table.6 which shows that impala and baboon have the largest number of common
enemies.

Table 6:
x, y S(x, y) x, y S(x, y)

giraffe, rhinoceros 0.9408 grasshopper, snake 0.8567
rhinoceros, African skunk 0.91 impala, baboon 0.9933
African skunk, leopard 0.9067 mouse, impala 0.9233
rhinoceros, leopard 0.9217

(C) Bipolar fuzzy competition common enemy graph
Bipolar fuzzy competition common enemy graphs can be constructed from bipolar fuzzy food
webs to study the relationship of common enemies as well as competition for prey between
species. It is defined as:

Let
#»

G = (C,
#»

D) be a bipolar fuzzy food web. The bipolar fuzzy competition common enemy
graph C( #»

G) = (C,R) has same vertices as
#»

G and there is an edge between two vertices x and
y if N+(x) ∩ N+(y) 6= ∅ and N−(x) ∩ N−(y) 6= ∅, i.e., x and y has a common predator and a
common prey where,

µp
R(xy) = (µp

C(x) ∧ µp
C(y))[h(N−(x) ∩ N−(y)) ∧ h(N+(x) ∩ N+(y))],

9

Figure 5. Quadripolar fuzzy common enemy graph.
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Let x and y be any two species, then the strength of common enemies between x and y is calculated
using Formula (2). The strength of having common enemies between all the species is given in Table 6,
which shows that impala and baboon have the largest number of common enemies.

Table 6. Strength of common enemies between species.

x, y S(x, y) x, y S(x, y)

giraffe, rhinoceros 0.9408 grasshopper, snake 0.8567
rhinoceros, African skunk 0.91 impala, baboon 0.9933

African skunk, leopard 0.9067 mouse, impala 0.9233
rhinoceros, leopard 0.9217 - -

3.3. Bipolar Fuzzy Competition Common Enemy Graph

Bipolar fuzzy competition common enemy graphs can be constructed from bipolar fuzzy food
webs to study the relationship of common enemies, as well as competition for prey between species.
It is defined as:

Let
#»

G = (C,
#»

D) be a bipolar fuzzy food web. The bipolar fuzzy competition common enemy
graph C( #»

G) = (C, R) has same vertices as
#»

G, and there is an edge between two vertices x and y if
N+(x) ∩N+(y) 6= ∅ andN−(x) ∩N−(y) 6= ∅, i.e., x and y have a common predator and a common
prey where,

µ
p
R(xy) = (µ

p
C(x) ∧ µ

p
C(y))[h(N−(x) ∩N−(y)) ∧ h(N+(x) ∩N+(y))],

µn
R(xy) = (µn

C(x) ∨ µn
C(y))[h(N−(x) ∩N−(y)) ∧ h(N+(x) ∩N+(y))].

We depict our method of finding the strength of power of each species according to competition
for common prey and common enemies as an algorithm.

Algorithm 3.

1. Given any bipolar fuzzy food web.
2. Construct the table of bipolar fuzzy out neighborhoods and bipolar fuzzy in neighborhoods of all

the species.
3. Construct the bipolar fuzzy competition graph G = (C, R) using the above definition.
4. If N+(x) ∩N+(y) 6= ∅ and N−(x) ∩N−(y) 6= ∅ for any two species x and y, then calculate the

degree of each species x,

(degp(x), degn(x)) = ∑
N+(x)∩N+(y) 6=∅, N−(x)∩N−(y) 6=∅

(µ
p
R(xy), µn

R(xy)).

5. The strength of the power of each species x is S(x) = degp(x)+1+degn(x)
2 .

Consider the example of a bipolar fuzzy food web of 10 species as shown in Figure 6. The
description of the degrees of membership of vertices and directed edges is the same as in Figure 3.
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µn
R(xy) = (µn

C(x) ∨ µn
C(y))[h(N−(x) ∩ N−(y)) ∧ h(N+(x) ∩ N+(y))].

We depict our method of finding the strength of power of each specie according to competi-
tion for common prey and common enemies as an algorithm.

