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Abstract: An investigation of how the velocity of elasto-viscous fluid past an infinite plate, with slip
and variable temperature, is influenced by combined thermal-radiative diffusion effects has been
carried out. The study of dynamics of a flow model leads to the generation of characteristic fluid
parameters (Gr, Gm, M, F, Sc and Pr). The interaction of these parameters with elasto-viscous
parameter K

′
is probed to describe how certain parametric range and conditions could be pre-decided

to enhance the flow speed past a channel. In particular, the flow dynamics’ alteration in
correspondence to the slip parameter’s choice, along with temperature provision to the boundary
in temporal pattern, is determined through uniquely calculated exact expressions of velocity,
temperature and mass concentration of the fluid. The complex multi-parametric model has been
analytically solved using the Laplace and Inverse Laplace transform. Through study of calculated
exact expressions, an identification of variables, adversely (M, F, Sc and Pr) and favourably (Gr and
Gm) affecting the flow speed and temperature has been made. The accuracy of our results have also
been tested by computing matching numerical solutions and by graphical reasoning. The verification
of existing results of Newtonian fluid with varying boundary condition of velocity and temperature
has also been completed, affirming the veracity of present results.

Keywords: elasto-viscosity; thermal radiation; thermal diffusion; mass diffusion; velocity;
temperature; magnetic field

1. Introduction

Biochemical radiative processing in treatment of several diseases, filtration processes of complex
nature with narrow gateways and nuclear reactor processes [1–6], involve the phenomenon of
varying-degree of mass-heat diffusion. This process of combined radiative-mass flow is also observed
in metal-cooling in reactors and industrial processes on the macro-level. The overlapping nature of
heat and mass conduction process for smaller concentration gradient differences has led researchers
to study heat-mass transfer phenomenon in convective flows simultaneously [7–17]. Moreover,
the study of electrically conducting fluids (Magnetohydrodynamic fluids, MHD) has been necessitated
to understand many industrial and physical processes such as checking the magnetic control in iron
flow [18–20], etc.

Consolidated results representing the study of Newtonian and non-Newtonian fluid systems
along with radiative heat and mass transfer have been accumulated [21–24]. Several aspects of
dynamics of flow like variations caused by boundary condition on velocity, shear stress and mixed
boundary conditions have been discussed in [25–28]. Flow past a vertical oscillating channel was first
mathematically described in [29] and investigation of convective flow dynamics was further carried out
to include mass transfer phenomenon [30]. Some interesting results regarding the probe of convective

Math. Comput. Appl. 2019, 24, 31; doi:10.3390/mca24010031 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0002-6022-5063
http://www.mdpi.com/2297-8747/24/1/31?type=check_update&version=1
http://dx.doi.org/10.3390/mca24010031
http://www.mdpi.com/journal/mca


Math. Comput. Appl. 2019, 24, 31 2 of 21

flows with constant heat flux provided by boundary of channel and effects of transverse magnetic field
on fluid motion [31,32] were presented. How altering degree of radiation and temperature provision
impacted flow dynamics along with properties of flow in porous medium were discussed by [33,34].
More recently, flow speed enhancing factors like induced shear on channel boundary was discussed
in [35,36], through calculation of closed form solutions using fractional derivatives. Keeping the nature
of polymeric fluids with memory effects in mind, the investigation of related fluid dynamics using slip
boundary condition is considered to be imperative and has been discussed in our present article.

To understand the mechanism of multi-faceted applications in aerospace engineering and
bioengineering, efforts have been employed to study the characteristics of elasto-viscous fluid system.
The development of such a fluid system is deemed important as its features add into the interesting
angle of probe into boundary layer control problems as well as it helps to reflect on excretory organ
mechanism. Though the dynamics of elasto-viscous fluids have been studied recently but complexity
of highly non-linear equations with the combination of characteristic fluid parameters tend to present
difficulty in calculating exact solutions. A numerical solutions’ approach has been adopted to develop
the models of convective heat-mass transfer of elasto-viscous fluids past or over straight channels that
were moved impulsively or started with constant and uniform acceleration [37,38]. These observations
also included the angle of normal oscillations of channel and adjacent convection. In an ionized flow
system, electromagnetic diffusion was probed by [39,40]. Some efforts were dedicated to analyse
MHD nano-fluid dynamics system with induction of high temperature insulation and heat radiation
in porous mediums [5,11,41–43]. Some of elasto-viscous fluids overlap in the category of fluids having
changing viscosity. Thus, presenting the need of such models to be investigated [44] on thorough basis.

However, in all the works above, either numerical solutions were sought for elasto-viscous fluids
model along with no-slip condition on boundary or exact solutions for comparatively simpler flow
models were determined by employing velocity, shear stress and mixed conditions on boundary. In our
present work, we have analysed the heat and mass transfer of convective flow of elasto-viscous fluid
with slip boundary condition such that provision of temporal temperature on the boundary of infinite
plate over which fluid is flowing is ensured. Unlike the usual numerical approach towards determining
such complex models ’ solutions, we have obtained exact closed form solutions. It has been probed
that how elasto-viscous parameter, K impacts the flow speed in combination with characteristic fluid
parameters Gr, Gm, Pr, M, F and Sc. An interesting conclusion about a particular strength of slip
parameter and the manner with which infinite plate boundary is provided the temperature has been
reached to optimize the flow speed. The present results of elasto-viscous fluid system have also been
verified through graphical approach as well as by considering limiting cases of fluid parameters.

