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Abstract: Hidden Markov models are a very useful tool in the modeling of time series and any
sequence of data. In particular, they have been successfully applied to the field of mathematical
linguistics. In this paper, we apply a hidden Markov model to analyze the underlying structure of an
ancient and complex manuscript, known as the Voynich manuscript, which remains undeciphered.
By assuming a certain number of internal states representations for the symbols of the manuscripts,
we train the network by means of the α and β-pass algorithms to optimize the model. By this
procedure, we are able to obtain the so-called transition and observation matrices to compare with
known languages concerning the frequency of consonant andvowel sounds. From this analysis,
we conclude that transitions occur between the two states with similar frequencies to other languages.
Moreover, the identification of the vowel and consonant sounds matches some previous tentative
bottom-up approaches to decode the manuscript.

Keywords: Hidden Markov models; mathematical linguistics; Voynich Manuscript

1. Introduction

Hidden Markov models (HMMs) are a particular kind of a Bayesian network obtained by
combining a Hidden Markov layer and a second layer of outputs that depends probabilistically
on the hidden states of the first layer [1,2]. This model has proven a very versatile and useful tool
in many applications of artificial intelligence, among others: (i) modeling of biological sequences
of proteins and DNA [3]; (ii) speech recognition systems [4]; (iii) data compression and pattern
recognition [5]; and (iv) object tracking in video sequences [6]. Of particular interest to us are the
early studies in which HMMs were used to analyze a large body of text, in that case of English (the
so-called “Brown Corpus”), considered as a sequence of letters without any previous assumption on
the linguistic structure of the text or the meaning of the letters [1,4,7]. Depending on the number of
hidden states, thanks to this work, light was shed on the linguistic structure of English in the model.
For example, for two hidden states, the basic division among vowels and consonants was recovered
as the most natural basic pattern of the English language [7]. As many more states were taken into
account, it was discovered a structure including the initial and final letters of a word, vowel followers
and preceders, etc. This elucidates the purely statistical nature of a language and it shows that HMMs
can be an insightful tool in mathematical and computational linguistics.

Applications of HMMs to the field of Natural Language Processing (NLP) has also flourished in
recent years as its has been shown for different layers of NLP such as speech tagging and morphological
analysis. By using this approach, successful results for many languages such as Arabic and Persian
have been obtained [8,9]. For these reasons, it seems promising to extend these analyses to other
sources of text that still cannot be deciphered because they are written in an unknown script and with
a unique linguistic structure. Among the candidates to this challenge, the medieval codex known as
Voynich manuscript stands out [10].
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Discovered by the Polish–Lithuanian book dealer W. Voynich in 1912, it has remained an enigma
of historical cryptography since then. For a detailed introduction to the manuscript’s history and
attempts of decipherment until 1978, the interested reader can find more information in M. d’Imperio’s
monograph [11] and on Zandbergen’s website [10]. It is generally believed by history researchers that
this book could have belonged to emperor Rudolph II of Baviera until his death in 1612. This was
stated in a letter addressed to the XVIIth century scholar Athanasius Kircher that was found by Voynich
himself inside the manuscript. The history of the ownership of the manuscripthas been elucidated
throughout the years. It is also known that it was property of the Jesuits and it was kept at the “Collegio
Romano” since the last decade of the XVIIth century until the end of the XIXth century when it was
moved to Frascati where Voynich acquired it.

Modern physics and chemistry analyses have allowed establishing some rigorous facts. Firstly,
in 2009, some samples of ink and paint were taken from the manuscript and analyzed by X-ray
spectroscopy and X-ray diffraction techniques showing that these inks and pigments were totally
compatible with those used by scribes at the last epoch of the Middle Ages [12]. The same year, a
radiocarbon dating of the parchment was carried out by researchers at the University of Arizona [13].
They found that with a 95% probability the parchment corresponds to the period between 1404 and
1438. This places the manuscript in the first half of the fifteen century. It is also clear that the text was
added after the drawing of the figures in the manuscript because it usually surrounds these figures
very closely.

