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Abstract: The development and generalization of Digital Volume Correlation (DVC) on X-ray
computed tomography data highlight the issue of long-term storage. The present paper proposes
a new model-free method for pruning experimental data related to DVC, while preserving the
ability to identify constitutive equations (i.e., closure equations in solid mechanics) reflecting strain
localizations. The size of the remaining sampled data can be user-defined, depending on the needs
concerning storage space. The proposed data pruning procedure is deeply linked to hyper-reduction
techniques. The DVC data of a resin-bonded sand tested in uniaxial compression is used as an
illustrating example. The relevance of the pruned data was tested afterwards for model calibration.
A Finite Element Model Updating (FEMU) technique coupled with an hybrid hyper-reduction method
aws used to successfully calibrate a constitutive model of the resin bonded sand with the pruned
data only.
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1. Introduction

With the development and the generalization of digital image correlation (DIC) (see Chu et al. [1])
or digital volume correlation (DVC) (see Bay et al. [2]) techniques on Computed Tomography (CT)
data, the volume of data acquired has drastically increased. This raises new challenges, such as data
storage, data mining or the development of relevant experiments-simulations dialog methods such as
model validation and model calibration.

In experimental mechanics, the access to full 3D fields such as displacement or strain fields is far
richer than 1D load–displacement curves. These data can drive finite element simulations for model
calibration. Although extremely convincing, the increasing resolution of the full-field measurement
tools, such as X-ray Computed Tomography, leads to an explosion of the volume of data to store.
The long term storage of CT datasets is nowadays an issue (see Ooijen et al. [3]).

This paper proposes a numerical method for pruning 3D dataset related to DVC when it becomes
necessary to free up storage capacity. Often, when new experimental results need to be saved, storage
memory must be released. The pruned data contain information similar to the original data, but with
less memory required. The proposed approach aims to prune experimental data while preserving the
ability to identify constitutive equations (i.e., closure equations in solid mechanics) reflecting strain
localizations. It is a mechanical based approach to prune DVC data. Outside a reduced experimental
domain (RED), the experimental data are deleted. Original experimental data are preserved solely in
the RED. We also propose a calibration procedure whose computational complexity is consistent with
the pruning of the experimental data.
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Compression of data is known to be a convenient approach to restore storage capacity. For instance,
MP3 files are a fairly common way to reduce the size of audio files for daily use (see Pan [4]). However,
a non-negligible loss of information is needed, but controlled. The MP3 compression roughly consists in
filtering certain components of the non-reduced audio file that are actually non-audible for most people.
In other words, the MP3 algorithm was made to prune the audio data that are not absolutely necessary.
Usually, the compression rate is around 12. In the same philosophy, there can be a way to massively
compress the experimental data taken from experiments with a controlled loss of information based on
an algorithm that detects the pertinent information. This has been proposed in [5] by using a sensitivity
analysis with respect to variations of calibration parameters. These parameters are the coefficients of
a given model that should reflect the experimental observations. The result is that the pruned data
are dedicated to a given model. In this paper, a model-free approach is proposed. It aims to make
possible various calibrations with different models after data pruning. Here, the relevant information
are local but situated in regions submitted to strain localization. The data submitted to the pruning
procedure are the outputs of a Digital Volume Correlation that reconstructs the displacement field
u(x, t) from observations at time instants (tj)j=1,...,Nt , over a spatial domain Ω, where x is a position
vector. The geometry of the experimental sample is approximated by a mesh and the determined
displacement is decomposed on finite element (FE) shape functions [6].

The proposed method can be linked to data pruning or data cleaning methods described in the
literature for machine learning [7]. The aim of these procedures are not to reduce data storage but to
improve the data quality by accurate outliers detection for instance [8]. In [9], a data pruning method
is employed to filter the noise in the dataset.

Using the FE approximation of the experimental fields paves the way to further simulations. In the
calibration procedure, the full-field measurements are used as inputs of an inverse problem that aims
to determine a given set of parameters µ = {µ1, . . . , µm}. These parameters are the coefficients of given
constitutive equations. Their values are unknown or not known precisely. The most straightforward
method is called Finite Element Model Updating (FEMU) (see Kavanagh and Clough [10] and
Kavanagh [11]). It is a rather common way to optimize a set of parameters taking into account
the experimental data and balance equations in mechanics. It consists in computing the discrepancy
between the FE approximation of the experimental fields and the FE simulations. Thus, an optimization
loop is done on µ where the FE method is used as a tool for assessing the relevance of the parameter set.
The objective function, or cost function, of the optimization can focus on the difference between the
computed and experimental displacement fields (FEMU-U), forces (FEMU-F, or force balance method),
or the strain fields (FEMU-ε) or a mix between all these sub-methods. A review of FEMU applications
can be found in [12]. The method is particularly suitable for:

• Non-isotropic materials (e.g., materials having mechanical properties that depend on their
orientation [13,14], such as the human skin [15]);

• Heterogeneous materials such as composites [16];
• Heterogeneous tests such as open-hole tests (e.g., [13,14]) or CT-samples [17];
• Special cases of local phenomena such as strain localization or necking (e.g., Forestier et al. [18],

Giton et al. [19]) or the illustrating case of the present paper;
• Multi-materials configurations (e.g., solder joints studied in [20] or heterogeneous material

identification done in [21]); and
• Determination of the boundary conditions [22].

One of the recent developments concerning FEMU is to couple this method with reduced order
models (ROMs) to cut down the computation time in the parameters optimization loop. An example of
such recent developments can be found in [23] where a method called FEMU-b is highlighted, or in [24].
The FEMU-b consists in determining an intermediate space of predominant empirical modes associated
to a reduction procedure, such as the Proper Orthogonal Decomposition (see Aubry et al. [25]) or the
Proper Generalized Decomposition (PGD) [26]. The discrepancy is computed between the experimental
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and simulated reduced variables, where the reduced variables are solutions of reduced equations.
In this paper, we show that the proposed data pruning method is consistent with a reduced order
modeling of the equations to be calibrated. A FEMU-b is introduced, so we take into account the lack
of experimental data due to the pruning procedure.

In [27], it has been shown that ROMs can be supplemented by a reduced integration domain
(RID), by following a hyper-reduction method. In this method, a RID is a subdomain of a body, where
the reduced equations are set up. In the proposed approach, we do not modify the cubature scheme
involved in mechanical equations, as proposed by Hernandez et al. [28], but we restrict the cubature
to a subdomain. This leads the way for data pruning methods that preserve calibration capabilities.
Here, the dimensionality reduction of experimental data enables the restriction of experimental data to
a RED. This RED is a subdomain of the specimen where the experimental data are sampled. It is not
necessarily a connected domain. The flowchart of the proposed approach to data pruning is shown
in Figure 1. After pruning, the data related to the domain occupied by a specimen, denoted by Ω,
are restricted to a RED denoted by ΩR. The way the model calibration is done, depends on the nature
of the data available in a storage system. If the data are not pruned, then a conventional calibration by
the FEMU method is possible. Otherwise, calibration by a FEMU-b method is recommended. In this
paper, the calibration capabilities after data pruning are assessed by using the FEMU with an hybrid
hyper-reduction method (H2ROM) [29]. Hence, the FEMU-b is not done on the complete domain but on
the RED determined by the data pruning. The result is a fast calibration procedure, with low memory
requirement and a validated data pruning protocol. Contrary to usual hyper-reduction methods,
the domain where the equations to be calibrated are setup is not generated by using simulation data.
It derives from the data pruning procedure applied to experimental data.