2. Mathematical Construction of the Problem

Let us consider an electrically conducting elasto-viscous fluid flowing past an infinite vertical
plate (Figure 1). The plate is adjacent to the x-axis such that fluid is moving in this direction and
y-axis is considered to be in the direction normal to flow. The initial temperature of plate, at rest,
is taken to be T∞. The plate is given the motion U0 in its own plane at t = 0+, causing the fluid to flow
with slip. Simultaneously, the temperature of the plate is raised to be TW . We shall be studying the
unsteady motion of free-convected flow with slip and variable temperature. The magnetic field of
uniform strength B0 is applied in the normal direction of plate. We assume that the magnetic field is
negligible in comparison to transverse magnetic field and Reynolds number is very small. The viscous
dissipation and Soret & Duoffer effects due to lower level of concentration are assumed to be negligible.
In regards to our model set-up, given conditions, above assumptions and Boussinesq approximation,
elasto-viscous flow governing equations are given as [45]
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∂u(y, t)
∂t

= ν
∂2u(y, t)

∂y2 + gβ(T(y, t)− T∞) + gβ∗(C(y, t)− C∞)

+
K
′

ρ

∂3u(y, t)
∂y2∂t

− σB0
2u(y, t)

ρ
, y, t > 0,

(1)

∂T(y, t)
∂t

=
κ

ρCp

∂2T(y, t)
∂y2 − 1

ρCp

∂qr

∂y
, y, t > 0, (2)

∂C(y, t)
∂t

= D
∂2C(y, t)

∂y2 , y, t > 0, (3)

with initial and boundary conditions as

u(y, 0) = 0, T(y, 0) = T∞, C(y, 0) = C∞, for all y ≥ 0, (4)

u(0, t) = U0 + γ
′ ∂u(y, t)

∂y
∣∣
y=0, U0 > 0, (5)

T(0, t) = T∞ + TW [1 + a f (t)], t > 0, (6)

C(0, t) = C∞ + (CW − C∞)
U2

0 t
ν

, t > 0, (7)

u(y, t)→ 0, T(y, t)→ T∞, C(y, t)→ C∞, for y→ ∞. (8)

where u(y, t), T(y, t), ρ, ν, σ, κ, Cp, qr, β, β∗, K
′
, g, D represent velocity of the fluid, its temperature,

density of fluid, kinematic viscosity, electrical conductivity, thermal conductivity, specific heat at
constant pressure, radiation heat flux, thermal expansion coefficient, mass expansion coefficient,
elasto-viscous parameter, gravitational acceleration and mass diffusion coefficient, respectively. Also,
γ
′

and a are constants. The slip between fluid and plate has been incorporated through γ
′

in
Equation (5).

Following non-dimensional variables have been employed for simplification of our system

u∗ =
u

U0
, y∗ =

yU0

ν
, t∗ =

tU0
2

ν
, T∗ =

T − T∞

TW
, C∗ =

C− C∞

CW − C∞
,

M =
σB2

0ν2

µU2
0

, Gr =
gβTWν

U3
0

, K =
K
′
U2

0
µν

, Gm =
gβ∗ν(CW − C∞)

U3
0

,

Pr =
µCp

κ
, F =

4I∗ν2

κU2
0

, Sc =
ν

D
,

(9)

where M, Gr, Gm, F, Pr, Sc and K denote Hartmann number, thermal Grashof number, mass Grashof
number, thermal radiation parameter, Prandtl number, Schmidth number and elasto-viscous
parameter, respectively.

Using non-dimensional entities (9), our system takes the form (dropping ∗)

∂u(y, t)
∂t

=
∂2u(y, t)

∂y2 + GrT(y, t) + GmC(y, t) + K
∂3u(y, t)

∂y2∂t
−Mu(y, t), (10)

∂T(y, t)
∂t

=
1
Pr

∂2T(y, t)
∂y2 − F

Pr
T(y, t), (11)

∂C(y, t)
∂t

=
1
Sc

∂2C(y, t)
∂y2 , (12)

u(y, 0) = 0, T(y, 0) = 0, C(y, 0) = 0, for all y ≥ 0, (13)
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u(0, t) = 1 + γ
∂u(y, t)

∂y
∣∣
y=0, t > 0, (14)

T(0, t) = 1 + a f (t), t > 0, (15)

C(0, t) = t, t > 0, (16)

u(y, t)→ 0, T(y, t)→ 0, C(y, t)→ 0, as y→ ∞. (17)

Figure 1. Geometry of flow.

3. Mathematical Solutions

The exact expression of concentration field C(y, t) has been determined by taking Laplace
transform of Equation (12) with the help of conditions (16) and (17). We obtain

C̄(y, q) =
e−
√

Scqy

q2 . (18)

Laplace inverse transform of Equation (18) gives

C(y, t) =
∫ t

0
er f c

(√
Scy

2
√

s

)
ds,

or

C(y, t) = ter f c
(√

Scy
2
√

t

)
−
√

Scy
2

∫ t

0

e−
Scy2

4s
√

πs
ds. (19)

To find the exact expression for temperature of fluid, T(y, t), we take Laplace transform of
Equation (11) and using conditions (15) and (17), we get

