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Abstract: In the paper, the dynamic motion of a point ball with a mass of m, sliding in a viscous
liquid between two concentric spheres under the influence of gravity and viscous and dry resistance,
is investigated. In addition, it is considered that the ball starts its motion from some arbitrary
point M0 = M(θ0, ϕ0). A system of nonlinear differential equations in a spheroidal coordinate
system is obtained for the angular variables θ and ϕ to account for all the forces acting on the ball.
The dependence of the reaction force on the angular variables is found, and the solution of the
resulting system of equations is numerically analyzed. The projections of the trajectories on the plane
x− y, y− z, x− z are found.
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1. Introduction

The problem which is considered in this paper belongs to the category of problems of classical
mechanics. The work presented in this paper is devoted to the derivation of a system of dynamic
equations describing the trajectory of the complex motion of a ball of arbitrary size moving between
two concentric spheres of radiuses R1 and R2. They are satisfying the simple relation R2 = R1 + d,
where d is the diameter of the ball with a mass of m. The problem we are considering in this paper
intersects somewhat with the problem described in the monograph [1] on a spherical pendulum.

However, the abovementioned problem concerns the description of the motion of a ball between
spherical surfaces, and the solution of the problem itself is not given. In a previous paper [2], a spherical
pendulum is considered with allowance for viscous friction only and the equations without an exact
decision are given. In this paper, we are filling in the missing components and giving a pure analytical
solution for the problem posed, but in the more complicated case, when the ball moves between two
concentric spheres, taking into account both the viscous and dry frictions.

2. The Solution of the Problem

We suppose that the interval between the concentric spheres is filled by a viscous continuum with
a dynamical viscosity η, and Figure 1 shows the geometry of the problem.

Since the ball has an arbitrary size, we cannot neglect its diameter in comparison with the radiuses
of R1 and R2. It means that we need to introduce the element of the metric on the surface due to the
middle radius of the sphere R = R1+R2

2 , i.e.,

dl2 = R2dθ2 + R2 sin2 θdϕ2. (1)

Hence, the velocity of the ball can be represented in the next form

v2 = R2
.
θ

2
+ R2 sin2 θ

.
ϕ

2. (2)
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Figure 1. The geometry of the problem. In this figure, concentric circles are used for representation,
but it is clear that in the stereometry, they are ellipses. For the simplification of the figure, they are
shown as circles. R—a vector of mean radius; n = R

R —a unit normal vector, where n = n2 − n1; τ1—a
unit tangential vector (see the main text of the paper); τ2—a unit tangential vector to the instantaneous
circle of radius ρ, which is perpendicular to the axis z; n

′− a normal unit vector to this circle (it is lying
in the plane of (n− τ1); v—a momentary velocity, decomposed into a single instantaneous basis τ1

and τ2; mg—gravitational force; Fc—resistant force directed against velocity vector v and tangential
to the surface of the outer sphere. N—reaction force, θ—angle in azimuth, ϕ—polar bearing of the
spherical coordinate system, angle α = π − θ.

In the instantaneous unit basis at the surface of the middle sphere of τ1 and τ2, for the velocity,
we have

v = vθτ1 + vϕτ2, (3)

where the velocity components are

vθ = R
.
θ, vϕ = R sin θ

.
ϕ (4)

Differentiating Equation (3) in order to find the following equation for the complex acceleration
of the ball gives:

a = R
..
θτ1 + R

.
θ

.
τ1 + R

.
θ

.
ϕ cos θτ2 + R sin θ

..
ϕτ2 + R

.
ϕ sin θ

.
τ2,

where
.
τ1 = dτ1

dl1
dl1
dt = vθ

n
R =

.
θn,

.
τ2 = dτ2

dl2
vϕ = R sin θ

.
ϕ n

′

R sin θ =
.
ϕn

′
; n—a normal unit vector, where

n = n1−n2
2 ; and n

′
is directed along the circle radius ρ = R sin θ and n

′
lies in the plane of the unit

vectors of τ1, n. In the result, we thus obtain the following for the complex acceleration:

a = R
..
θτ1 + R

.
θ

2
n + R

.
θ

.
ϕ cos θτ2 + R sin θ

..
ϕτ2 + R

.
ϕ

2 sin θn
′

(5)

It means that we can write the equation of the motion in a general form as

a = g + N
n
m

+
Fc

m
, (6)

where N is the resulting reaction force between the outer and inner spheres. We use this in the next
correlation Nn = N1n1−N2n2