Figure 1. Pruning of experimental data related to DVC, via hyper-reduction. Calibration capabilities of
constitutive equations are preserved after data pruning. The experimental data related to the domain
occupied by a specimen, denoted by Ω, are restricted to a reduced experimental domain denoted
by ΩR. The way the model calibration is done, depends on the nature of the data available in the
storage system.

The remaining part of the paper is structured as follows. In Section 3, the proposed method for
data pruning is described. The DVC is recalled. A dimensionality reduction then hyper-reduction
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are performed to compute the pruned data. The pruning procedure is applied in Section 4 on a
resin-bonded sand tested in in situ uniaxial compression with X-ray tomography. In Section 5,
the calibration of an elastoplastic model enables validating the pruning protocol. Details on the
experimental data are available in the form of supplementary files. These data allow the proposed
data pruning to be reproduced.

2. Notations

Second-order tensors are denoted by a∼. Matrices are denoted by capital bold letters A and vectors
are denoted by bold lowercase characters a. The colon notation is used to denote the extraction of a
submatrix or a vector (at column i for example): a = A[:, i]. Sets of indices are denoted by calligraphic
characters A. The element of a matrix A at row i and column j is denoted Aij or Aα[i, j] when the
matrix notation Aα has a subscript. a is the restriction of a to the reduced experimental domain.

3. Data Pruning by Following an Hyper-Reduction Scheme

In the proposed approach, the experimental displacements observed on the domain occupied by
a specimen are restricted to the RED ΩR. The smaller is the extent of ΩR, the smaller is the memory
requirement to store the pruned data. Without any constraint, the best memory saving is obtained
by saving the parameters µ that best replicate the experimental data. In that situation, usual FEMU
methods are sufficient. Here, the following constraint is taken into consideration. The data pruning
should not prevent changes in the way constitutive equations are set up, as these equations may evolve
in the future. Knowledge in mechanics is evolving and so are models. Thus, after the data have been
pruned, the experimental data saved in the storage system must allow the calibration of constitutive
equations. To ensure consistency between the computational complexity of the calibration procedure
and the accuracy of the pruning data, we propose hyper-reduced equations for this calibration. In our
opinion, it does not make sense to perform complex simulations during such a calibration with a poor
representation of the experimental data.

3.1. Digital Volume Correlation

Let us consider a specimen occupying the domain Ω undergoing a certain mechanical test.
With image acquisition techniques, grayscale images are obtained in 3D. The Digital Volume Correlation
aims to determine the displacement field u at every position x in Ω at a given deformed state at time t.
f and g are the gray levels at the reference and deformed states. They are related by the equation:

g(x) = f (x + u(x, t)) (1)

The best displacement field is estimated via the minimization of the following residual:

φ2(u, t) =
∫

Ω
[u(x, t).∇ f (x) + f (x)− g(x)]2 dx (2)

where∇ f is the gradient of f . This is an ill-posed problem. To get a well-posed problem, the displacement
field can be restricted to a kinematic subspace. Here, the displacement field is assumed to be decomposed
over a set of vector functions ψj(x) that corresponds to the shape functions of a FE model defined on Ω.

u(x, t) =
Nd

∑
i=1

ai(t)ψi(x) (3)

where Nd is the number of degrees of freedom of the mesh, ai the ith nodal degree of freedom in the
FE model. a denotes the vector of degrees of freedom to be determined. With this restriction to the
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kinematic subspace, the function φ is now a quadratic form of the ai, and its minimization is a linear
system, set up for each observation of a deformed state:

Ma = h (4)

where the matrix M and the vector h are:

Mij =
∫

Ω
(ψi(x).∇ f (x))

(
ψj(x).∇ f (x)

)
dx (5)

hi =
∫

Ω
[g(x)− f (x)]ψi(x).∇ f (x)dx (6)

In the sequel, Nt observations of the specimen deformation at time instants tj, j = 1, . . . , Nt,
are considered. The DVC gives access to the final correlated displacement field u(x, tj) for each
observations, through the coefficient vector a(tj). From the displacement field, a strain field ε∼ is
extracted assuming small strains:

ε∼ =
1
2

(
∇∼ u +∇∼ uT

)
(7)

This strain is thus calculated at each Gauss point of the mesh used for the DVC. For pressure
dependent or plastic materials, it can be convenient to subdivide the strain field in its deviatoric part
and its hydrostatic part:

ε∼ = ε∼
s + ε∼

v, with ε∼
v = tr (ε∼)I∼ (8)

where I∼ is the unit tensor.
It is worth noting that the pruning procedure only focuses on the displacement and not on the

strain. It is considered that the strain can be computed in post-processing (thanks to Equation (7)) and
are not worth saving. The strain tensor is actually considered as temporary data used to compute a
reduced experimental domain.

3.2. Dimensionality Reduction

The first step of the pruning procedure consists in performing a dimensionality reduction of
the experimental data. It is based on singular value decomposition. This approach is similar to the
Principal Component Analysis (PCA). However, here, a reduced basis of empirical modes is obtained
without centering the data.

The experimental data from DVC are saved into two matrices, Qu and Qε defined as:

Qu[i, j] = ai(tj), i = 1, . . . , Nd, j = 1, . . . , Nt (9)

and

Qε[i, j] = εs
αβ(eγ , tj) (10)

Qε[i, j + Nt] = εv
αβ(eγ , tj) (11)

where eγ is the γth Gauss point, and:

i = β + 3(α− 1) + 9(γ− 1)

α = 1, . . ., 3, β = 1, . . ., 3, γ = 1, . . . , Ng

j = 1, . . . , Nt

with Ng being the number of integration points in the mesh. Qu is a Nd × Nt matrix and Qε is
a (9Ng) × (2Nt) matrix. For the sake of simplicity, we do not account for the symmetry of the
strain tensor.
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The first step of the pruning procedure consists in performing a first dimensionality reduction
of the DVC data. Only the reduced basis and coordinate are kept instead of the snapshot matrix Qu.
The procedure is also done on the snapshot matrix of the stain Qε but not in order to reduce storage
(as the stain data are not saved). The corresponding reduced basis is used as a temporary tool to
compute afterwards the reduced domain. The determination of the empirical modes is performed
thanks to a Singular-Value Decomposition (SVD):

Qu = VuSu(Wu)
T + Ru (12)

Qε = VεSε(Wε)
T + Rε (13)

where Vx ∈ RNd×Nx , with x = u or ε, is an empirical reduced basis for displacement or strain,
respectively, Nx ≤ rank(Qx), Sx = diag(σx1, . . . , σxNx ) ∈ RNx×Nx , σx1 ≥ σx2 ≥, . . . ,≥ σxNx and
Wx ∈ RNt×Nx . Both Vx and Wx are orthogonal. The residual Rx has a 2-norm such as:

‖Rx‖2 = σx Nx+1 < εtol σx1, x = u or ε (14)

where εtol is a numerical parameter (typically, 10−3). According to the Eckart–Young theorem,
the matrix Vx (Vx)T Qx is the best approximation of rank Nx for Qx by using the reduced basis Vx.