T̄(y, q) =
e−
√

Pr(q+α)y

q
+ aF(q)e−

√
Pr(q+α)y, (20)

where α = F
Pr

.
Laplace inverse transform of Equation (20) gives

T(y, t) =
1
2

[
e
√

αPryer f c
(√

Pry
2
√

t
+
√

αt
)
+ e−

√
αPryer f c

(√
Pry

2
√

t
−
√

αt
)]

(21)

+
a
√

Pr

2

∫ t

0
f (t− s)

y√
π(s)3

e−αs− Pry2
4s ds,
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satisfying both initial and boundary conditions.
Now, to obtain the closed form solution of velocity field of elasto-viscous fluid, we take Laplace

transform of Equation (10), i.e.,

qū(y, q) =
∂2ū(y, q)

∂y2 + Gr T̄(y, q) + GmC̄(y, q) + Kq
∂2ū(y, q)

∂y2 −Mū(y, q). (22)

Solving Equation (22) using Laplace transform of Equations (13), (14) and (17), we obtain

ū(y, q) =
e−
√

q+M
1+Kq y

q(1 + γ
√

q+M
1+Kq )

+
Gre−

√
q+M
1+Kq y

PrKq(1 + γ
√

q+M
1+Kq )[(q− d)2 − (

√
c)2]

+
aGrF(q)e−

√
q+M
1+Kq y

PrK(1 + γ
√

q+M
1+Kq )[(q− d)2 − (

√
c)2]

+
Gme−

√
q+M
1+Kq y

ScKq2(1 + γ
√

q+M
1+Kq )[(q− h)2 − (

√
l)2]

+
γGr

√
F + Prqe−

√
q+M
1+Kq y

PrK(1 + γ
√

q+M
1+Kq )q[(q− d)2 − (

√
c)2]

+
γaGrF(q)

√
F + Prqe−

√
q+M
1+Kq y

PrK(1 + γ
√

q+M
1+Kq )[(q− d)2 − (

√
c)2]

+
γGm

√
Scqe−

√
q+M
1+Kq y

ScKq2(1 + γ
√

q+M
1+Kq )[(q− h)2 − (

√
l)2]
− Gre−

√
Pr(q+α)y

PrKq[(q− d)2 − (
√

c)2]

− aGrF(q)e−
√

Pr(q+α)y

PrK[(q− d)2 − (
√

c)2]
− Gme−

√
Scqy

ScKq2[(q− h)2 − (
√

l)2]
.

(23)

Equation (23) can be written in a more simplified form o determine the Laplace inverse such as

ū(y, q) =G1(y, q)
1
q
+

Gr

PrK
G1(y, q)

1
q[(q− d)2 − (

√
c)2]

+
aGr

PrK
G1(y, q)F(q)

1
[(q− d)2 − (

√
c)2]

+
Gm

ScK
G1(y, q)

1

q2[(q− h)2 − (
√

l)2]
+

γGr

PrK
G1(y, q)

√
F + Prq

q[(q− d)2 − (
√

c)2]

+
γaGr

PrK
G1(y, q)F(q)

√
F + Prq

[(q− d)2 − (
√

c)2]
+

γGm√
ScK

G1(y, q)
1

√
q(q[(q− h)2 − (

√
l)2])

− Gr

PrK
e−
√

Pr(q+α)y

q[(q− d)2 − (
√

c)2]
− aGr

PrK
F(q)

e−
√

Pr(q+α)y

[(q− d)2 − (
√

c)2]
− Gm

ScK
e−
√

Scqy

q2[(q− h)2 − (
√

l)2]
,

(24)

where

d = 1−Pr−FK
2PrK , c =

(
1−Pr−FK

2PrK

)2

− F−M
PrK , G1(y, q) = e

−
√

q+M
1+Kq y

γ

(√
q+M
1+Kq +

1
γ

) ,

h = 1−Sc
2ScK , l =

(
1−Sc
2ScK

)2

+ M
ScK .
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Taking Laplace inverse transform of Equation (24) and using (A1)–(A12), we obtain the exact
expression for velocity field

u(y, t) =
(

1 +
Gr

(d2 − c)PrK
+

2Gmh
ScK(h2 − l)2

) ∫ t

0
g1(y, s)ds +

Gr

2PrK(c + d
√

c)

∫ t

0
g1(y, s)e(d+

√
c)(t−s)ds

+
Gr

2PrK(c− d
√

c)

∫ t

0
g1(y, s)e(d−

√
c)(t−s)ds +

aGr

2PrK
√

c

∫ t

0
g1(y, s)H1(t− s)ds

− aGr

2PrK
√

c

∫ t

0
g1(y, s)H2(t− s)ds +

Gm

ScK(h2 − l)

∫ t

0
g1(y, s)(t− s)ds

+
Gm

ScK[2
√

l(h +
√

l)2]

∫ t

0
g1(y, s)e(h+

√
l)(t−s)ds− Gm

ScK[2
√

l(h−
√

l)2]

∫ t

0
g1(y, s)e(h−

√
l)(t−s)ds

+
γGr

K
√

Pr(d2 − c)

∫ t

0
g1(y, s)

{
e−α(t−s)√
π(t− s)

+
√

αer f (
√

α(t− s))
}

ds

+
γGr

2K
√

Pr(c + d
√

c)

∫ t

0
g1(y, s)

{
e−α(t−s)√
π(t− s)

+

√
α + d +

√
ce(d+

√
c)(t−s)er f (

√
(α + d +

√
c)(t− s))