Algorithm 3

1. Given any bipolar fuzzy food web.

2. Construct the table of bipolar fuzzy out neighbourhoods and bipolar fuzzy in neighbour-
hoods of all the species.

3. Construct the bipolar fuzzy competition graph G = (C,R) using above definition.

4. If N+(x)∩N+(y) 6= ∅ and N−(x)∩N−(y) 6= ∅ for any two species x and y then, calculate
the degree of each specie x,

(degp(x),degn(x)) =
∑

N+(x)∩N+(y)6=∅, N−(x)∩N−(y)6=∅
(µp

R(xy), µ
n
R(xy)).

5. The strength of power of each specie x is S(x) = degp(x)+1+degn(x)
2 .

Consider the example of a bipolar fuzzy food web of 10 species as shown in Fig. 2.6. The
description of degrees of membership of vertices and directed edges is same as in Fig.2.3.
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Figure 2.6: Bipolar fuzzy food web
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Figure 6. Bipolar fuzzy food web.

The bipolar fuzzy out neighborhoods and bipolar fuzzy in neighborhoods are given in Table 7.

Table 7. Bipolar fuzzy out neighborhoods and in neighborhoods.

x Is a Species N−(x) andN+(x)

grasshopper N−(grasshopper) = ∅, N+(grasshopper)={(owl, 0.4,−0.7)}

owl
N−(owl)={(grasshopper, 0.4,−0.7), (mouse, 0.7,−0.5)}

N+(owl) = {(bobcat, 0.7,−0.3)}
bobcat N−(bobcat)={(hawk, 0.6,−0.3)}, N+(bobcat) = ∅

lion N−(lion)={(raccoon, 0.6,−0.1), (hawk, 0.6,−0.1)}, N+(lion) = ∅

leopard N−(leopard)={(fox, 0.7,−0.1), (hawk, 0.6,−0.1)}, N+(leopard) = ∅

raccoon
N−(raccoon)={(mouse, 0.7,−0.5)}

N+(raccoon) = {(lion, 0.6,−0.1), (hawk, 0.7,−0.3)}

hawk
N−(hawk)={(raccoon, 0.7,−0.3), (mouse, 0.8,−0.3), (snake, 0.7,−0.1)}
N+(hawk) = {(lion, 0.6,−0.1), (leopard, 0.6,−0.1), (bobcat, 0.6,−0.3)}

mouse
N−(mouse) = ∅, N+(mouse)={(owl, 0.7,−0.5), (raccoon, 0.7,−0.5),

(hawk, 0.8,−0.3), (snake, 0.8,−0.1), (fox, 0.7,−0.5)}
fox N−(fox) = {(mouse, 0.7,−0.5)}, N+(fox) = {(leopard, 0.7,−0.1)}

snake N−(snake) = {(mouse, 0.8,−0.1)}, N+(snake) = {(hawk, 0.7,−0.1)}

The bipolar fuzzy competition common enemy graph is shown in Figure 7.
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The bipolar fuzzy out neighbourhoods and bipolar fuzzy in neighbourhoods are given in
Table.7.

Table 7:

x is a specie N−(x) and N+(x)

grasshopper N−(grasshopper) = ∅, N+(grasshopper)={(owl, 0.4,−0.7)}
owl N−(owl)={(grasshopper, 0.4,−0.7), (mouse, 0.7,−0.5)}

N+(owl) = {(bobcat, 0.7,−0.3)}
bobcat N−(bobcat)={(hawk, 0.6,−0.3)}, N+(bobcat) = ∅
lion N−(lion)={(racoon, 0.6,−0.1), (hawk, 0.6,−0.1)}, N+(lion) = ∅
leopard N−(leopard)={(fox, 0.7,−0.1), (hawk, 0.6,−0.1)}, N+(leopard) = ∅
racoon N−(racoon)={(mouse, 0.7,−0.5)}

N+(racoon) = {(lion, 0.6,−0.1), (hawk, 0.7,−0.3)}
hawk N−(hawk)={(racoon, 0.7,−0.3), (mouse, 0.8,−0.3), (snake, 0.7,−0.1)}

N+(hawk) = {(lion, 0.6,−0.1), (leopard, 0.6,−0.1), (bobcat, 0.6,−0.3)}
mouse N−(mouse) = ∅, N+(mouse)={(owl, 0.7,−0.5), (racoon, 0.7,−0.5),

(hawk, 0.8,−0.3), (snake, 0.8,−0.1), (fox, 0.7,−0.5)}
fox N−(fox) = {(mouse, 0.7,−0.5)}, N+(fox) = {(leopard, 0.7,−0.1)}
snake N−(snake) = {(mouse, 0.8,−0.1)}, N+(snake) = {(hawk, 0.7,−0.1)}

The bipolar fuzzy competition common enemy graph is shown in Fig.2.7.
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Figure 2.7: Bipolar fuzzy competition common enemy graph

The strength of power of each specie according to food competition and common enemies is
calculated in Table. 8 which depicts that hawk is the most powerful animal in this bipolar fuzzy
food web.
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Figure 7. Bipolar fuzzy competition common enemy graph.