The relevance of the dimensionality reduction of the displacement data appears to be conditioned
by the difference between the number of time steps Nt and the order of the approximation Nu,
as Qu ∈ RNd×Nt and Vu ∈ RNd×Nu . In situ tests observed in X-ray CT tend to have few time steps
so the first dimensionality reduction may not be efficient. Moreover, due to the resolution of the
Computed Tomography, data have generally an important number of degrees of freedom. In other
words, the snapshot matrix Qu has a lot of lines (Nd) but few columns (Nt). The memory cost is mostly
due to the number of dof of the problem. That is why the proposed pruning protocol is based on a
hyper-reduction method in order to reduce significantly this number of dof.

3.3. Reduced Experimental Domain

The proposed pruning method has its roots in the hyper-reduction method [30]. We are not able
to prove that the proposed approach has a strong physical basis for pruning data according to an
appropriate metric. The proposed approach is heuristic, but it fulfills some mathematical properties.
A hyper-reduced order model is a set of FE equations restricted to a RID when seeking an approximate
solution of FE equations with a given reduced basis. In other words, this approach accounts for the
low rank of the reduced approximation to set up the reduced equations of a given FE model. Let us
denote by aFE ∈ RNd the solution of FE equations that aims to replicate the experimental vector a,
by using the same mesh. For a given reduced basis of rank NR V ∈ RNd×NR , the approximate reduced
solution of the FE equations is denoted by aR such that:

aR = V bR (15)

where bR ∈ RNR are the variables of the reduced order model. It turns out that the rank of the reduced
FE equations must be NR in order to find a unique solution bR. Since Nd is usually larger than NR,
few FE equations that preserve the rank of the reduced system exist. By following the hyper-reduction
method proposed in [30], this selection is achieved by considering balance equations set up on a RID.
In former works on hyper-reduction, the RID were generated by using simulation data.

Here, the RED is similar to a RID, but its construction uses solely experimental data, that is to say
that the reduced basis used to perform this row selection comes from Equations (12) and (13). That is
why the pruning method is called a model-free approach. One of the advantages of such method
is that the data pruning does not have to be performed again if the constitutive model is changed.
The RED is denoted by ΩR ⊂ Ω.
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In the hyper-reduction method, the RID is generated by the assembly of elements containing
interpolation points related to various reduced bases. These reduced bases are usually extracted from
simulation data generated by a given mechanical model for various parameter variations [30]. Here,
the RED construction is based exclusively on the reduced bases related to Qu and Qε. The RED is the
union of several subdomains: Ωu and Ωε generated from the reduced matrices Vu and Vε, a domain
denoted by Ω+ corresponding to a set of neighboring elements to the previous subdomains, and a
zone of interest (ZOI) denoted by Ωuser. In the sequel, Ωuser is set up to evaluate the force applied by
the experimental setup on the specimen.

Ωu is designed as if we would like to reconstruct experimental displacements outside Ωu by using
Vu and given experimental displacement in Ωu. On a restricted subdomain Ωu, we only have access to
a restricted set of nodal displacements. The set of their indices is denoted by Pu. The set of remaining
displacement indices is denoted byHu such that a[Hu] is the vector to be reconstructed by knowing
a[Pu]. Various approaches have been proposed in the literature to perform this kind of reconstruction.
They are related to data completion [31] or data imputation [32] for instance. Here, we have the
opportunity to choose the set Pu, because the reconstruction issue is only formal. By using the DEIM
method proposed in [33], we can obtain the set Pu such that Vu[Pu, :] is a square and invertible matrix.
Then, in that situation, the number of selected degrees of freedom in Pu is the number of empirical
modes in Vu. However, in the present application, this set could be too small to get robust calibrations
after data pruning. Then, we propose a modification of the DEIM algorithm in order to multiply the
number of selected indices by a given factor k. We name this algorithm k-Selection with empIrical
Modes (k-SWIM). The modified algorithm is shown in Algorithm 1. When k = 1, this algorithm is
exactly the same as the usual DEIM algorithm in [34]. The issue here is not to replicate experimental
data via an interpolation scheme, but via calibrated FE simulations (by using k > 1). In the sequel,
the set of selected indices by using k-SWIM is denoted by P (k)

u . The same reasoning is applied to the
reconstruction of the experimental strain tensors. The k-SWIM algorithm applied to Vε defines P (k)

ε .
For given sets of indices P (k)

u and P (k)
ε , the RED is:

ΩR := Ωu ∪Ωε ∪Ω+ ∪Ωuser, Ωu := ∪
j∈P (k)

u
supp(ψj) Ωε := ∪

j∈P (k)
ε

supp(ψε
j). (16)

where supp is the support of the function and ψε
j are the shape functions related to the strain tensor in

the FE model used to compute a.

Algorithm 1: k-SWIM Selection of Variables with EmpIrical Modes

Input : integer k, linearly independent empirical modes vl ∈ Rd, l = 1, . . . , M
Output : variables index set P (k)

1 set P0 := ∅, j = 0, U1 = [ ] ; // initialization
2 for l = 1, . . . , M do
3 rl ← vl −Ul ( (Ul [Pj, :])T Ul [Pj, :])−1 (Ul [Pj, :])T vl [Pj] ; // residual vector
4 for n = 1, . . . , k do
5 j← j + 1 ; // add the k largest value of the residual
6 ij ← arg maxi∈{1,...,d}\Pj−1

|rI [i]| ; // index selection

7 rl [ij]← 0 ; // variable already selected
8 Pj ← Pj−1 ∪ {ij} ; // extend index set

9 Ul+1 ← [v1, . . . , vl ] ; // truncated reduced matrix

10 set P (k) := Pj.

Algorithm 1 is properly defined if in Line 3 the matrix (Ul [Pj, :])T Ul [Pj, :] is invertible, for l > 1
with j = (l − 1) k, or equivalently if the following property is fulfilled.
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Theorem 1. Ul+1[Pj+k, :]T Ul+1[Pj+k, :] is invertible for l > 0 and j = (l − 1) k.