An image of the first line in the Voynich manuscript is shown in Figure 1. The total set of individual
characters depends on some ambiguities in counting but it seems that there are 36 characters in the set
as recognized by the Currier alphabet, some of them far more frequent than other. Others alphabets,
such as the European Voynich Alphabet (EVA), consider only 25 characters (ignoring the rare ones).
Although the symbols seem strange, and not immediately associated with any known alphabet
ancient or modern, a closer inspection reveals a similarity with Latin, Arabic numerals and, specially,
some Latin abbreviations very common throughout the Middle Ages [14]. Anyway, these clues have
helped little in finding an accepted decipherment of the text.

Figure 1. A sample of the first folio of the Voynich manuscript.

Among the possible solutions to this riddle, there have been four main proposals:

1. It is a manuscript written in an extinct natural language with an exotic alphabet [15].
2. It is the encipherment of a known language (possibly Latin, German or other Indo-European

language but nobody is sure [11]).
3. It is a hoax consisting of asemic writing with the objective of making the book strange and valuable

to collectors of antiquities [16].
4. It is a modern fabrication (perhaps by its discoverer, W. Voynich) [10].

From these hypotheses, the last one seems excluded by modern physicochemical analyses but the
other three may still be considered open. The paper is organized as follows. In Section 2, we discuss
the basics of Hidden Markov Models and its application to linguistic analysis. Section 3 is devoted to
the application of HMMs to the Voynich manuscript and the information we may deduce from this.
Finally, the paper ends with a discussion on the meaning of the findings of the paper and guidelines
for future work in Section 4.

2. Hidden Markov Models

In this section, we provide a quick summary of the basic concepts and algorithms for HMMs.
In Figure 2, we show the structure of a HMM. The Markov process (Figure 2) is characterized by a
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sequence {X0 , X1 , X2 , . . . , XT−1} of internal states selected among a total of N. The transition among
these states is performed according to the probabilities of a transition matrix A in such a way that the
element aij denotes the probability of performing a transition from the internal i state to the state j.
We can also denote the different internal states as qi, with i = 0 , 1 , 2 , . . . , qN−1.

The second layer we have plotted in Figure 2 corresponds to the observations. The sequence
of observations is then denoted by {O0 ,O1 , . . . ,OT−1} and they can be chosen among a total of M
possible observation symbols. The relation between the Markov process layer and the observation
layer is also probabilistic because, given an internal state qj, the probability for observing the symbol k
is bj(k). These elements constitute a row stochastic matrix, B.
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0
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Figure 2. A schematic view of a HMM. See the main text for details.

The problem we want to address is the following: Suppose we have a given sequence of
observations, O, consisting of a series of symbols from a total of M. If we assume that there are
N internal states in the model, the objective is to find the model (A, B, π) (where π is the distribution
of initial states) that provides the best fit of the observation data. The standard technique in HMMs to
evaluate this optimum model makes use of a forward algorithm and a backward algorithm described
as follows. In the description of the algorithms, we closely follow the pedagogical presentation by
Stamp [1].

2.1. The Forward Algorithm

Firstly, we are interested in evaluating the following probability:

αt(i) = P(O0,O1, . . . ,Ot, xt = qi|λ) , (1)

i.e., the probability that the sequence of observations up to time t is given by O0, . . . ,Ot and the
internal state at time t is qi for a given model λ. Then, for t = 0, we have that:

α0(i) = πi bi(O0) , (2)

where i = 0, 1, . . ., N − 1. The reason is that πi is the probability that the initial internal state is qi, and
bi(O0) is the probability that, given that the internal state is qi, we have the observation O0. It is the
easy to check that the recursion expression for αt(i) is given by:

αt(i) =

[
N−1

∑
j=0

αt−1(j) aji

]
bi(Ot) . (3)

Here, aji is the transition probability from the inner state j to the inner state i. This algorithm is
also called α-pass.
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2.2. The Backward Algorithm

The backward algorithm, or β-pass, is proposed for the efficient evaluation of the following
probability:

βt(i) = P(Ot+1,Ot+2, . . . ,OT−1, xt = qi|λ) . (4)

This means that we are interested in finding the probability that the sequence of observations from
time t + 1 to the end is Ot+1, . . . ,OT−1 and the inner state at time t is qi. The algorithm is constructed
as follows:

• In the first place, we define βT−1(i) = 1 for i = 0, 1, . . ., N − 1.
• Then, for t = T − 2, T − 3, . . ., 0 we define the recursive relation:

βt(i) =
N−1

∑
j=0

aij bj(Ot+1) βt+1(j) . (5)

We use these two algorithms, the forward and the backward, to find the standard algorithm that
can be used to reestimate the model and make it approach its optimum.

2.3. Reestimating The Model

Our objective now is to reevaluate the model in such a way that the optimum parameters that fit
the observations are found. These parameters are the elements of the matrices A and B as well as those
in the vector corresponding to the initial distribution of internal states, π. We need now an algorithm
to reestimate the model in such a way that the probability of the observation sequence, O0, . . . ,OT−1,
given the model λ, P(O0, . . . ,OT−1|λ) is maximized.

The idea of the algorithm begins with the definition of the following probability for a given model
and a given observation sequence:

γt(i, j) = P(xt = qi, xt+1 = qj|O, λ) . (6)

This is the probability of finding the internal states qi and qj at times t and t + 1 for the observation
sequence O and the model λ. Using now the standard relations for conditional probabilities and the
definitions of the α and β probabilities in Equations (1) and (4), we have:

γt(i, j) =
αt(i) aij bj(Ot+1) βt+1(j)

P(O|λ) , (7)

for time t = 0, 1, . . ., T − 2. We also define the sum over the index j, i.e., the probability of finding the
inner state qi at time t for a given model and observation sequence:

γt(i) =
N−1

∑
j=0

γt(i, j) . (8)

With these definitions and expressions, we can now propose the evolution algorithm for the
reestimation of the parameters:

• We initialize the model λ = (A, B, π). It is a common practice to choose the elements according
to the uniform distribution: πi ≈ 1/N, aij ≈ 1/N, and bj(k) ≈ 1/M but these values must be
randomized to avoid that the algorithm becomes stuck at a local maximum.

• We calculate the parameters αt(i), βt(i), γt(i, j) and γt(i) by applying the corresponding
expressions in Equations (3), (5), (7) and (8).
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• For i = 0, 1, . . ., N − 1 and j = 0, 1, . . ., N − 1 we reestimate the elements of the transition matrix,
A, as follows:

aij =

T−2

∑
t=0

γt(i, j)

T−2

∑
t=0

γt(i)

, (9)

• For i = 0, 1, . . ., N − 1 and j = 0, 1, . . ., N − 1 we compute the new values for the elements of the
observation probability matrix as follows:

bj(k) =

∑
t∈{0,1,...,T−1} ,Ot=k

γt(j)

∑T−1
t=0 γt(j)

. (10)

Here, the sum in the numerator is restricted to those instants of time in which the observation
symbol is the kth.

• Finally, we compute the probability of the given observation sequence, i.e., P(O|λ) (obtained as
the sum of αT−1(i) for all the inner state values, i). If this probability increases (with respect to
the previous value), the model updating is performed again. However, in practice, the algorithm
is run for a given number of steps or until the probability does not increases more than a
selected tolerance.

Another issue with this algorithm is that the α-pass and β-pass evaluations may easily lead to
underflow. To avoid this problem, a normalization by the sum over j of αt(j) is performed. For further
details on HMMs the interested reader may check the references [1].