The strength of power of each species according to food competition and common enemies is
calculated in Table 8, which depicts that hawk is the most powerful animal in this bipolar fuzzy
food web.

Table 8. Strength of competition between species.

Species Degree of Each Species Power in Food Web

owl (0.12,−0.18) (0.12 + 1 + 0.18)/2 = 0.65
raccoon (0.26,−0.25) 0.755
hawk (0.48,−0.54) 1.01
snake (0.14,−0.07) 0.605

3.4. Bipolar Fuzzy Niche Graph

Niche graphs are important to study the behavior of species in ecological networks. Since all
the species have different characteristics with respect to each other, therefore the bipolar fuzzy niche
graphs can play a substantial role to study ecological networks more precisely. A bipolar fuzzy niche
graph is defined as:

Let
#»

G = (C,
#»

D) be a bipolar fuzzy food web. The bipolar fuzzy niche graph C( #»

G) = (C, R) has
the same vertices as

#»

G, and there is an edge between two vertices x and y if N+(x) ∩N+(y) 6= ∅ or
N−(x) ∩N−(y) 6= ∅, i.e., x and y have a common predator or a common prey where,

µ
p
R(xy) = (µ

p
C(x) ∧ µ

p
C(y))[h(N−(x) ∩N−(y)) ∨ h(N+(x) ∩N+(y))],

µn
R(xy) = (µn

C(x) ∨ µn
C(y))[h(N−(x) ∩N−(y)) ∨ h(N+(x) ∩N+(y))].

The bipolar fuzzy niche graph of Figure 6 is shown in Figure 8. The edge between species that
have only common prey is represented by dashed lines; dotted lines represent the species relationship
having only common enemies; and solid lines represent the species that have both common prey and
common enemies.
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Table 8: Strength of competition between species
Specie Degree of each specie power in food web

owl (0.12,−0.18) (0.12 + 1 + 0.18)/2 = 0.65
racoon (0.26,−0.25) 0.755
hawk (0.48,−0.54) 1.01
snake (0.14,−0.07) 0.605

(D) Bipolar fuzzy niche graph
Niche graphs are important to study the behavior of species in ecological networks. Since all the
species have different characteristics with respect to each other therefore, bipolar fuzzy niche
graphs can play a substantial role to study ecological networks more precisely. A bipolar fuzzy
niche graph is defined as:

Let
#»

G = (C,
#»

D) be a bipolar fuzzy food web. The bipolar fuzzy niche graph C( #»

G) = (C,R)
has same vertices as

#»

G and there is an edge between two vertices x and y if N+(x)∩N+(y) 6= ∅
or N−(x) ∩ N−(y) 6= ∅, i.e., x and y has a common predator or a common prey where,

µp
R(xy) = (µp

C(x) ∧ µp
C(y))[h(N−(x) ∩ N−(y)) ∨ h(N+(x) ∩ N+(y))],

µn
R(xy) = (µn

C(x) ∨ µn
C(y))[h(N−(x) ∩ N−(y)) ∨ h(N+(x) ∩ N+(y))].

The bipolar fuzzy niche graph of Fig.2.6 is shown in Fig.2.8. The edge between species which have
only common prey is represented by dashed lines, dotted line represent the species relationship
having only common enemies and solid lines represent the species which have both common prey
and common enemies.
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Figure 2.8: 4−polar fuzzy niche graph
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Figure 8. Quadripolar fuzzy niche graph.