Proof. Let us assume that Ul [Pj, :]T Ul [Pj, :] is invertible for l > 1 and j = (l− 1) k. Then, we compute
rl . (vl)

M
l=1 is a set of linearly independent vectors. Thus, maxi∈{1,...,d} |rl [i]| > 0. Let us introduce

the first additional index, j? = (l − 1) k + 1, Pj? = Pj ∪ {arg maxi∈{1,...,d} |rl [i]|} and the following
residual vector:

r?l = vl [Pj? ]−Ul [Pj? , :] ( (Ul [Pj, :])T Ul [Pj, :])−1 (Ul [Pj, :])T vl [Pj]

Then, r?l = rl [Pj? ] and ‖r?l ‖2 > |rl [j?]| > 0. Thus, Ul+1[Pj? , :] is full column rank. Since Pj? ⊂
Pj+k, then Ul+1[Pj+k, :] is full column rank and Ul+1[Pj+k, :]T Ul+1[Pj+k, :] is invertible. In addition,
U2[Pk, :] = v1[Pk] is a non-zero vector. Then, U2[Pk, :]T U2[Pk, :] > 0 is invertible.

Another interesting property is the possible cancellation of the data pruning by using a large
value of the parameter k in the input of Algorithm 1. The following property holds.

Theorem 2. If k = Nd and if |Vu[i, 1]| > 0 ∀i = 1, . . . , Nd, then ΩR = Ω. The RED covers the full domain
and all the data are preserved.

Proof. By following Algorithm 1, for l = 1 with k = Nd and Vu as inputs (in the algorithm, d = Nd),
we obtain ql = Vu[:, 1]. If |Vu[i, 1]| > 0 ∀i = 1, . . . , Nd, then Pk = {1, . . . , Nd}. Hence, P (Nd)

u =

{1, . . . , Nd} and Ωu = Ω and ΩR = Ω.

The second theorem is quite restrictive. In practice, large values of k, with k < Nd, enable
preserving all the data. The value of k has to be chosen according to the size of the memory that we
would like the free up.

3.4. Experimental Data Restricted to the RED

For a given RED, ΩR, a set of selected degrees of freedom indices can be defined as:

F =

{
i ∈ {1, . . . , Nd}|

∫

Ω\ΩR

ψ2
i (x)dx = 0

}
(17)

The degrees of freedom in F are not connected to elements outside ΩR. We denote by I the
degrees of freedom on the interface between ΩR and Ω\ΩR:

I =

{
i ∈ {1, . . . , Nd}| i /∈ F ,

∫

ΩR

ψ2
i (x)dx > 0

}
(18)

The union of these two set is denoted by F :

F = I ∪ F (19)

It contains all the indices of the degree of freedom in ΩR.
We denote by Qu ∈ Rcard(F )×Nt the experimental data restricted to the RED, such that:

Qu = Qu[F , :] (20)

An additional SVD is performed on these experimental data such that:

Qu = VuS′u(W
′
u)

T + R′u (21)

bu(tj) = (Vu)
Ta(tj)[F ], j = 1, . . . , Nt (22)
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When the RED is available, the experimental data are restricted to ΩR and the data to be stored are:

1. The pruned reduced basis Vu, and the consecutive reduced coordinates (bu(tj))j=1,...,Nt .

2. The full mesh of Ω and the mesh of ΩR (F and I).
3. The load history applied to the specimen on the subdomain Ωuser.
4. Usual metadata related to the experiment (temperature, material parameters, etc.).

It is also advised to store the statistical distribution of a value of interest in the full domain
and in the reduced domain. These data can be saved as histograms, for example. In this present
paper, the shear strain distribution was saved, as this variable is extremely interesting in the case of
strain localization. The additional memory cost is actually negligible as it consists in storing a few
hundred floats.

The data concerning the strains are not stored as they can be computed with the displacement
data thanks to Equation (7).

Generally, in-situ experiments observed in X-ray CT do not have numerous time steps, hence the
above dimensionality reduction via SVD does not reduce drastically the size of the data to store. This is
illustrated with the following example in Section 4. The hyper-reduction of the domain is actually the
predominant step for data pruning.

3.5. Reduced Mechanical Equations Set Up on the Reduced Experimental Domain

Let us denote by rFE the residual of the FE equations that have to be calibrated such that:

rFE(aFE) = 0 (23)

For the sake of simplicity, we do not introduce the parameters µ in the FE residual. Since the
experimental data are restricted to the RED by following a hyper-reduced setting, the mechanical
equations submitted to the calibration procedure are also hyper-reduced. We denote by rFE the partial
computation of the FE residual restricted to the RED. rFE is the FE residual computed solely on a mesh
of the RED. This mesh is termed reduced mesh. To account for the reduced mesh, a renumbering of
the set F , denoted by F ?, is defined such that:

F = F [F ?] (24)

where F ? is the set of degrees of freedom related to the reduced mesh, that corresponds to F in the
full mesh. They are located in blue squares in Figure 2b. Similarly, we define I? such that:

I = F [I?] (25)

where I? is the set of degrees of freedom related to the reduced mesh that belongs to the interface
between the RED and the remaining part of the full domain. The various sets of degrees of freedom
are shown in Figure 2.

We assume that:
rFE(a′[F])[F ?] = rFE(a′)[F ] ∀a′ ∈ RNd (26)

This assumption means that the FE residuals at lines selected by F , for any prediction a′, can be
computed on the reduced mesh, where the residuals depend only on degrees of freedom in F. It is
relevant in mechanical problems without contact condition, in the framework of first strain-gradient
theory. We refer the reader to [35] for the extension of the hyper-reduction method to contact problems.
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Figure 2. Schematic view of the reduced experimental domain, with linear triangular elements. In both
figures, ΩR is red. On the left, there is the mesh of Ω. On the right, there is the reduced mesh (i.e.,
the mesh of ΩR only). In (a), the nodes having their degrees of freedom in I are on the green line,
the nodes having their degrees of freedom in F are in blue squares, and the grey nodes have their
degrees of freedom inR. In (b), the green line, the blue squares and the grey nodes are related to I?,
F ? andR?, respectively.

Both simulation data and experimental data are incorporated in a reduced basis dedicated to the
calibration procedure, after the pruning of the experimental data. In the sequel, this reduced basis is
extracted from data restrained to the RED, by using the SVD. Let us denote by X all the data available
on the full mesh. Then, after the restriction of data to the reduced mesh, the empirical reduced basis is
related to X = X[F , :]:

X = V S WT
+ R, V ∈ Rcard(F )×NR (27)

with ‖R‖ < εtol max(diag(S)). V is not a submatrix of a given V. The way X contains both simulation
data and experimental data is user dependent. In the proposed example, we are using a derivative
extended proper orthogonal decomposition (see Schmidt et al. [36]) as explained in Section 5.2.