}
ds

+
γGr

2K
√

Pr(c− d
√

c)

∫ t

0
g1(y, s)

{
e−α(t−s)√
π(t− s)

+

√
α + d−

√
ce(d−

√
c)(t−s)er f (

√
(α + d−

√
c)(t− s))

}
ds

+
γaGr

2KPr
√

c

∫ t

0
g1(y, s)R1(t− s)ds− γaGr

2KPr
√

c

∫ t

0
g1(y, s)R2(t− s)ds +

2γGm

K
√

πSc(h2 − l)

∫ t

0
g1(y, s)

√
t− sds

+
γGm

2
√

lScK(h +
√

l)
3
2

∫ t

0
g1(y, s)e(h+

√
l)(t−s)er f (

√
(h +

√
l)(t− s))ds

− γGm

2
√

lScK(h−
√

l)
3
2

∫ t

0
g1(y, s)e(h−

√
l)(t−s)er f (

√
(h−

√
l)(t− s))ds

− Gr

2PrK(d2 − c)

[
ey
√

αPr er f c
(√

Pry
2
√

t
+
√

αt
)
+ e−y

√
αPr er f c

(√
Pry

2
√

t
−
√

αt
)]

+
Gmy

2
√

ScK(h2 − l)

∫ t

0

e
−Pr y2

4s
√

πs
ds− Gre(d+

√
c)t

4PrK(c + d
√

c)

[
ey
√

(α+d+
√

c)Pr er f c
(√

Pry
2
√

t
+
√
(α + d +

√
ct
)

+ e−y
√

(α+d+
√

c)Pr er f c
(√

Pry
2
√

t
−
√
(α + d +

√
ct
)]

− Gre(d−
√

c)t

4PrK(c− d
√

c)

[
ey
√

(α+d−
√

c)Pr er f c
(√

Pry
2
√

t
+
√
(α + d−

√
ct
)

+ e−y
√

(α+d−
√

c)Pr er f c
(√

Pry
2
√

t
−
√
(α + d−

√
ct
)]
− aGry

4K
√

cPr

∫ t

0

e
−Pr y2

4s −αs
√

πs3
H1(t− s)ds

+
aGry

4K
√

cPr

∫ t

0

e
−Pr y2

4s −αs
√

πs3
H2(t− s)ds− Gm(2h + (h2 − l)t)

ScK(h2 − l)2 er f c
(√

Scy
2
√

t

)
− Gme(h+

√
l)t

4ScK
√

l(h +
√

l)2

[
ey
√

(h+
√

l)Sc er f c
(√

Scy
2
√

t
+

√
(h +

√
l)t
)

+ e−y
√

(h+
√

l)Sc er f c
(√

Scy
2
√

t
−
√
(h +

√
l)t
)]

+
Gme(h−

√
l)t

4ScK
√

l(h−
√

l)2

[
ey
√

(h−
√

l)Sc er f c
(√

Scy
2
√

t
+

√
(h−

√
l)t
)

+ e−y
√

(h−
√

l)Sc er f c
(√

Scy
2
√

t
−
√
(h−

√
l)t
)]

,

(25)

satisfying initial and boundary conditions, where

g1(y, t) = L−1
{

G1(y, q)
}

= L−1
{
(F1oW)(q)

}
= L−1

{
F1(W(q))

}
=
∫ ∞

0
f1(y, z)p(z, t)dz,
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f1(y, t) = L−1{F1(y, q)} = L−1
{

e−
√

qy

γ

(
√

q + 1
γ

)} =
1
γ

{
e−

y2
4t

√
πt
− 1

γ
e

y
γ +

t
γ2 er f c

(
y

2
√

t
+

√
t

γ

)}
,

W(q) =
q + M
1 + Kq

, p(z, t) = L−1
{

e−zW(q)
}

= e
z
K

[√
N
t

I1(2
√
N t)e

t
K + δ(t)

]
,

(I1 is modified Bessel function of first kind of order 1, δ(t) represents the delta function and
N = z(MK+1)

K2 )

H1(t) = L−1
{

F(q)
q− (d +

√
c)

}
=
∫ t

0
f (s)e(d+

√
c)(t−s)ds,

H2(t) = L−1
{

F(q)
q− (d−

√
c)

}
=
∫ t

0
f (s)e(d−

√
c)(t−s)ds,

R1(t) = L−1
{

F(q)
√

F + Prq
q− (d +

√
c)

}
=
∫ t

0
f (s)

[
e−α(t−s)√
π(t− s)

+

√
α + d +

√
ce(d+

√
c)(t−s)er f (

√
(α + d +

√
c)(t− s)

]
ds,

R2(t) = L−1
{

F(q)
√

F + Prq
q− (d−

√
c)

}
=
∫ t

0
f (s)

[
e−α(t−s)√
π(t− s)

+

√
α + d−

√
ce(d−

√
c)(t−s)er f (

√
(α + d−

√
c)(t− s)

]
ds.

4. Limiting Cases

To check the veracity of our exact solutions, as well as to study the influence of varying parametric
values, limiting solutions have been calculated. The expression of velocity corresponding to Newtonian
fluid flow, both in the presence and absence of magnetic fields, shall be determined. The impact of
constant temperature provision on the boundary of plate and constant velocity on boundary will also
be studied through approximation of fluid parameters.