2.4. Applications to Linguistics of HMM and Other Network Models

Before the application of this particular model to the examples in the next section, we briefly
review some relevant studies concerning the use of networks in linguistics. Although computational
linguistics is as old as computers themselves, the field of natural language processing (NLP) started to
take off in the 1980s with the development of statistical machine translation [17], machine learning
algorithms and neural networks [18]. More recently, NLP has received an important advance within
the broader field of Deep Learning [19]. Hidden Markov Models (HMM) also played a role in these
developments: Baum and Petrie in their seminal paper laid the foundations of the theory of HMM in
1966 [20], which took form in the late 1960s and early 1970s [21,22]. The forward–backward algorithm
described in this section was proposed in this early studies and it is usually known as the Baum–Welch
algorithm. As mentioned before, in 1980, Cave and Neuwirth applied HMMs to study the structure of
a set of texts in English (known as “Brown Corpus”), which allowed them to derive useful conclusions
about the role of individual letters [1,7]. Word alignment was also studied in connection with statistical
translation by using a HMM by Vogel et al. [23]. More recent applications of HMM to linguistics
include part-of-speech tagging, i.e., the labeling of the different words according to their grammatical
category [8,9]. The Baum–Welch algorithm has also been used to identify spoken phrases in VoIP
calls [24]. HMM are used in speech recognition since the seminal work of Baker in 1975 [25]. Nowadays,
Long Short-Term Deep Neural Networks are the current paradigm in this field due to their capacity
tospot long term dependencies [26]. Networks have also proven very useful in the development of
the so-called word adjacency model, as shown by Amancio [27] and Nebil et al. [28]. This paradigm
has been applied to the classification of artificially generated manuscripts in contrasts to genuine
ones by observing their topological properties [29]. The dynamics of word co-occurrence in networks
has also allowed identifying the author of a given manuscript [30]. It is known that this adjacency
model captures, mainly, syntactical features of texts [31]. The algorithm to find the optimum model for
HMM is also oriented to identify the basic syntactical features concerning the probability sequences of
individual letters. Nothing can be said about the semantics, although it can certainly help in a Rosetta
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stone approach to decode a particular manuscript written in an unknown language, such as the Voynich
manuscript [15]. The adjacency model has also been used to analyze the Voynich manuscript [32] with
similar conclusions to the ones deduced in this paper: that the manuscript is mostly compatible with a
natural language instead of a random text.

3. Results

In this section, we discuss the application of the algorithm discussed in the previous section to
several cases. First, we consider the case of a text in English and we implement the model optimization
algorithm to classify the letters of the alphabet (after removing all the punctuation signs) into two
classes corresponding to the inner states of the HMM. It is shown that these classes are clearly associated
with the vowels and the consonants in English and this provides the basic phonemic structure of the
language. Testing the algorithm with a known language gives us the necessary confidence to apply it
to the Voynich manuscript.

In both applications (to a text in English and to the Voynich manuscript), we only used two
hidden states. This raises the question about the advisability of this particular choice, instead of a
larger number of hidden states. As the main objective was to show that these texts can be partitioned
in different sets of symbols that are different in their statistical properties, selecting N = 2 seems
the simpler choice. Moreover, in earlier applications to other books (such as the “Brown Corpus”,
which it is a compilation of roughly one million words with texts ranging from science to literature or
religion), this choice was proven to be successful in the identification of the vowels and consonants [7].
More hidden states were considered by Cave and Neuwirth in their seminal application of HMM to
language and they even obtained some conclusions for N = 3 to N = 12. Nevertheless, this was done
with the advantage of dealing with a known language. Proving the existence of, at least, two different
sets of letters in the Voynich manuscript is already a useful conclusion. If we take into account that the
alphabet and the language are completely unknown in this case, this could help linguistics in their
research to unveil some meaning in the words of the manuscript. Only after some globally accepted
success is achieved in this endeavor the study of the convergence of the HMM model for N > 2 could
be done with some possibility of interpretation.

3.1. Application to The Quixote

We applied the model evolution algorithm for HMM with N = 2 and M = 27. Therefore,
we considered 26 letters and the space as output symbols. The text of the Quixote in plain ASCII can
be freely downloaded from the Gutenberg’s project website [33]. This is the English translation of the
original Spanish version. As a data pre-processing stage, we transformed all the upper-case letters to
lower-case and removed the punctuation signs with the exception of the spaces among subsequent
words. This way, we obtained a sequence of 5,693,310 characters but, to our purpose, we restricted
ourselves to the first 100,000 characters.