When the reduced basis contains empirical modes and few FE shape functions located in ΩR,
the method is termed hybrid hyper-reduction [29,35]. The hybrid FE/reduced approximation is
obtained by adding few columns of the identity matrix to V. In this hybrid approximation, we only
add FE degrees of freedom that are not connected to the degrees of freedom in I?. The resulting set of
degrees of freedom is denoted byR? (see Figure 2). In [29] it has been shown that this permits to have
strong coupling in the resulting hybrid approximation. Let us define the subdomain connected to I :

ΩI = ∪i∈Isupp(ψi) ∩ΩR (28)

Then, we get:

R =

{
i ∈ F|

∫

ΩI

ψ2
i (x)dx = 0

}
(29)

andR? is such that:
R = F [R?] (30)

The hybrid reduced basis is denoted by VH . It reads, by using the Kronecker delta (δji):

VH
[:, 1 : NR] = V, VH

[i, NR + k] = δR?
k i k = 1, . . . , card(R) (31)
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The equations of the hybrid hyper-reduced order model (H2ROM) [35] reads: find bH ∈
RNR+card(R) such that,

(VH
[F ?, :])T rFE(VH bH)[F ?] = 0 (32)

If the reduced equations do not have a full rank, it is suggested to remove the columns of V,
in VH , that cause the rank deficiency. When using the SVD to obtain V from data, the last columns
have the smallest contribution in the data approximation. These columns must be removed first in
case of rank deficiency.

Theorem 3. When ΩR = Ω, then the hybrid hyper-reduced equations are the original FE equations on the
full mesh.

Proof. If ΩR = Ω, then I = ∅, F ? = R? = {1, . . . , Nd} and the reduced mesh is the original mesh.
In addition, all the empirical modes have to be removed from VH to get a full rank system of equations.
Hence, VH is the identity matrix. Thus, the hybrid hyper-reduced equation are exactly the original FE
equations. There is no complexity reduction.

Theorem 4. If εtol is set to zero; if both hybrid hyper-reduced equations and FE equations have unique solutions;
if the FE solution aFE belongs to the subspace spanned by the data X; and if there exists a matrix G such that
‖aFE − X G aFE[F ]‖ = 0 (i.e., the FE solution can be reconstructed by using the FE solution restricted to the
RED), with G = W S−1 VT , then bH [1 : NR] = VT aFE[F ] and bH [1 + NR : card(R) + NR] = 0T

R, where
0R is a vector of zero in Rcard(R). This means that the hyper-reduced solution is exact and the FE correction in
the hybrid approximation is null.

Proof. Let us introduce the matrix V̂ = X W S−1. Then,

V̂[F , :] = X W S−1
= V (33)

If ‖aFE − X G aFE[F ]‖ = 0 with G = W S−1 VT , so ‖aFE − V̂ VT aFE[F ]‖ = 0, then ‖aFE[F ]−
V b̂FE‖ = 0 with b̂FE = VT aFE[F ] and [(b̂FE)T , 0T

R]
T fulfills the following equation:

rFE(VH
[(b̂FE)T , 0T

R]
T)[F ?, :] = 0 (34)

Then, the balance equations of the hybrid hyper-reduced equations are fulfilled by [(b̂FE)T , 0T
R]

T .
If both hybrid hyper-reduced equations and FE equations have unique solutions, then the solution of
the hybrid hyper-reduced equations is bH = [(b̂FE)T , 0T

R]
T .

4. Illustrating Example: Polyurethane Bonded Sand Studied with X-ray CT

4.1. Material and Test Description

The material studied here is a polyurethane bonded sand used in casting foundry to mold the
internal cavities of foundry parts. The resin makes bonds between grains and improves drastically
the mechanical properties of the cores (stiffness, maximum yield stress, traction strength, etc.).
The material has been extensively studied with standards laboratory tests, focusing on macroscopic
displacement-force curves. This casting sand was experimentally investigated by Jomaa et al. [37],
Bargaoui et al. [38]. These macroscopic data are completed with an in-situ uniaxial compression test
studied in X-ray CT on an as-received sample. According to Bargaoui et al. [38], the process used to
make the cores (cold box process) guarantees the homogeneity of the material. In the sequel, the resin
bonded sand is supposed homogeneous.
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The sample is a parallelepiped (20.0 × 22.4 × 22.5 mm3). The load was increased (with a constant
displacement rate of 0.5 mm/min) and the displacement was stopped at several levels, noted Pi.
During these stopped displacement periods, the sample was scanned with a tension beam of 80 kV
and an intensity of 280 µA. P0 corresponds to the initial state, before the appliance of the load. Then,
seven tomography scans were performed at increasing compressed states. At P7, the sample is broken.
The bottom and top extremities were excluded from the images because of the artifacts induced by
the plates. A grayscale image of the tested cemented sand is displayed in Figure 3. During the test,
the reaction is measured at the top of the sample. It is plotted in Figure 4. The first six steps (non-broken
sample) are situated before the peak of the loading curve.

Figure 3. View of the sand.

2 4 6
·10−2

500

1,000

1,500

u3 (mm)

F (N)

Figure 4. Measured top reaction.

4.2. DVC and Error Estimation

The displacement fields at these different stages were calculated using a 3D-digital image
correlation (DVC) software named Ufreckles, developed by LaMCos (see [6]). A finite element
continuum method is used to calculate the displacement field with a non-linear least square error
minimization method. The chosen element size is near 0.5 mm. The final region of interest is
20.0 × 22.4 × 15.8 mm3. The top of the sample has been excluded. The DVC is performed on a
parallelipedic mesh composed of around 470,000 degrees of freedom.

The DVC showed that the pre-peak displacement field is extremely non-homogeneous, as shown in
Figure 5. The test showed a complex and rich behavior of the material tested with a non-homogeneous
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displacement field and pre-peak strain bifurcations. The experimental data are very suited for testing the
ability of a given model to predict such phenomena.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Figure 5. Magnitude of the experimental displacements at the pre-peak steps (deformed × 75).

4.3. Building the Reduced Experimental Basis

For a precise data pruning procedure, the experimental displacement and strain snapshot matrices
are computed. The attention is drawn to the fact that the studied test does not have many time steps
(Nt = 7) and the experimental mesh is not that big. The DVC matrices Qu and Qε are, respectively,
474,405 × 7 and 1,774,080 × 14. If the truncated SVD is applied on these matrices, only six modes are
extracted for the displacement and 13 for strain. As the number of time steps is rather small, the use of
empirical modes does not reduce the size of the experimental data, as stated before.

In other words, the experimental data are not suited for the dimensionality reduction. This method
is efficient on matrices with numerous columns and rather few lines, whereas tomographic data tend
to have the exact opposite: few columns (time steps) and a lot of lines (degrees of freedom).

4.4. RED after DVC on the Specimen

During the test, the loading curve was measured at the top of the sample. To compare computed
and measured reactions for model assessment, the elements at the top of the mesh are considered as a
ZOI. In the remaining, Ω+ is one layer of elements around Ωu ∪Ωε ∪Ωuser.

The RED was determined varying the number k of selected lines in the k-SWIM Algorithm.
Its influence is assessed in Figure 6. For k = 1, the standard DEIM algorithm selects very few degrees
of freedom. Most of the RED is actually the ZOI. This is due to the relatively low number of modes
contained in the reduced basis (only 6). This apparent issue can be overcome by selecting more lines
during the k-SWIM algorithm. When increasing k, the number of degrees of freedom linearly rises.
The attention is drawn on the fact that the resultant RED for k = 25 or k = 50 are discontinuous, as is
usually the case when using hyper-reduction methods. The newly selected zones are situated in the
sheared regions. For the sake of reproducibility, the binary files related to Vu, bu and Pu are available
as supplementary files.