4.1. Newtonian Fluid

The elasto-viscous fluid model reduces to Newtonian fluid system when K is considered to be
very small (Equation (10)). Following this, Equation (23) becomes

ū(y, q) =
e−
√

q+My

q(1 +
√

q + M)
+

Gr
√

F + Prqe−
√

q+My

(Pr − 1)q(q−m)(1 +
√

q + M)

+
aGr
√

F + Prqe−
√

q+My

(Pr − 1)(q−m)(1 +
√

q + M)
+

Gm
√

Scqe−
√

q+My

(Sc − 1)q2(q−m)(1 +
√

q + M)

+
Gre−

√
q+My

(Pr − 1)q(q−m)(1 +
√

q + M)
+

aGre−
√

q+My

(Pr − 1)(q−m)(1 +
√

q + M)

+
Gme−

√
q+My

(Sc − 1)q2(q− h)(1 +
√

q + M)
− Gre−

√
F+Prqy

(Pr − 1)q(q−m)

− aGre−
√

F+Prqy

(Pr − 1)(q−m)
− Gme−

√
Scqy

(Sc − 1)q2(q− n)
,

(26)
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where

m =
M− F
Pr − 1

, n =
M

Sc − 1
.

To find Inverse Laplace transform, we write Equation (26) in the following way

ū(y, q) =
e−
√

q+My

(1 +
√

q + M)

1
q
+

Gr

(Pr − 1)
e−
√

q+My

(1 +
√

q + M)

√
F + Prq

q(q−m)

+
aGr

(Pr − 1)
e−
√

q+My

(1 +
√

q + M)

√
F + Prq
q−m

+
Gm
√

Sc

Sc − 1
e−
√

q+My

(1 +
√

q + M)

√
q

q2(q−m)

+
Gr

Pr − 1
e−
√

q+My

(1 +
√

q + M)

1
q(q−m)

+
aGr

(Pr − 1)
e−
√

q+My

(1 +
√

q + M)

1
q−m

+
Gm

(Sc − 1)
e−
√

q+My

(1 +
√

q + M)

1
q2(q− n)

− Gr

(Pr − 1)
e−
√

F+Prq

q(q−m)

− aGr

(Pr − 1)
e−
√

F+Prq

q−m
− Gm

Sc − 1
e−
√

Scqy

q2(q− n)
.

(27)

Taking the Inverse Laplace transform of Equation (27) and using (A3), (A5) and (A6), we get

u(y, t) =
(

1− Gr

m(Pr − 1)
− Gm

n2(Sc − l)

) ∫ t

0
g2(y, s)ds

− Gr
√

Pr

m(Pr − 1)

∫ t

0
g2(y, s)

{
e−α(t−s)√
π(t− s)

+
√

αer f (
√

α(t− s))
}

ds

+
Gr
√

Pr

m(Pr − 1)

∫ t

0
g2(y, s)

{
e−α(t−s)√
π(t− s)

+
√

α + mem(t−s)er f (
√
(α + m)(t− s))

}
ds

+
aGr
√

Pr

(Pr − 1)

∫ t

0
g2(y, s)

{
e−α(t−s)√
π(t− s)

+
√

α + mem(t−s)er f (
√
(α + m)(t− s))

}
ds

+
Gm
√

Sc

Sc − 1

∫ t

0
g2(y, s)ψ(t− s)ds +

Gr

m(Pr − 1)

∫ t

0
g2(y, s)em(t−s)ds +

aGr

Pr − 1

∫ t

0
g2(y, s)em(t−s)ds

− Gm

n(Sc − 1)

∫ t

0
g2(y, s)(t− s)ds +

Gm

n2(Sc − 1)

∫ t

0
g2(y, s)en(t−s)ds +

Gr

m(Pr − 1)
er f c

(√
Pry

2
√

t

)
e−αt

− Gremt(1 + a)
2m(Pr − 1)

[
ey
√

(α+m)Pr er f c
(√

Pry
2
√

t
+
√
(α + m)t

)
+ e−y

√
(α+m)Pr er f c

(√
Pry

2
√

t
−
√
(α + m)t

)]
+

Gm

n2(Sc − 1)
er f c

(√
Scy

2
√

t

)
+

Gm

n(Sc − 1)

∫ t

0
er f c

(√
Scy

2
√

s

)
ds

− Gment

2n2(Sc − 1)

[
ey
√

nSc er f c
(√

Scy
2
√

t
+
√

nt
)
+ e−y

√
nSc er f c

(√
Scy

2
√

t
−
√

nt
)]

,

(28)

where

g2(y, t) = L−1{G2(y, q)} = L−1
{

e−
√

q+M√
q + M + 1

}
=

e−
y2
4t −Mt
√

πt
− ey+t−Mter f c

(
y

2
√

t
+
√

t
)

.
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4.2. Absence of Magnetic Field (M→ 0)

The expression of velocity field for the case of Newtonian fluid (K → 0) and no magnetic field
(M→ 0), takes the form

u(y, t) =
(

1 +
Gr

F

) ∫ t

0
g3(y, s)ds +

Gr
√

Pr

F

∫ t

0
g3(y, s)

{
e−α(t−s)√
π(t− s)

+
√

αer f (
√

α(t− s))
}

ds

−
(

Gr
√

Pr

F
+

aGr
√

Pr

Pr − 1

) ∫ t

0
g3(y, s)

{
e−α(t−s)√
π(t− s)