As initial transition matrix, we chose:

A =

(
0.46 0.54

0.52 0.48

)
, (11)

and the distribution of initial hidden states was given at the start of the algorithm by

π =

(
0.52

0.48

)
, (12)

The observation probability matrix was obtained by randomizing the equal probability
assumption: bj(O) = 1/M for every j. For example, we could multiply 1/M by a random number
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in the interval (0.8, 1.2). However, we must verify the condition that the total probability for a given
inner state j and all the possible observation outcomes is normalized to one:

∑
all O

bj(O) = 1 , (13)

and this was accomplished by imposing this condition to define the last value bj(O) for the Mth
state, O.

The algorithm was then implemented in Mathematica using lists and the model evolution was
run for 200 steps with 100,000 characters from the book, pre-processed to retain only the letters and
removing all the punctuation signs (see the supplementary material accompanying this paper for
Mathematica code). Results were also checked using other independent implementations of the code
in C++ [34].

Firstly, we noticed that the algorithm converged after around 100 iterations, as deduced from
the evolution of the logarithm of the observation sequence probability for the given model P(O|λ).
This is shown in Figure 3. However, the convergence may seem peculiar because this probability only
started raising after iteration 50 and settled to a “plateau” in a few iterations after that. This could be
an indication of a small basin of attraction for the fixed point we were looking for. The topography of
the landscape for this particular problem would require further investigation.

0 25 50 75 100 125 150
-7.0

-6.5

-6.0

-5.5

-5.0

 

 

Lo
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P(
O

,
)
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Figure 3. The evolution of the logarithm of the observation sequence’s probability as a function of the
iteration. Notice the fast convergence to an asymptotic “plateau”.

From the results in this figure, we conclude that convergence was achieved after only 60 steps
and that further iterations only improve the results very slightly. The final transition matrix we found
is given as follows:

A =

(
0.369 0.631

0.869 0.131

)
, (14)

with an initial distribution of initial states given by:

π =

(
0

1

)
. (15)
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Transition matrices with large off-diagonal elements are also found using other texts such as the
“Brown Corpus” [7]. This compilation contains a million words with texts ranging from religion to
science, including also some novels. Consequently, the conclusions we derived from a single book
are already supported for a variety of texts in English from the early study of Cave and Neuwirth [7].
The form of the transition matrix in Equation (14) is already pointing towards the existence of two
categories of letters (the inner states of the HMM). These categories are, obviously, the vowels and
the consonants and this statement is reinforced by the values of the observation probability matrix, B.
In our case, the inner state 2 has been identified as the vowels, as clearly shown in Figure 4 where a
peak of probability is found for every vowel.

0 3 6 9 12 15 18 21 24 27
0.00

0.05

0.10

0.15

0.20

0.25
Space

y
u

oi

e

 

 

b 2
(k
)

k (letter index)

a

Figure 4. The probability of observation of a given letter for the hidden state 2. Notice the peaks for
the vowels as well as “y” and the space.

From the results in Figure 4, we could also derive some interesting conclusions:

1. The most frequent vowel in the English language is “e”.
2. The space among words has the structural function of a vowel, although it has no associated sound.
3. The letter “y” is mostly a vowel in the English language. Indeed, the Oxford Dictionary classifies

it as a vowel in some cases (“myth”), a semivowel in others (“yes”) or forming a diphthong (as in
“my”) [35].

In rigor, these conclusions would be valid only for the Quixote but they have also been checked for
other books (in particular the “Brown Corpus” book compilation). Thus, it is not unjustified to apply
them to the English language in general. Similar conclusions can also be deduced for the consonants.
It is also remarkable that the results in Figure 4 cannot be deduced from simple frequency analysis.
The histogram of the letters obtained from the Quixote’s text is shown in Figure 5.
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Figure 5. The histogram for the frequency of the totality of letters (and the space) in the English version
of the Quixote.