(a) k = 1 (b) k = 25 (c) k = 50
card (F )= 47,382

(10% of Nd)
card (F )= 73,911

(15.6% of Nd)
card (F )= 98,064

(20.5% of Nd)

Figure 6. Influence of k in the k-SWIM algorithm.

The final RED was arbitrarily selected with k = 25 (around 15.6% of the total domain Ω). It is
displayed in Figure 6b. The reduced domain construction is analyzed in Figure 7 where the subdomains
Ωu, Ωε, Ωuser and ΩI are displayed.
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(a) Ωu (b) Ωε (c) Ωuser (d) Ω+

Figure 7. Different subdomains for the selected RED for k = 25.

A summary of the different matrix sizes at each step is displayed in Table 1. As stated before,
it is clear that for this kind of data, the PCA analysis does not reduce significantly the memory
usage. The hyper-reduction scheme used allowed saving up to 85% of the memory space for the
illustrating example.

Table 1. Size of the matrix stored at each step of the data pruning.

Experimental Data Empirical Modes Pruned Data

Qu 474,405 × 7 Vu 474,405 × 6 Vu 73,911 × 6

bu 6 × 7 bu 6 × 7

Memory Saved 15% 85%

5. Assessing the Relevance of the Pruned Data via Finite Element Model Updating-H2ROM

In this section, the relevance of the pruned data for further usage is discussed. The experimental
data extracted from computed tomography can have various purposes. This paper focuses on its
use for model calibration, and is illustrated with the in-situ compressive test of a resin bonded sand
presented in the previous section. The main aim of this part is to prove that the RED computed thanks
to a model free procedure is relevant to assess or calibrate an arbitrary constitutive model.

The model used for the illustrating example is a constitutive elastoplastic model with m unknown
parameters to calibrate. The procedure employed is a Finite Element Model Updating (FEMU)
technique, coupled with an hybrid hyper-reduction method for the solution of approximate balance
equations. The use of such method is straightforward as the input data are actually hyper-reduced.
This approach is termed FEMU-H2ROM.

The FEMU-H2ROM method is resumed in the flowchart in Figure 8. The FEMU-H2ROM aims
to find the best parameter µ∗ that replicate the experimental data available on the RED by using
hyper-reduced equations. During the optimization procedure, the parameters are updated via hybrid
hyper-reduced simulations. After few adaptation steps, the optimality of the parameter is checked by
using a full FE simulation. If required, the reduced basis involved in the hyper-reduced simulation
are updated.

5.1. Constitutive Model MC-CASM

5.1.1. Presentation

The resin-bonded sand behavior is modeled with a relatively simple constitutive model based
on the Cemented Clay and Sand Model (C-CASM). It consists in the extension of the Clay And Sand
Model developed by Yu [39] for unbonded sand and clay to bonded geomaterials within the framework
developed by Gens and Nova [40]. The C-CASM has been extensively described in [41]. The Modified
Cemented Clay And Sand Model (MC-CASM) presented here has some modifications of the C-CASM:

• Addition of a damage law whose equation is phenomenological (based on cycled compressive
tests).
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• The hardening law of the bonding parameter b is different: A first hardening precedes the
softening. It is supposed here that the polyurethane resin goes through a first hardening before
breaking.

It is supposed here that the yield function was previously calibrated with standard laboratory
tests. The calibration concerns the parameters involved in the different damage and hardening laws
that can be more difficult to assess with macroscopic loading curves. In the continuation of the paper,
the equivalent von Mises stress is denoted q and the mean pressure p. The MC-CASM equations are
summarized hereafter.

Figure 8. Flowchart of the FEMU-H2ROM.

5.1.2. Yield Function and Plastic Flow

The yield function, f , of the constitutive model is defined by:

f (σ; pc, b) =
(

q
M(p + pt)

)n
+

1
ln r

ln
(

p + pt

pc(1 + b) + pt

)
(35)

where M, r, and n are constant parameters that control the shape of the yield function. pc is the
preconsolidation pressure, that is to say the maximum yield pressure during an isotropic compressive
test (see Roscoe et al. [42]). b is the bounding parameter modeling the amplification of the yield surface
due to intergranular bonding. pt is the traction resistance of the soil defined by Gens and Nova [40] as:

pt = αbpc (36)
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where α is a constant parameter modeling the influence of the binder on the traction resistance.
The yield function is supposed to be calibrated. This means that M, r, n, α and the initial values of
pc and b are known. The yield surfaces of the unbonded (blue) and bonded sand (red) are plotted in
Figure 9.

q

ppt pc(1+b)pc

f(b = 0) f(b > 0)

Figure 9. Yield surfaces in the (p, q) plane.

5.1.3. Hardening and Damage Laws

The model has two hardening variables: the preconsolidation pressure pc and the bonding
parameter b. The evolution of pc is directly controlled by the incremental plastic volumetric strain ε̇

p
v,

whereas b relies on a plastic strain damage measure h:

ṗc

pc
= µ1 ε̇

p
v (37)

ḃ = (−be−h + µ6µ7e−µ7h)ḣ (38)

The incremental value of h is defined as a weighting of the effects of the incremental plastic shear
strain and the incremental plastic volumetric strain:

ḣ = µ2|ε̇p
s |+ µ3|ε̇p

v| (39)

The model also includes a damage law whose formulation is purely phenomenological:

E = E0(1− D) (40)

D = µ4hµ5 (41)

The hardening and damage laws provide m = 7 unknown parameters to calibrate.

5.2. Calibration Protocol by Using the Hybrid Hyper-Reduction Method

The FEMU-H2ROM is preceded by an off-line phase similar to an unsupervised machine learning
phase. It consists in building the empirical reduced basis V that is mandatory to set up the hybrid
hyper-reduced equations. It is similar to the first step of the data pruning method: a snapshot matrix is
constructed based on simulations and experimental results (and not on experiments only).

The starting point of the off-line phase is to assess the parameter sensibilities of the model starting
from an initial guess µ0 = {µ0

1, . . . , µ0
m}. This guess can come from a previous calibration, or a

calibration done using macroscopic force–displacement curves of standard tests without predicting
strain localization.