2 , where N1 is the reaction force of the inner sphere and N2 is the reaction
force of the outer one. The normal unit vector n1 is directed from the outer sphere to the outside,
in relation to the common center of the spheres, and in contrast to n2, which is directed to the common
center of the spheres. Fc = −(k1v + k2N) v

v is the total resistance force, where the viscous component
proportional to the movement velocity is chosen with the proportionality coefficient k1. This coefficient
depends on the medium viscosity and diameter of the ball of mass m (see the Stokes formula in
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Ref. [3]). Inserting Equations (3) and (5) into Equation (6) and using explicit expressions for N and n,
we find that

R
..
θτ1 + R

.
θ

2 (n1−n2)
2 + R

.
ϕ

2 sin θn
′
+ 2R

.
θ

.
ϕ cos θτ2 + R sin θ

..
ϕτ2 =

= g− k2R
mv N

( .
θτ1 + sin θ

.
ϕτ2

)
− k1

m R
( .

θτ1 + sin θ
.
ϕτ2

)
+ N1n1−N2n2

2m ,
(7)

where the explicit Equation (4) accounts for the velocity components. For getting the required system
of the dynamical equations, we must resolve Equation (7) on the components’ orthogonal basis unit
vectors τ1, τ2, n. In the result, we have

..
θ + γ

.
θ +

.
ϕ

2 sin θ cos θ + k2
N

.
θ

mv = gτ1
R ,

..
ϕ sin θ + 2

.
θ

.
ϕ cos θ + γ

.
ϕ sin θ + k2

N sin θ
.
ϕ

mv = gτ2
R ,

N = N1+N2
2 = mR

(
.
θ

2
+

.
ϕ

2 sin2 θ − gn1
R

)
,

N = N1+N2
2 = mR

(
.
θ

2
+

.
ϕ

2 sin2 θ + gn2
R

)
.

(8a)

where γ = k1
m is the viscous attenuation. The dry one is proportional to the coefficient of friction k2,

because
gn1 = −gn2 = g cos(π − θ) = −g cos θ, gτ1 = g sin θ, gτ2 = 0,

and the system of Equation (8a) can be written in the following form:
..
θ + γ

.
θ +

.
ϕ

2 sin θ cos θ + k2
N

.
θ

mv −ω2sinθ = 0,
..
ϕ sin θ + 2

.
θ

.
ϕ cos θ + γ

.
ϕ sin θ + k2

N sin θ
.
ϕ

mv = 0,

N = m
(

v2

R + g cos θ
)

.

(8b)

where ω =
√

g
R is a frequency. If insert the below Equation (9) into the system of Equation (8b), we find

the nonlinear equations in the form:
..
θ + γ

.
θ +

.
ϕ

2 sin θ cos θ + k2

.
θ
v

(
v2

R + g cos θ
)
−ω2sinθ = 0,

..
ϕ + 2

.
θ

.
ϕctgθ + γ

.
ϕ + k2

.
ϕ
v

(
v2

R + g cos θ
)
= 0,

N = m
(

v2

R + g cos θ
)

,

(9)

where v2 = R2
.
θ

2
+ R2 sin2 θ

.
ϕ

2. It is clear that the system of Equation (9) must be solved when the
corresponding initial conditions are formulated. We shall assume that in the initial time moment t = 0,
the ball has a velocity v0, which is directed parallel to the plane x− y for the arbitrary point of the
middle surface with the coordinates of M = M(θ0, ϕ0) between the spheres. It means that

vϕ(0) = R
.
ϕ(0) sin θ0 = 0

and
vθ(0) = R

.
θ(0) = v0

Hence, the initial conditions can be formulated in the following way:{ .
ϕ(0) = 0,
.
θ(0) = v0

R .
(10)
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If the angle ϕ = const from the system of Equation (9), we can see that the motion occurs simply
along the circumference of the radius R = R1+R2

2 , where R1 and R2 are the radiuses of the inner and
outer circles. If we put the condition ϕ = const in Equation (9), we simplify the problem. Indeed,
in accordance with previous works [4,5], we introduce the angle α as θ = π − α, where π

2 ≤ |α| ≤ π.
In the result, we find the following system of equations:{ ..

α + γ
.
α + k2

.
α

2
+ ω2(sin α− k2 cos α) = 0,

N = mR
( .

α
2 −ω2 cos α

)
.