We see that the vowel “e” is still the most frequent letter in the English language (not only the
most frequent vowel) but the second most frequent letter is “t”. Thus, there is no clear pattern in the
histogram to separate vowels from consonants. This ability of HMM make them a very powerful tool
in computational linguistics.

Finally, we should emphasize that this experiment was performed by starting with particular
forms of the transition matrix, A, and the initial distribution vector, π, as given in Equations (11)
and (12). The observation probability matrix was also chosen in a random way as described above.
It is possible that, in some cases, the evolution algorithm for the HMM may find a local minima and
be sensitive to initial values instead of converging to the global minima we are looking for. Indeed,
a solution with A defined as a 2-by-2 identity matrix is always stable and can be approached by certain
initial conditions. For these reasons, it is convenient to check the sensitivity of our results to initial
conditions by performing several runs of the program. To check the convergence of the algorithm,
we chose different initial conditions, in which A and π were randomly selected as follows:

A =

(
x 1− x

y 1− z

)
, (16)

π =

(
z

1− z

)
, (17)

where x, y, and z are random real numbers in the interval (0.4, 0.6). After performing 10 simulations
with 200 runs, we found that the average transition matrix is given by:

A =

(
0.300(63) 0.700(63)

0.701(61) 0.299(61)

)
. (18)

Notice that both the matrices in Equations (14) and (18), are unstable as the off-diagonal elements
are larger than the diagonal ones. However, this stationary state of the algorithm is coherent with
previous results obtained with other texts [7]. This means that two hidden states can be identified in
the symbols of the book (corresponding to vowels and consonants) and that the transitions take place
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mainly from consonants to vowels and vice versa. This is precisely what happens in natural languages.
A transition matrix equal, or approximately equal, to the identity matrix would not separate the states
and it is not relevant to this linguistic application.

3.2. Application to the Voynich Manuscript

After the successful implementation of the HMM technique for the Quixote, we thus turned again
to our problem of analyzing the Voynich manuscript. Several transcriptions of this manuscript are
available but the most popular is the one based upon the so-called European Voynich Alphabet (EVA),
as developed by Zandbergen and Landini. Although there is an extended version, which includes
the less common symbols in the Voynich manuscript, the basic version uses 26 letters of the English
alphabet (excluding “w”) to make a correspondence with the most abundant symbols in Voynichese.
The correspondence among the EVA code and the Voynich symbol is given in the table of Figure 6.

At this point, it is also necessary to explain why we chose this particular alphabet instead of
the other alternatives. The main reasons are its popularity and the fact that many transcriptions are
available for it. Otherwise, some specialists would argue that some symbol combinations in this
alphabet, such as “ch” and “sh”(corresponding to the so-called “pedestals”) should be considered as
one single character each [10]. On the other hand, the combinations “in” and “iin” are also candidates
for representing letters, although, in some other cases, “i” could be a single character. This is another
problem that computational analyses could help to solve [36].

Figure 6. The correspondence among Voynich’s symbols and the associated letter in the EVA
transcription systems. Notice that this is merely an arbitrary codification without any relation to
the actual phonemes that the Voynich’s characters might represent.

This way, a transcription of the whole Voynich manuscript has been performed in such a way that
it can be used in computational analysis. These transcriptions are available in several sites, as discussed
by Zandbergen [10]. In particular, we used Takahashi’s transcription developed in 1999. Of course,
some pre-processing was required before applying the HMM algorithm because this file includes
some information about each line, including the folium number (recto or verso) and the number of
the line within each page of the manuscript. After removing this information, we were left with a
set of EVA characters separated by dots. These dots correspond to the spaces between words in the
original manuscript. The total number of characters (including spaces) we used for the simulation is
228,836. Convergence of the algorithm was also very fast, as in the case of the English text analyzed
in Section 3.1, and, when we used more than 50,000 characters, the results were stable and showed
no dependence on the total length of the sequence, T. This is a convincing argument in favor of the
consistency of the results.