The off-line calculations are performed on the full domain Ω and thus can be time consuming.
The boundary conditions are the experimental displacements taken from the computed tomography
imposed at the top and the bottom of the sample. The displacement field is not imposed inside the
sample because one of the aims of the model is to correctly capture the strain localization appearing
inside the sample during the test, under the constraint of balance equations. Imposing the displacement
field inside the specimen gives less balance equation to fulfill. m calculations are made on Ω. Attention
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is drawn to the fact that these calculations can be done in parallel. Only the displacement snapshot
matrices are needed. A total of m + 1 independent calculations are performed:

• One initial calculation where µ = µ0, which gives QFE
u (µ0);

• m parameters sensibility calculations where µ = µi = {µ0
1, . . . , µ0

i + δµ0
i , . . . , µ0

m}, which give
QFE

u (µi) for i = 1, . . . , m

Once done, these calculations are restricted to the reduced experimental domain ΩR. They are
denoted QFE

u (µi) for i = 0, . . . , m. All these results have to be aggregated in one snapshot matrix X
before the computation of the empirical modes V. Instead of concatenating the m + 1 matrices into one,
a DEPOD method is used (see Schmidt et al. [36]). This approach has been validated in previous works
on model calibration with hyper-reduction (see Ryckelynck and Missoum Benziane [43]). This allows
capturing the effects of each parameter variation.

X = [αVubu, QFE
u (µ0),

‖QFE
u (µ0)‖F

2 ‖QFE
u (µ1)−QFE

u (µ0)‖F

(QFE
u (µ1)−QFE

u (µ0)), . . . ,

‖QFE
u (µ0)‖F

2 ‖QFE
u (µm)−QFE

u (µ0)‖F

(QFE
u (µm)−QFE

u (µ0))] (42)

where ‖ · ‖F is the Frobenius norm. The first term αVubu corresponds to the pruned experimental
data. It is weighted by a custom parameter α that enables giving more impact to the experimental
fluctuations in the empirical modes. The finite element methods tends to smooth these fluctuations,
thus provoking a certain loss of information.

Empirical modes depending on the factor α are displayed in Figure 10. For α = 0, that is to
say without experimental data in the bulk, the empirical modes have strong fluctuations only at
the top and the bottom of the specimen, where the experimental boundary conditions are imposed.
This can be explained by the natural smoothing that ensures the finite element method with rather
elliptic equations. Increasing the importance of the experimental data tends to naturally perturb the
displacement field inside the sample. Even for strongly perturbed modes (α = 10), the last empirical
mode is roughly smooth: this is due to the POD algorithm that filters the data. In the sequel, we choose
α = 1. The experimental data are as important as simulation data related to FE balance equations.

α = 0

α = 1

α = 10

First mode Second mode Third mode Last mode

Figure 10. Magnitude of the displacement (
√

u2
1 + u2

2 + u2
3) for each DEPOD mode depending on α.

Once V is available, the hybrid reduced basis VH can be defined. Then, the experimental reduced
coordinates are projected on the empirical reduced basis to be compared during the optimization loop:

bH
u = (VH

)T Vu bu (43)
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For the proposed example, there is a fast decay of the singular value (see Figure 11 where εPOD is
set to 10−4). When this decay is not sufficient to provide a small number of empirical modes, we refer
the reader to [44–46] to cluster the data in order to divide the time interval and construct local reduced
basis in time.

5 10 15 20 25

−6

−4

−2

Mode

log
(

λ(X)

λmax(X)

)

Figure 11. Singular values of X verifying λ(X) > εPODλmax(X).

5.3. Discussion on Dirichlet Boundary Conditions

After the data pruning, experimental data are available in all ΩR. When displacements are
constrained to follow the experimental data, we loose FE balance equations. The following theorem
helps to discuss the Dirichlet boundary conditions.

Theorem 5. If α > 0, εtol = 0; if the experimental data Qu = Vu bu fulfill the FE equations on ΩR with the
following additional Dirichlet boundary conditions:

aFE(tj, µ)[I ] = Qu[I∗, j]; (44)

and if both hybrid hyper-reduced equations and FE equations on ΩR are unique, then the solution of the
hybrid hyper-reduced equation is the exact projection of the experimental data on the empirical reduced basis
bH(µ) = [(VT Qu)

T , 0T
R]

T , with ‖Qu −V VT Qu‖ = 0.

Proof. If the solution of the FE equations in ΩR is unique with Dirichlet boundary conditions on I∗
equal to aFE(tj, µ)[I ], then this solution is aFE(tj, µ)[F ]. If Qu fulfills the FE equations on ΩR, with the
additional Dirichlet boundary conditions, then:

aFE(tj, µ)[F ] = Qu[:, j] j = 1, . . . , M

and
rFE(Qu[:, j])[F ?, :] = 0 j = 1, . . . , M

If α > 0 and εtol = 0, then

aFE(tj, µ)[F ] = V bFE(tj, µ) j = 1, . . . , M,

with
bFE(tj, µ) = VT Qu[:, j] = VT Vu bu(tj) j = 1, . . . , M

Then,
rFE(VH bH(tj, µ))[F ?, :] = 0 j = 1, . . . , M
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with bH(tj, µ) = [(bFE(tj, µ))T , 0T
R]

T . Thus, bH(tj, µ) is the unique solution of the hybrid
hyper-reduced equations, and the exact projection of the restrained FE solution.

The last theorem does not imply that imposing aFE(tj, µ)[I ] = Qu[I∗, j] as a boundary condition
to degrees of freedom in I∗ is the best way to fulfill FE balance equations on the full mesh. In fact,
with the additional boundary conditions on I∗, the maximum of available FE equations is card(F ?).
Theorem 4 means that if the empirical reduced basis is exact, then all the Nd FE balance equations are
fulfilled in Ω. In a sense, in the proposed calibration protocol, we better trust in FE balance equations
than in experimental data. Accurate FE balance equations can be obtained by a convenient mesh of Ω,
although noise is always present in experimental data.

5.4. Parameters Updating

In the optimization loop (Figure 8), a given set of parameters µ is assessed. The H2ROM
calculations provide the reduced coordinates associated with the empirical basis previously determined
on the RED denoted bH(µ). The top reaction FFE(µ) is also calculated as the average axial stress in
the ZOI.

In the example, the cost function that must be minimized, evaluates two scales of error:
the microscale error between experimental and computed reduced coordinates and the macroscale
error between the measured and computed top reactions. These error functions are, respectively,
denoted χ2

u(µ) and χ2
F(µ).

The microscale error is defined as:

χ2
u(µ) = (bH(µ)− (VH

)T Vu bu)
T(bH(µ)− (VH

)T Vu bu) (45)

The choice of the norm is user-dependent. The inverse covariance matrix of the displacement is
the best norm for a Gaussian noise according to [47,48] for a Bayesian framework. However, in this
present study, to keep the treated problem rather simple, a 2-norm has been chosen. The macroscale
error is defined as:

χ2
F(µ) = ‖FFE(µ)− F‖2

∂uΩ (46)

Here, ∂uΩ is the top surface of the ZOI, where the experimental load was measured and where
the experimental displacements are imposed as Dirichlet boundary conditions. The experimental
load measurements are supposed uncorrelated and their variance is denoted by σ2

F. In a Bayesian
framework, for a Gaussian noise corrupting the load measurements [23], the previous equation can be
written as:

χ2
F(µ) =

1
Ntσ2

F
(FFE(µ)− F)T(FFE(µ)− F) (47)

For the the optimization loop, the final objective function is a weighted sum of the two previous
sub-objective functions:

χ2(µ) = cuχ2
u(µ) + cFχ2

F(µ) (48)

where cu and cF are the weights. They can be chosen to balance the two cost functions or to
privilege one scale to another. In the illustrating example, the cost function is balanced. A classical
Levenberg–Marquardt algorithm is employed for the minimization of the error function and the update
of the parameters vector µ.