+
√

ζe
−F

Pr−1 (t−s)er f (
√

ζ(t− s))
}

ds

+
Gm
√

Sc

Sc − 1

∫ t

0
g3(y, s)ψ2(t− s)ds−

(
Gr

F
− aGr

Pr − 1

) ∫ t

0
g3(y, s)e

−F
Pr−1 (t−s)ds

+
Gm

Sc − 1

∫ t

0
g3(y, s)(t− s)2ds− Gr

F
er f c

(
y
√

Pr

2
√

t

)
e−αt − Gm

Sc − 1

∫ t

0
er f c

(√
Scy

2
√

s

)
(t− s)ds

+
Gr(1 + a)e−

Ft
Pr−1

2F

[
ey
√

ζPr− F
Pr−1 ter f c

(√
Pry

2
√

t
+
√

ζt
)
+ ey

√
ζPr− F

Pr−1 ter f c
(√

Pry
2
√

t
−
√

ζt
)]

,

(29)

where

ζ =
F

Pr(Pr − 1)
, g3(y, t) = L−1{G3(y, q)} = L−1

{
e−
√

q
√

q + 1

}
=

e−
y2
4t

√
πt
− ey+ter f c

(
y

2
√

t
+
√

t
)

,

ψ2(t) =
∫ t

0
2
√

s√
π

e−
F

Pr−1 (t−s)ds.

4.3. Constant Temperature on the Boundary

We have also retrieved the results for temperature and velocity for the case of Newtonian fluid
(K → 0) and constant temperature on the boundary (a = 0) as following

T(y, t) =
1
2

[
e
√

αPryer f c
(√

Pry
2
√

t
+
√

αt
)
+ e−

√
αPryer f c

(√
Pry

2
√

t
−
√

αt
)]

, (30)

and
u(y, t) =

(
1− Gr

m(Pr − 1)
− Gm

n2(Sc − 1)

) ∫ t

0
g2(y, s)ds

− Gr
√

Pr

m(Pr − 1)

∫ t

0
g2(y, s)

{
e−α(t−s)√
π(t− s)

+
√

αer f (
√

α(t− s))
}

ds

+
Gr
√

Pr

m(Pr − 1)

∫ t

0
g2(y, s)

{
e−α(t−s)√
π(t− s)

+
√

m + αem(t−s)er f (
√
(m + α)(t− s))

}
ds

+
Gm
√

Sc

Sc − 1

∫ t

0
g2(y, s)ψ(t− s)ds +

Gr

m(Pr)

∫ t

0
g2(y, s)em(t−s)ds

− Gm

n(Sc − 1)

∫ t

0
g2(y, s)(t− s)ds +

Gr

m(Pr − 1)
er f c

(
y
√

Pr

2
√

t

)
e−αt

+
Gm

n2(Sc − 1)

∫ t

0
g2(y, s)en(t−s)ds +

Gr(1 + a)
2F

[
ey
√

ζPr− F
Pr−1 ter f c

(√
Pry

2
√

t
+
√

ζt
)

+ ey
√

ζPr− F
Pr−1 ter f c

(√
Pry

2
√

t
−
√

ζt
)]
− Gremt(1 + a)

2m(Pr − 1)

[
ey
√

(α+m)Pr er f c
(√

Pry
2
√

t
+
√
(α + m)t

)
+ e−y

√
(α+m)Pr er f c

(√
Pry

2
√

t
−
√
(α + m)t

)]
+

Gm

n2(Sc − 1)
er f c

(√
Scy

2
√

t

)
+

Gm

n(Sc − 1)

∫ t

0
er f c

(√
Scy

2
√

s

)
ds

− Gment

2n2(Sc − 1)

[
ey
√

nSc er f c
(√

Scy
2
√

t
+
√

nt
)
+ e−y

√
nSc er f c

(√
Scy

2
√

t
−
√

nt
)]

,

(31)
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where

ψ(t) = L−1
{

e−
√

Pry
√

q

q− (d−
√

c)

}
=
∫ t

0

√
Prye−

Pr y2

4u

2u
√

πu
e(d−

√
c)(t−u)du

=

√
Pre(d−

√
c)t

2

[
ey
√

Pr(d−
√

c)er f c
(√

Pry
2
√

t
+
√
(d−

√
c)t
)
+ e−y

√
Pr(d−

√
c)er f c

(√
Pry

2
√

t
−
√
(d−

√
c)t
)]

.

4.4. Constant Velocity on Boundary

The expression of elasto-viscous fluid velocity field for the case of no-slip between fluid and plate
has also been calculated. By considering γ = 0 in Equation (14), we obtain ū(y, q) as following

ū(y, q) =
e−
√

q+M
1+Kq y

q
+

Gre−
√

q+M
1+Kq y

PrKq[(q− d)2 − (
√

c)2]
+

aGrF(q)e−
√

q+M
1+Kq y

PrK[(q− d)2 − (
√

c)2]
+

Gme−
√

q+M
1+Kq y

ScKq2[(q− h)2 − (
√

l)2]

− Gre−
√

Pr(q+α)y

PrKq[(q− d)2 − (
√

c)2]
− aGrF(q)e−

√
Pr(q+α)y

PrK[(q− d)2 − (
√

c)2]
− Gme−

√
Scqy

ScKq2[(q− h)2 − (
√

l)2]
.