We started with the same initial conditions as those given in Equations (11) and (12) for the
transition matrix and the distribution of the state t = 0. The probability matrix for the observation
states (the Voynich characters) was randomized in the usual way explained in Section 3.1. In this
particular example, we used the first 100,000 characters in the Voynich manuscript and 200 iteration
steps. The final transition matrix is similar to those of natural languages (because the off-diagonal
elements are larger than the diagonal ones):

A =

(
0.169 0.831

0.840 0.160

)
, (19)

and the distribution of initial states was given by:
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π =

(
0

1

)
. (20)

After performing the same randomization of initial conditions as we saw for the example of the
Quixote, we found an average transition matrix of the form:

A =

(
0.182(45) 0.818(45)

0.831(17) 0.169(17)

)
, (21)

which confirms that the result in Equation (19) is close to the asymptotic fixed point we were looking for.
We can also see that Equation (20) indicates that the first character of the manuscript is associated

with a consonant sound. The most interesting results are, however, those obtained with the observation
probability matrix, which clearly separate two kinds of characters to be associated with vowel and
consonant phonemes, as occurred in the case of the Quixote. In Figure 7, we show the probability of
obtaining each character when the hidden state is 1.
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Figure 7. The probability of observation of a given character in the Voynich manuscript for the hidden
state 1. The peaks correspond to the symbols: “a”, “c”, “e”, “i”, “o”, “s” and “y” of the EVA alphabet.
There is also a peak for the space among words.

The probabilities for hidden state 2 are given in Figure 8. We see that a set of very conspicuous
peaks were obtained in both cases, but there were fewer in the result shown in Figure 7, which
could mean that the symbols corresponding to those peaks are associated with vowel’s phonemes.
On the other hand, this correspondence is not as strong as in the case of the English text of Section
3.1 because there are symbols with noticeable probability that appear in both figures (in particular,
the EVA symbols “e”, “i”, “s” and “y”). Perhaps, the most simple explanation for the absence of a clear
separation among vowels and consonants in these four cases is that we are confronted with another
example of letters that can function as both vowels and consonants as in the case of “y” in English.
However, for the Voynich manuscript, we have four letters with this capacity and this is a peculiarity
whose meaning we cannot unravel for the moment. Another possibility is that the Voynich alphabet is
some kind of abjad but this hypothesis is not so clear because in abjads the letters that appear in the



Math. Comput. Appl. 2019, 24, 14 12 of 16

text are always a vowel or a consonant (although some vowels are left out). This could have an effect
in the transition matrix but it is not evident that it would produce an ambiguity in the classification of
those letters in the hidden states, one or two. Further research into HMM applied to languages with
abjad’s alphabets, such as Arabic, should be necessary to clarify this point.
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Figure 8. The same as Figure 7 but for the hidden state 2.

Nevertheless, the appearance of high peaks in Figure 7 also suggests the existence of vowel
symbols in the manuscript so this abjad would be impure. Bax also suggested in 2014 [15] that this is
the case after proposing a provisional decoding of some words in the manuscripts associated with
plants and a constellation. In the next section, we discuss this intriguing possibility.

4. Discussion

Although a lot of research effort has been devoted to understanding the Voynich manuscript,
we still lack a consensual opinion about the nature of the writing it contains. Early efforts by
Friedman, Tiltman, Currier and Bennett, among others [10,11] helped to elucidate some features
of the manuscript and exclude the hypothesis of a simple substitution cipher. The interest in the
application of mathematical and computational methods to the Voynich manuscript is maintained
nowadays, as shown by recent publications [32,37].

The main result of this paper is the evidence of the existence of two states associated with the
symbols in the manuscript that could correspond to consonants and vowels. This reaffirms to the
conclusions of Amancio et al. [32] and Montemurro et al. [37] of the existence of word co-occurrences
and keywords in the same proportion than natural languages.