(11)

In the particular case when the friction forces are taken into account, the problem is highly
complicated. However, if the resistance forces are absent, we can present the equation of the plane
of periodic motion in the form

..
α + ω2 sin α = 0, which accounts for the gravitation field. In the more

general case, we need solve the following system of equations:

..
α + γ

.
α +

.
ϕ

2 sin α cos α + k2
.
α√

.
α

2
+sin2 α

.
ϕ

2

( .
α

2
+ sin2 α

.
ϕ

2 −ω2 cos α
)
+ ω2sinα = 0,

..
ϕ + 2

.
α

.
ϕctgα + γ

.
ϕα + k2

.
ϕ√

.
α

2
+sin2 α

.
ϕ

2

( .
α

2
+ sin2 α

.
ϕ

2 −ω2 cos α
)
= 0,

N = mR
( .

α
2
+ sin2 α

.
ϕ

2 −ω2 cos α
)

.

(12)

We can describe the boundary conditions in the following form:

.
ϕ(0) = 0,

.
α(0) = −v0

R

(for more detail, see our previous paper [4]).
Since our goal is to describe the motion on the planes x − y, y− z, x − z, we need to find the

parametric dependences x(t), y(t), z(t). To solve this part of our problem, it is necessary turn to
Equation (3) and account for the facts that on the one hand, v = vθτ1 + vϕτ2, and the other hand,
the velocity is v =

.
xi +

.
yj +

.
zk in the fixed bases i, j, k. It means that

R
.
θτ1 + R sin θ

.
ϕτ2 =

.
xi +

.
yj +

.
zk (13)

Since
.
x = R

( .
θ(iτ1) + sin θ

.
ϕ(iτ2)

)
,

.
y = R

( .
θ(jτ1) + sin θ

.
ϕ(jτ2)

)
,

.
z = R

( .
θ(kτ1) + sin θ

.
ϕ(kτ2)

)
,

(14)

and the movable bases are connected by linear transformations with the fixed bases i, j, k in the
accordance with the following transformation:

τ2 = i cos ϕ− j sin ϕ,
τ1 = i cos θ sin ϕ + j cos θ cos ϕ− k sin θ,
n = i sin θ sin ϕ− j sin θ cos ϕ + k cos θ,

(15)

we can write that the required equations describing the trajectory of the moving ball along the spherical
surface are 

.
x = R

( .
θ cos θ sin ϕ +

.
ϕ sin θ cos ϕ

)
,

.
y = R

( .
θ cos θ cos ϕ− .

ϕ sin θ sin ϕ
)

,
.
z = −R

.
θ sin θ.

(16)



Math. Comput. Appl. 2018, 23, 77 5 of 7

We would like to note that the unitary vectors are subjected to the relations

[τ2 × τ1] = n, [n× τ2] = τ1, [τ1 × n] = τ2

Integrating Equation (16) in steps, we find that
x(t) = x(0) + R

t∫
0

dt
( .

θ cos θ sin ϕ +
.
ϕ sin θ cos ϕ

)
= x(0) + R(sin θ sin ϕ− sin θ0sinϕ0),

y(t) = y(0) + R
t∫

0
dt
( .

θ cos θ sin ϕ− .
ϕ sin θ cos ϕ

)
= y(0) + R(sin θ cos ϕ− sin θ0cosϕ0),

z(t) = z(0) + R(cos θ − cos θ0).

(17)

As we can see from the systems in Equation (17), we are getting an ordinary transformation from
Cartesian coordinates to spherical ones. If choose the initial values of the coordinates in the following
form:

x(0) = R sin α0sinϕ0, y(0) = R sin α0cosϕ0, z(0) = −R cos α0

we can write from Equation (17) that

x(t) = R sin α cos ϕ, y(t) = R sin αsinϕ, z(t) = −R cos α (18)

where it is necessary to recall that θ = π − α.
Let us assume that the initial point of the motion on the spherical surface is

M = M (α, ϕ)|t=0 = M(α0, ϕ0).

Then, in the result, the full system of equations is

..
α + γ

.
α +

.
ϕ

2 sin α cos α + k2
.
α√

.
α

2
+sin2 α

.
ϕ

2

( .
α

2
+ sin2 α

.
ϕ

2 −ω2 cos α
)
+ ω2sinα = 0,

..
ϕ + 2

.
α

.
ϕctgα + γ

.
ϕ + k2

.
ϕ√

.
α

2
+sin2 α

.
ϕ

2

( .
α

2
+ sin2 α

.
ϕ

2 −ω2 cos α
)
= 0,

x(t) = R sin α cos ϕ,
y(t) = R sin αsinϕ,
z(t) = −R cos α,
α(0) = α0,
ϕ(0) = ϕ0,
.
ϕ(0) = 0,
.
α(0) = − v0

R .