(32)

For the Inverse Laplace transform, we write Equation (32) in a more simplified form

ū(y, q) =Z1(y, q)
1
q
+

Gr

PrK
Z1(y, q)

1
q[(q− d)2 − (

√
c)2]

+
Gra
PrK

Z1(y, q)F(q)
1

[(q− d)2 − (
√

c)2]

+
Gm

ScK
Z1(y, q)

1

q2[(q− h)2 − (
√

l)2]
− Gr

PrK
e−
√

Pr(q+α)y 1
q[(q− d)2 − (

√
c)2]

− aGr

PrK
e−
√

Pr(q+α)yF(q)
1

[(q− d)2 − (
√

c)2]
− Gm

ScK
e−
√

Scy 1

q2[(q− h)2 − (
√

l)2]
,

(33)

where

Z1(y, q) = e−
√

q+M
1−Kq y.
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The Inverse Laplace of Equation (33) using (A1), (A2) and (A5) gives

u(y, t) =
(

PrK + (d2 − c)Gr

PrK(d2 − c)
+

2Gmh
ScK(h2 − l)2

) ∫ t

0
z1(y, s)ds

+
Gr

2PrK(c + d
√

c)

∫ t

0
z1(y, s)e(d+

√
c)(t−s)ds

+
Gr

2PrK(c− d
√

c)

∫ t

0
z1(y, s)e(d−

√
c)(t−s)ds +

aGr

2PrK
√

c

∫ t

0
z1(y, s)H1(t− s)ds

− aGr

2PrK
√

c

∫ t

0
z1(y, s)H2(t− s)ds +

Gm

ScK(h2 − l)

∫ t

0
z1(y, s)(t− s)ds

+
Gm

ScK[2
√

l(h +
√

l)2]

∫ t

0
z1(y, s)e(h+

√
l)(t−s)ds

− Gm

ScK[2
√

l(h−
√

l)2]

∫ t

0
z1(y, s)e(h−

√
l)(t−s)ds

− Gr

2PrK(d2 − c)

[
ey
√

αPr er f c
(√

Pry
2
√

t
+
√

αt
)
+ e−y

√
αPr er f c

(√
Pry

2
√

t
−
√

αt
)]

− Gre(d+
√

c)t

4PrK(c + d
√

c)

[
ey
√

Pr(α+d+
√

c)yer f c
(√

Pry
2
√

t
+
√
(α + d +

√
c)t
)

+ e−y
√

Pr(α+d+
√

c)yer f c
(√

Pry
2
√

t
−
√
(α + d +

√
c)t
)]

− Gre(d−
√

c)t

4PrK(c− d
√

c)

[
ey
√

Pr(α+d−
√

c)yer f c
(√

Pry
2
√

t
+
√
(α + d−

√
c)t
)

+ e−y
√

Pr(α+d−
√

c)yer f c
(√

Pry
2
√

t
−
√
(α + d−

√
c)t
)]

− aGry
4K
√

cPr

∫ t

0

e
Pr y2

4s −αs
√

πs3
H1(t− s)ds +

aGry
4K
√

cPr

∫ t

0

e
Pr y2

4s −αs
√

πs3
H2(t− s)ds

− Gme(h+
√

l)t

4ScK
√

l(h +
√

l)2

[
ey
√

Sc(h+
√

l)yer f c
(√

Scy
2
√

t
+

√
(h +

√
l)t
)

+ e−y
√

Sc(h+
√

l)yer f c
(√

Scy
2
√

t
−
√
(h +

√
l)t
)]

+
Gme(h−

√
l)t

4ScK
√

l(h−
√

l)2

[
ey
√

Sc(h−
√

l)yer f c
(√

Scy
2
√

t
+

√
(h−

√
l)t
)

+ e−y
√

Sc(h−
√

l)yer f c
(√

Scy
2
√

t
−
√
(h−

√
l)t
)]

− Gm[2h + (h2 − l)t]
ScK(h2 − l)2 er f c

(√
Scy

2
√

t

)
+

Gmy
2K
√

Sc(h2 − l)

∫ t

0

e−
Scy2

4s
√

πs
ds,

(34)

where

z1(y, t) = L−1
{

Z1(y, q)
}

= L−1
{
(Q1oW)(q)

}
= L−1

{
Q1(W(q))

}
=
∫ ∞

0
q1(y, z)p(z, t)dz,

Q1(y, q) = e−
√

qy, W(q) =
q + M
1 + Kq

, N =
z(MK + 1)

K2 ,

p(z, t) = L−1
{

e−zW(q)
}

= e
z
K

[√
N
t

I1(2
√
N t)e

t
K + δ(t)

]
,

and
q1(y, t) = L−1{Q1(y, q)} = y

2
√

πt3
e−

y2

4t .
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5. Discussion

Figure 2 has been drawn to reflect the behaviour of elasto-viscous fluid velocity corresponding to fixed
values of Gr = 5, Gm = 2, Pr = 0.7, Sc = 1.5, M = 0.5, F = 0.8, γ = 0.3, α = 1.14, a = 5 and K = 4 against y at a
certain time. The frequency of sine-oscillations ( f (t) = sin(ωt)) has been chosen as ω = 2. Initially, the velocity
increases and then it starts decreasing, approaching zero at gaining height, thus meeting the boundary condition
of velocity (8).

12
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Figure 2. Elasto-viscous velocity versus y at varying t.