3.5. Multi-Criteria Decision Making Method to Minimize the Side Effects of Dental Treatments

Tooth diseases are very common nowadays due to the increasing demand for unhealthy food.
The problem affecting millions of people the most is tooth decay. Our mouth is a ground for good and
bad bacteria. People are not used to thinking of teeth as living organs and tissues. There are various
treatments to prevent cavities, gum disease, toothaches, missing teeth, etc. However, on the other hand,
it is roughly estimated that almost 70% of human diseases are indirectly or directly due to intervention
in the tooth structures. This includes: teeth filling with various metallic and non-metallic materials,
root canals, dental bridges, teeth implants, metal braces, crowns and caps, dentures, gum surgery, teeth
veneers, composite bridges, etc. Bipolar fuzzy sets can be used to detect the diseases caused by various
treatments considering the benefits of the treatment. If y1, y2, . . . , yn are the alternative materials and
c1, c2, . . . , cr are the side effects corresponding to each alternative, then the procedure for the selection
of a suitable treatment with minimum danger is given in Algorithm 4.

Algorithm 4. Bipolar fuzzy extended TOPSIS method based on entropy weights.

1. Input the n number of alternative materials y1, y2, . . . , yn.
2. Input the side effects c1, c2, . . . , cr corresponding to each alternative.
3. Input the bipolar fuzzy decision matrix M = [ξij]n×r where ξij = (ξ

p
ij, ξn

ij) = (µ
p
yi (cj), µn

yi
(cj))

represents the degree of membership of alternative yi with respect to criteria cj. The positive
degree of membership represents the degree of side effect cj for implementing yi, and the negative
degree of membership represents the degree of benefit of material yi.

4. Determine the criteria weight (information entropy) of each side effect cj, 1 ≤ j ≤ r, using
Formula (3).

En(cj) = −τ
n

∑
i=1

[
|ξn

ij| ln |ξn
ij|+ (1− ξ

p
ij) ln(1− ξ

p
ij)
]

, 1 ≤ j ≤ r (3)

where τ > 0 is a constant such that 0 ≤ En(cj) ≤ 1.
5. Calculate the degree of divergence divj of each side effect cj using Equation (4).

divj = 1− En(cj), 1 ≤ j ≤ r. (4)
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6. Calculate the entropy weights wj corresponding to each criterion cj as given in Equation (5):

wj = divj ÷
r

∑
i=1

divj, 1 ≤ j ≤ r. (5)

7. Construct the weighted bipolar fuzzy decision matrix M̃ = [ζij]n×r where, for each 1 ≤ i ≤ n, ζij
is defined in Equation (6).

ζij = (ζ
p
ij, ζn

ij) = wj(ξ
p
ij, ξn

ij) 1 ≤ j ≤ r. (6)

8. Calculate the bipolar fuzzy positive and negative ideal solutions y+ and y−, respectively, as
expressed with bipolar fuzzy vectors in (7) and (8).

y+ =
[
(α

p
1 , αn

1 ) (α
p
2 , αn

2 ) . . . (α
p
r , αn

r )
]T

(7)

y− =
[
(β

p
1 , βn

1) (β
p
2 , βn

2) . . . (β
p
r , βn

r )
]T

(8)

where α
p
j = min

i
ζ

p
ij, αn

j = max
i

ζn
ij, β

p
j = max

i
ζ

p
ij, βn

j = min
i

ζn
ij, 1 ≤ j ≤ r.

9. Calculate the distance measures of each alternative yi from y+ and y− using
Formulae (9) and (10), respectively.

d(yi, y+) =

√√√√
r

∑
j=1

[
(ξ

p
ij − α

p
j )

2 + (ξn
ij − αn

j )
2
]

(9)

d(yi, y−) =

√√√√
r

∑
j=1

[
(ξ

p
ij − β

p
j )

2 + (ξn
ij − βn

j )
2
]

(10)

10. Calculate the relative closeness degree of each alternative yi using Equation (11).

C(yi) =
d(yi, y−)

d(yi, y+) + d(yi, y−)
, 1 ≤ i ≤ n. (11)

11. Arrange all the alternatives in descending order according to the relative closeness degree.

We now describe an example of teeth replacement alternatives to illustrate Algorithm 4.

Replacement of a Missing Tooth

A person may face the problem of missing teeth due to gum disease, tooth decay, injury, by birth
or inherited disorder. With the passage of time, missing teeth can cause various health issues including
poor nutrition and chewing problems. One missing tooth can weaken the jaw structure. People often
visit dentists for replacement of missing teeth. There are various alternative replacement options for a
missing tooth such as a traditional bridge, denture, cantilever bridge, resin bonding, teeth implant,
etc. The benefits and side effects of teeth replacements vary in patients. Every person has different
skin and teeth sensitivities; therefore, the side effects of dental treatments are not constant in patients.
Consider the example of a person X who wants a teeth replacement treatment. The side effects and
benefits of alternative treatments with respect to person X are shown in Table 9. The description of the
degree of membership of each criterion (side effect) is shown in Table 10.
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Table 9. Bipolar fuzzy decision matrix.