(19)

(compare with the results of the papers [4,5]). The numerical analysis of Equation (19) shows that
practically almost all initial conditions for the trajectory of the ball are almost immediately interrupted
and the numerical solution leads to nowhere. This happens due to the singularity in the denominator
of the function ctgα, which leads to the singularity in the second line of Equation (19) for the function
ϕ at α = πn, where n is a whole number.

In the accordance with the abovementioned, we can submit ctgα in the form

ctgα =
sin α cos α

sin2 α + ε2
(20)

where ε is a small number.
Taking into account Equation (20), the system of Equation (19) is solved remarkably.

The dependences of α(t) and ϕ(t) at k2 = γ = 0.1 and ε = 0.02 are illustrated by Figure 2.
The three-dimensional trajectory of the ball in motion is found due to the numerical simulation



Math. Comput. Appl. 2018, 23, 77 6 of 7

of Equation (19) with the condition that the radius of the sphere is equal to the unity, and this is
demonstrated in Figure 3. In accordance with these numerical solutions due to the transformations
3–5 of Equation (19), we can also find the trajectories of the motion in the projections on the coordinate
planes x− y, y− z, x− z. In Figure 4, as an example, is illustrated the corresponding dependence in
the plane x− y.

We should notice that due to the lower transformations of Equation (9), we can also calculate the
dependence of the reaction force of the shell when the ball moves between spherical surfaces. In this
case, for the interruption values of the angle parameter α, the reaction force will aperiodically “jump”
in the condition that all changes of the parameters are continuous.

Moreover, we would like to pay attention to the case if we use the mathematical apparatus of the
Euler angles α, β, γ (see, for example, the monograph [6]), where the description of the dynamics of
the motion of the body between the surfaces of arbitrary shapes will be more complex. This problem
will be addressed in a separate paper.
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3. Conclusions

In the conclusion of this article, we would like to highlight some main results of the
abovementioned research.

1. The fundamental system of the nonlinear differential equations is obtained, which describes the
dynamics of the ball moving between two concentric spheres. In this system, taken into account
is the dry friction of the ball on the surfaces, as is the dynamic viscosity of the fluid η filling the
space between the spheres;

2. The analysis of the solution of the differential equations was carried out in both cases: in the ideal
case and with the allowance of dissipative forces;

3. The time dependencies of the angular coordinates θ = π − α and ϕ are calculated. Moreover,
using the methods of numerical integration, it was illustrated a three-dimensional trajectory of the
ball’s motion along the spherical surface, as well as its projection on the planes x− y, y− z, x− z.

Author Contributions: S.G. and S.B. contributed equally to the writing of the main manuscript’s text and
preparation of the figures. Both authors reviewed the manuscript. Both authors contributed equally to the paper.

Acknowledgments: We would like to express our appreciation for Professor Hovik Matevossian for his keen
interest in this paper and his ambition to fulfill all the potential of our article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Appel, P. Theoretical Mechanics; Fizmatlit: Moscow, Russian, 1960.
2. Shain, Y.F. An investigation of a system of equations describing the motion of a spherical pendulum in the

case of the presence of resistance. Differ. Equ. 1967, 3, 1477–1483.
3. Gladkov, S.O.; Bogdanova, S.B. Geometrical phase transition in the problem of the brachistochrone with

friction. Mem. Fac. Phys. Lomonosov Mosc. State Univ. 2016, 1, 161001-1-5. Available online: http://uzmu.
phys.msu.ru (accessed on 30 November 2018).

4. Gladkov, S.O.; Bogdanova, S.B. To the theory of motion of a ball along a rotating brachistochrone with the
account of the friction forces. Mem. Fac. Phys. Lomonosov Mosc. State Univ. 2017, 1, 171101-1-5. Available
online: http://uzmu.phys.msu.ru (accessed on 30 November 2018).

5. Landau, L.D.; Lifshitz, E.M. Hydrodynamics; Fizmatlit: Moscow, Russian, 2001; ISBN 5-9221-0121-8.
6. Landau, L.D.; Lifshitz, E.M. Mechanics; Fizmatlit: Moscow, Russian, 2004; ISBN 5-9221-0055-6.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://uzmu.phys.msu.ru
http://uzmu.phys.msu.ru
http://uzmu.phys.msu.ru
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Solution of the Problem 
	Conclusions 
	References