The recent proof of the old age of the “vellum” by carbon-dating places this manuscript in the first
half of the XVth century and all other tests are very compatible with an origin in the Middle Ages [12,13].
Anyway, although a forgery by Voynich or other recent author is excluded, some authors support the
idea that this object was fabricated in the Middle Ages with a pecuniary intention by making it similar,
in appearance, to a real, but enciphered, text [16]. As said before, statistical measurements carried out
by Amancio et al. in 2013 [32] show that the Voynich manuscript is incompatible with shuffled texts
and, moreover, that certain keywords appear throughout the manuscript. These keywords organize
in patterns of semantic networks, as shown by Montemurro et al. [37]. These conclusions, and those
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of this paper, make the hypothesis of a fake more unlikely but a clever fake designed to simulate a
human language with the adequate transition among letters cannot completely be excluded.

Other authors, as most researchers in the past, think that the text is enciphered in some way.
Hauer and Kondrak assumed that the manuscript was written in some abjad’s alphabet using some
transposition of letters or anagramming [38]. These assumptions are very strong and their conclusions
of a relation to Hebrew have been widely dismissed.

In this paper, we use the conservative approach of applying the standard technique of HMM for
the linguistic analysis of the manuscript. We have shown that a division among vowels and consonant
phonemes is very clear in the resulting observation probability matrix but that some characters (such
as the EVA symbols “e”, “i”, “s” and “y”) could participate in the vowel and consonant natures,
either because they are semivowels or because there is an implicit vowelling in them as in impure
abjad’s alphabets. A positional dependence of the vowelling as in abugida’s alphabets cannot be
excluded. In abugida’s alphabets, some vowels are written but, sometimes, they are attached as part of
the consonant, which makes the analysis more difficult. Further research with HMM into languages
with these alphabets would be necessary to obtain a reliable conclusion.

In any case, we found some characters in the script that very possibly represent vowel’s phonemes:
“a”, “c”, “e”, “o” and “y” in the EVA notation (see Figure 6). There are also some exclusively consonant
phonemes, such as “d”, “h”, “k”, “l” or “t” in the EVA’s notation.

The idea of using HMM to analyze the Voynich manuscript has already been proposed by
other authors but their results have not been published officially in scientific journals. For example,
Zandbergen discussed his application of HMM to the manuscript on a webpage [36]. His
conclusions are similar to those found in this present paper. Another study was performed by
Reddy and Knight [39]. However, they indicated that their algorithm separates vowels and consonants
in an odd fashion because one of the states always corresponds to the last symbol in a letter. Anyway,
their explanations are cursory and they did not describe their algorithm in enough detail to allow for a
reproduction of their results. Much earlier, D’Imperio wrote a paper about the use of an algorithm
called PTAH at the National Security Agency [40]. Although we can infer from her discussion that the
algorithm is some kind of HMM and that the results obtained from a five-state model are compatible
with our results, it is difficult to compare her algorithm with the one discussed here because PTAH is
still classified. On the other hand, implementations with a higher-state HMM could provide useful
information if the linguistics provide some agreement about the possible translation of some words.

It also seems interesting that Prof. Bax in 2014 [15] identified some names of plants and the
constellation Taurus in the manuscript and that his associations with phonemes are similar to the
one discussed in this paper. In Figure 9, we show some of these associations for the words “Taurus”,
“Coriander” and “Juniper” (in Arabic).

Figure 9. Some words in the Voynich manuscript and the phonetics transcriptions proposed by Bax [15].

Although these associations are considered very preliminary, even by its author, the similarity
with our identification of vowels and consonants is striking. Thus, we can gain some confidence
that a serious scholarship effort could enhance these identifications and provide a sure path for
further research. In any case, we must stress that the identifications performed by Bax are not
generally accepted but, at least, they show that our mapping of vowels and consonants allows for
some meaningful words to appear.
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Although other possibilities might still be open, we have increasing support of the view that
the text in the manuscript is neither a hoax nor an intentional cipher but a genuine language written
in an unknown script. Notwithstanding this progress, we are still far from identifying the language
because it could even be a dead tongue, for which the script was devised. Further analysis including
more states could help if the decoding of the manuscript adds further evidence to these preliminary
conclusions. We hope that this work stimulates further research by expert linguists that could shed
additional light into this ancient enigma.

Supplementary Materials: The following are available online at http://www.mdpi.com/2297-8747/24/1/14/s1.
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