Alternatives

Disadvantages and Benefits

Affordable Bone
Infection

Damage to
Natural Teeth

Long
Lasting Toothache Risk of

Tooth Decay
Gum

Disease

Traditional Bridge (0.4,−0.6) (0.5,−0.6) (0.8,−0.6) (0.7,−0.7) (0.7,−0.5) (0.9,−0.8) (0.7,−0.5)

Cantilever Bridge (0.3,−0.7) (0.5,−0.6) (0.6,−0.7) (0.8,−0.6) (0.7,−0.5) (0.8,−0.8) (0.7,−0.5)

Resin Bonded (0.2,−0.8) (0.1,−0.8) (0.9,−0.4) (0.4,−0.7) (0.7,−0.3) (0.7,−0.3) (0.8,−0.3)

Removable Denture (0.4,−0.6) (0.8, 0.1) (0.8,−0.3) (0.5,−0.6) (0.5,−0.6) (0.8,−0.1) (0.3,−0.8)

Teeth Implant (0.9,−0.3) (0.5,−0.7) (0.4,−0.9) (0.4,−0.9) (0.7,−0.4) (0.3,−0.8) (0.7,−0.6)

Table 10. Bipolar fuzzy decision matrix.

Criteria Positive Degree of Membership Negative Degree of Membership

Affordable Replacement option is affordable Replacement option is expensive

Bone Infection Infection causes jawbone loss Prevents the risk of jawbone loss

Damage to
Natural Teeth

Damage to abutting
healthy teeth

Prevents the future decay and
shifting of healthy adjacent teeth

Long Lasting
Restoration can collapse and

needs to be replaced early Treatment will last long

Toothache
Treatment causes toothache

with the passage of time Treatment prevents risk of toothache

Risk of
Tooth Decay Tooth decay under the replacement Good dentistry prevents tooth loss

Gum Disease
Replacement causes gum infections

and diseases Prevents the risk of gum infection

Denote each side effect by cj, 1 ≤ j ≤ 7 as given in Table 11. By taking τ = 0.1, the calculations of
entropy wights are given in Table 11.

Table 11. Entropy weights.

Calculated
Values

Disadvantages and Benefits

Affordable
c1

Bone
Infection

c2

Damage to
Natural Teeth

c3

Long
Lasting

c4

Toothache
c5

Risk of
Tooth Decay

c6

Gum
Disease

c7

En(cj) 0.267 0.272 0.293 0.285 0.352 0.261 0.32
divj 0.733 0.728 0.707 0.715 0.648 0.739 0.68
wj 0.148 0.147 0.143 0.14 0.131 0.149 0.137

The weighted bipolar fuzzy decision matrix is given in Table 12.
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Table 12. Weighted bipolar fuzzy decision matrix.

Criteria
Alternatives

Traditional
Bridge

Cantilever
Bridge

Resin
Bonded

Removable
Denture

Teeth
Implant

c1 (0.059,−0.089) (0.044,−0.104) (0.030,−0.118) (0.059,−0.089) (0.133,−0.044)
c2 (0.074,−0.088) (0.074,−0.088) (0.015,−0.118) (0.118,−0.015) (0.074,−0.103)
c3 (0.114,−0.086) (0.086,−0.100) (0.129,−0.057) (0.114,−0.043) (0.057,−0.129)
c4 (0.098,−0.098) (0.112,−0.084) (0.056,−0.098) (0.070,−0.084) (0.056,−0.126)
c5 (0.092,−0.066) (0.092,−0.066) (0.092,−0.039) (0.066,−0.079) (0.092,−0.052)
c6 (0.134,−0.119) (0.119,−0.119) (0.104,−0.045) (0.119,−0.015) (0.045,−0.119)
c7 (0.1,−0.069) (0.014,−0.069) (0.11,−0.041) (0.041,−0.11) (0.014,−0.082)

The bipolar fuzzy positive and negative ideal solutions are given in Table 13.