5.5. Model Calibration and FEM Validation

The optimization loop took 53 iterations. The speed ratio between FEM calculations and H2ROM
predictions is around 70. Moreover, the H2ROM predictions only needed around 3% of the FEM
calculation memory cost. The H2ROM predictions converge way more easily than the FEM calculations.
The problem simulated in the optimization loop is a displacement imposed problem. The use of the
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reduced basis to predict the displacement field facilitates drastically the convergence. That explains
also the important speed-up time that does not come only from the reduction of the integration domain.

Figure 12 displays the experimental and the computed top reactions (initial and optimized).
At the end of the optimization loop, it is mandatory to assess the relevance of the H2ROM prediction.
The FEMU-H2ROM is dependent on the initial guess µ0. This input determines the relevance of the
reduced basis of the model after the parameters sensibility study and the DEPOD analysis. When
updating the model, the parameter set may be too different from the initial guess. As a consequence,
the empirical reduced basis VH may not be accurate and the H2ROM predictions will not be admissible.
That is to say that the discrepancy between hyper reduced and Finite Element calculations may not
be negligible. That is why the optimized parameters set µ∗ must be validated with FEM calculations
on the full domain Ω. It is worth noting that, if the experimental data are included in the DEPOD,
the final H2ROM prediction should be close to the experiments.

1 2 3 4 5 6
·10−2

500

1,000

1,500

u3 (mm)

F(N)

Experiment
µ0

µ∗

FEM verification

Figure 12. Result of the H2ROM optimization.

In a similar manner to the optimization loop, an error function between both calculations can be
defined focusing on the microscale (displacement error) and macroscale (top reactions differences).

Concerning the microscale, the discrepancy is only computed in the RED, as H2ROM predictions
are only made on this domain and cannot be reconstructed in the full domain with this particular
approach. The microscale discrepancy is estimated by ru:

r2
u(µ
∗) =

(
aH(µ∗)− aFE(µ∗)[F ]

)T (
aH(µ∗)− aFE(µ∗)[F ]

)
, with aH(µ∗) = VH bH(µ∗) (49)

In the same manner, the macroscale discrepancy measure the norm of the difference between the
two prediction of the load applied to the specimen. This indicator is denoted by rF. The microscale
and macroscale errors should not exceed a few percents of the FEM calculations. In Figure 12, the FEM
top reaction is plotted in orange. It is clear that its value is extremely close to the one computed thanks
to H2ROM. The error is around 1% at each step.

This final verification is purely numerical. If the H2ROM predictions are validated, it is advised
to analyze deeper the full field FEM calculation.

In the case of notable differences between H2ROM prediction and FEM calculations, or between
FEM calculations and experiment, the FEMU-H2ROM is not validated. Two solutions are possible to
overcome this issue:

1. Perform again the whole parameters sensibility study with µ0 = µ∗.
2. Concatenate the previously determined matrix X from Equation (42) with Qu(µ

∗) and perform

a new truncated SVD to determine ultimately an enriched reduced basis VH . No new FEM
calculations are needed.
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The first solution should be performed in the case of strong differences between H2ROM
prediction and FEM calculations. The second option “only” costs a FEM calculation. It is also
possible to modify the optimization loop to include regularly FEM-H2ROM comparison and enrich
VH incrementally.

6. Discussion

6.1. Limitations of the Pruning Procedure

The present paper focused on DVC sets and not on the images themselves. Since each element
covers several voxels, the images are also known to be particularly heavy and perhaps more
problematic than the DVC data. The pruning procedure considers that they can be deleted. Actually,
it can be problematic. For instance, new DVC algorithm could improve the determination of the
displacement field (for example for complex problems involving cracks).

The images could be pruned too, in the sense that the only the pixels of the images inside the
determined RED can be conserved. However, we preconize to store only the reduced DVC data when
the data storage is an issue.

In the case of non homogeneous materials, the data concerning the inhomogeneity outside the
RED must be saved as well.

6.2. About the Reconstruction of Data outside the RED

Because of the proposed data pruning, experimental data outside the RED are no more available.
However, the finite element verification gives access to an estimation of these data via the finite
element model and the optimal parameters µ∗. For instance, the shear strain distribution can be
estimated by the finite element model with the optimal values of the parameter. In the illustrating
example, the computed and measured shear strain distributions, over the integration points in Ω,
were compared. The analysis is summarized in the histograms displayed in Figure 13 for the last
pre-peak step. The discrepancy between computed (via FE verification) and measured distributions
was considered here as satisfying.

Figure 13. Probability distribution of shear strain at the last pre-peak step in the whole domain Ω,
comparing FEM calculation (verification step) and experimental data.

6.3. Shear Strain Distributions in the RED

We can also consider the shear strain distributions is inside the whole domain Ω and the RED ΩR
for the illustrating example. It would be preferable that the pruning procedure stores in the RED the
most different configurations. The shear strain distributions in the whole domain and in the RED
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might be different (not the same mean value for example). Figures 14a and 15a present the shear strain
distributions at the first and last pre-peak step. It appears that the statistical distribution of the shear
strain inside the RED is not the same than the one inside the full domain. Nevertheless, zooms at both
histograms in Figures 14b and 15b reveal that the extremum values of the shear strain are conserved.
One can see that the RED contains nearly all the elements where the shear is maximal. Even if the
proposed procedure is model-free, it is intimately linked with the mechanics of solids: it will store
preferably the data that are mechanically more relevant. For strain localization phenomenon, it is the
most sheared zone. The proposed method is not statistical: it actually induces a sampling bias.
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Figure 14. Shear strain distributions (a) in the whole domain and (b) in the RED at the first step.
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Figure 15. Shear strain distributions (a) in the whole domain and (b) in the RED at the last step.

7. Conclusions

The present paper proposes a data pruning procedure for DVC data that is model free and
versatile. The k-SWIM algorithm, through its parameter k, enables the user to define the size of the
stored data.

The resultant data can still be used afterwards, for instance for calibration. The use of hybrid
hyper-reduction is particularly suitable for the pruned data as it enables a non-negligible reduction of
memory and time costs in the FEMU optimization loop. The FEMU-H2ROM method is thus a new
way to use massive DVC data for deeper mechanical studies.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2297-8747/24/1/18/s1
as supplementary files to make the output of Algorithm 1 reproducible. The ASCII file Node-iXYZ.txt contains the
node indices and the related coordinates. The files Vu.npy, bu.npy and Pu_reference.npy, are binary files related
to Vu, bu and Pu, respectively. They have been generated by using the NumPy instruction “save”. The ASCII file
k_swim.py contains Algorithm 1 written with SciPy instructions. In the ASCII file run_kswim.py, this algorithm is
applied to the data Vu.
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