Table 13. Bipolar fuzzy positive and negative ideal solutions.

α
p
j 0.03 0.015 0.057 0.056 0.066 0.045 0.014

αn
j −0.044 −0.015 −0.043 −0.084 −0.039 −0.015 −0.069

β
p
j 0.133 0.118 0.129 0.112 0.092 0.134 0.11

βn
j −0.118 −0.118 −0.129 −0.126 −0.079 −0.119 −0.11

The distance measures and relative closeness degree of each alternative measure are given in
Table 14.

Table 14. Distance measures and relative closeness degree.

Calculated
Values

Traditional
Bridge

y1

Cantilever
Bridge

y2

Resin
Bonded

y3

Removable
Denture

y4

Teeth
Implant

y5

d(yi, y+) 2.3018 2.2634 2.0521 1.9615 2.2648
d(yi, y−) 2.0314 1.9862 1.8164 1.7372 2.002

C(yi) 0.4688 0.5326 0.4695 0.4697 0.4692

Arranging the alternatives in decreasing order according to relative closeness degree, we conclude
that a traditional bridge is the best option for replacement of missing teeth.

A View of Bipolar Fuzzy Extended TOPSIS

Multi-criteria decision-making (MCDM) is a procedure to make an ideal decision that has the
highest level of of achievement from a set of alternatives that are characterized regarding various
conflicting criteria. TOPSIS methods are the most effective and favorable methods to solve MCDM
problems. To deal with uncertainty and incomplete information, fuzziness, intuitionistic fuzziness and
neutrosophic sets have been utilized successfully in TOPSIS methods for solving MCDM problems.
However, in many cases, the given information is bipolar in nature. Recently, a bipolar fuzzy TOPSIS
method for the suitable selection of objects was discussed in [5]. However, in this method, the weights
are chosen arbitrarily, which can be changed according to the choice of decision-makers. The chosen
weights may be irrelevant for the given information, which can effect the outcomes of decision-making.
Therefore, it is necessary to calculate weights according to the given information. In our method, we
have discussed the process for calculating entropy weights from given bipolar fuzzy information.
It gives more suitable decisions as compared to the previous methods discussed in the literature.
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4. Conclusions

Bipolar fuzzy graphs play a vital role in many research domains and give more precision, flexibility
and compatibility to the system as compared to the classical and fuzzy models. A bipolar fuzzy set
is an extension of a fuzzy set with the additional possibility to represent bipolar uncertainty and
vagueness that exist in real-world situations. In this paper, we have presented the procedure of the
bipolar fuzzy extended TOPSIS method based on entropy weights in the form of an algorithm. For
illustration, we have applied this method to a real-life problem in dentistry. We have also discussed
applications of bipolar fuzzy competition graphs and proved that every bipolar fuzzy graph is a
bipolar fuzzy competition graph of some bipolar fuzzy digraph. We have presented four different
variations of bipolar fuzzy competition graphs in food webs and studied the strength of competition
between species. We have also studied the process for calculating the strength of competition with
certain algorithms.

5. Future Work

The work presented in this paper can further be extended to (1) fuzzy rough competition
graphs, (2) bipolar fuzzy rough competition graphs, (3) the bipolar fuzzy rough TOPSIS method
and (4) m−polar fuzzy TOPSIS methods. For more future directions, the readers are referred to [34–36].
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14. Faizi, S.; Salabun, W.; Rashid, T.; Watróbski, J.; Zafar, S. Group decision-making for hesitant fuzzy sets based
on characteristic objects method. Symmetry 2017, 9, 136. [CrossRef]

15. Jankowski, J.; Salabun, W.; Watróbski, J. Identification of a multi-criteria assessment model of relation
between editorial and commercial content in web systems. In Multimedia and Network Information Systems;
Springer: Cham, Switzerland, 2017; pp. 295–305.

16. Akram, M.; Shumaiza, S.F. Decision-Making with Bipolar Neutrosophic TOPSIS and Bipolar Neutrosophic
ELECTRE-I. Axioms 2018, 7, 33. [CrossRef]

17. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
18. Zhang, W.-R. Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and

multiagent decision analysis. In Proceedings of the First International Joint Conference of the North American
Fuzzy Information Processing Society Biannual Conference, San Antonio, TX, USA, 18–21 December 1994;
pp. 305–309.

19. Zadeh, L.A. Similarity relations and fuzzy orderings. Inf. Sci. 1971, 3, 177–200. [CrossRef]
20. Kaufmann, A. Introduction la Thorie des Sous-Ensembles Flous l’Usage des Ingnieurs (Fuzzy Sets Theory); Masson:

Paris, France, 1975.
21. Rosenfeld, A. Fuzzy Sets and Their Applications; Academic Press: New York, NY, USA, 1975; pp. 77–95.
22. Samanta, S.; Pal, M. Fuzzy k-competition and p-competition graphs. Fuzzy Inf. Eng. 2013, 2, 191–204.

[CrossRef]
23. Al-shehri, N.O.; Akram, M. Bipolar fuzzy competition graphs. Ars Comb. 2015, 121, 385–402.
24. Akram, M. Bipolar fuzzy graphs. Inf. Sci. 2011, 181, 5548–5564. [CrossRef]
25. Akram, M. Bipolar fuzzy graphs with applications. Knowl. Based Syst. 2013, 39, 1–8. [CrossRef]
26. Akram, M.; Sarwar, M. Bipolar fuzzy circuits with applications. J. Intell. Fuzzy Syst. 2016, 34, 547–558.
27. Sarwar, M.; Akram, M. Novel concepts bipolar fuzzy competition graphs. J. Appl. Math. Comput. 2016, 54,

511–547.
28. Cohen, J.E. Interval Graphs and Food Webs: A Finding and a Problem. Available online: http://

lab.rockefeller.edu/cohenje/assets/file/014.1CohenIntervalGraphsFoodWebsRAND1968.pdf (accessed on
22 September 2018).

29. Scott, D.D. The competition common-enemy graph of a digraph. Discret. Appl. Math. 1987, 17, 269–280.
30. Mordeson, J.N.; Nair, P.S. Fuzzy Graphs and Fuzzy Hypergraphs; Springer: Berlin / Heidelberg, Germany, 2000.
31. Rosen, K.H. Discrete Mathematics and Its Applications, 7th ed.; McGraw-Hill Education: New York, NY,

USA, 2012.
32. Samanta, S.; Akram, M.; Pal, M. m-step fuzzy competition graphs. J. Appl. Math. Comput. 2015, 47, 461–472.

[CrossRef]
33. Cable, C. Niche Graphs. Discret. Appl. Math. 1989, 23, 231–241. [CrossRef]
34. Garg, H. Linguistic pytagorean fuzzy sets and its applications in multi-attribute decision-making preocess.

Int. J. Intell. Syst. 2018, 33, 1234–1263. [CrossRef]
35. Garg, H. Hesitant pythagorean fuzzy sets and their aggregation operators in multiple-attribute

decision-making. Int. J. Uncertain. Quantif. 2018, 8, 267–289. [CrossRef]
36. Garg, H. New logarithmic operational laws and their aggregation operators for pythagorean fuzzy set and

their applications. Int. J. Fuzzy Syst. 2018. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/sym9080136
http://dx.doi.org/10.3390/axioms7020033
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0020-0255(71)80005-1
http://dx.doi.org/10.1007/s12543-013-0140-6
http://dx.doi.org/10.1016/j.ins.2011.07.037
http://dx.doi.org/10.1016/j.knosys.2012.08.022
http://lab.rockefeller.edu/cohenje/assets/file/014.1CohenIntervalGraphsFoodWebsRAND1968.pdf
http://lab.rockefeller.edu/cohenje/assets/file/014.1CohenIntervalGraphsFoodWebsRAND1968.pdf
http://dx.doi.org/10.1007/s12190-014-0785-2
http://dx.doi.org/10.1016/0166-218X(89)90015-2
http://dx.doi.org/10.1002/int.21979
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2018020979
http://dx.doi.org/10.1002/int.22043
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	 Bipolar Fuzzy Competition Graphs
	Decision-Making Approach of Competition Graphs and the Extended TOPSIS Method Based on Bipolar Fuzzy Sets
	Bipolar Fuzzy Competition Graph in Food Webs
	Bipolar Fuzzy Common Enemy Graph
	Bipolar Fuzzy Competition Common Enemy Graph
	Bipolar Fuzzy Niche Graph
	Multi-Criteria Decision Making Method to Minimize the Side Effects of Dental Treatments

	Conclusions
	Future Work
	References