The response of velocity against y corresponding to parameters Gr, Gm, Sc, M and F has been depicted in
Figures 3–6, keeping the fixed values of Pr, γ, α, a and K as above. Two cases of function f (t) in condition (6) have
been chosen. For a constant f (t), it is observed that the velocity for elasto-viscous fluid increases with an increase
in thermal Grashof number, Gr and mass Grashof number, Gm but decreases with an increase in Hartmann
number, M. The increase in velocity due to increasing Gr and Gm owes its occurrence to the empowering role of
conduction and mass movement of particles over resistance caused by viscous forces. These graphs also validate
the physical understanding of our model that supplementary force applied on plate increases mass and thermal
diffusivity near the boundary, thus increasing the thermal Grashof number, Gr and mass Grashof number, Gm.
The increased turbulence near boundary causes the velocity of fluid to rise. Also, the hindering effects of magnetic
field’s presence in elasto-viscous fluid is evident through the inverse relation of fluid velocity and Hartmann
number. Comparing Figures 3 and 4, the elasto-viscous fluid velocity attains higher magnitude for the case of
f (t) = 1 as compared to the case of oscillating function (ω = 2). However, the parametric influence of Gr, Gm and
M remains unchanged for both cases.

Figure 3. Elasto-viscous velocity versus y at t = 2.
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Figure 4. Elasto-viscous velocity versus y at t = 2.

Figure 5. Elasto-viscous velocity versus y at t = 2.

Figure 6. Elasto-viscous velocity versus y at t = 2.
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Figures 5 and 6 reflect on the influence of parameters Schmidth number, Sc, Hartmann number, M and
thermal radiation parameter, F. It is noted that elasto-viscous fluid velocity decreases with increase in Sc, M and F.
The smooth flow over plate is hindered by applied magnetic forces and collective movement of particles, causing
a decline in velocity. In addition to manipulation of thermal radiation and electromagnetic field in reducing the
velocity as the strength of these parameters is increased, it is however noted that Schmidth number’s role in
inversely influencing the velocity can be considered insignificant. This fact is displayed by almost overlapping
profiles of velocity for Sc = 1.5 and Sc = 2.5.

How, elasto-viscous parameter, K influences the velocity of fluid flow has been described through Figure 7.
The velocity profiles against y have been obtained for varying values of K at a given time, t = 2. The observation
of decrease in velocity corresponding to increasing values of K is in perfect accordance with viscous and elastic
effects of fluid resisting the flow motion, causing the velocity to decrease gradually. Velocity’s inverse relation
with K has been apparent through the decreasing-magnitude profiles with increasing K.

Figure 7. Elasto-viscous velocity versus y at t = 2.

In order to validate the present results, some graphs for approximating values of fluid parameters have been
developed. In Figure 8, we have obtained the velocity profiles for the case of very small elasto-viscous parameter
such that these profiles correspond to curves of Newtonian fluid velocity. It is observed that similar to the case of
elasto-viscous fluid, Newtonian fluid velocity is directly related with Gr and Gm and is inversely related with
M. However, due to lesser resistance caused by viscous forces for Newtonian fluid, the magnitude of its velocity
exceeds the magnitude of velocity for elasto-viscous fluid.

It has also been deduced through Figure 9 that the magnitude of velocity for Newtonian fluid without the
presence of magnetic field is substantially higher than for the case where magnetic field is absent. The impact of Gr

and Gm on fluid motion remains same for M = 0. To understand the case of variations of velocity of elasto-viscous
fluid where constant temperature is provided to the boundary of plate, we have obtained the graphs in Figure 10.
These profiles have been drawn for velocity against y at a certain time and fixed magnetic field but for varying
values of Gr and Gm. Following the pattern of increase in velocity with increase in Gr and Gm and of inverse
relation with M, the fluid velocity increases swiftly in the beginning as compared to slow increase for the case
of temporal provision of temperature (Figure 4) and then it starts decreasing for higher y-values, eventually
approaching to zero. Also, the overall magnitude of velocity for the case of constant temperature on boundary
(Figure 10) remains higher in comparison to the case in Figure 4. Provision of time-controlled temperature on
the boundary of plate restrains the mass movement and flow activity, causing the velocity of fluid to decrease in
comparison to the case when temperature is being provided constantly.
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Figure 8. Newtonian fluid velocity versus y at t = 2.

Figure 9. Newtonian fluid velocity for no-magnetic field versus y at t = 2.

Figure 10. Newtonian fluid velocity for constant temperature on boundary versus y at t = 2.
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Figure 11 depicts the varying velocity profiles for elasto-viscous fluid against y at a given time for the case
of constant velocity on boundary. All profiles retain the previous results regarding the influence of parameters
Gr, Gm and M on velocity. However, the magnitude of velocity for the case of constant velocity on boundary is
lower than the cases of temporal velocity and constant temperature provision on the boundary (Figures 4 and
10). Hence the combination of additional inertial push in the form of oscillations and constant temperature on
boundary induces the increase in velocity magnitude of elasto-viscous fluid.

Figure 11. Elasto-viscous velocity for constant velocity condition on boundary versus y at t = 2.

Figure 12 has been drawn to study the impact of Prandtl number, Pr and thermal radiation parameter, F on
temperature. The temperature profiles have been obtained against y at the given time. The observation of decrease
in temperature with increase in Pr and F has been made. The phenomenon of increase in temperature due to
decreasing values of Pr is explained by increasing magnitude of mass diffusion and thermal emission that causes
the concentrated particles’ temperature to decline. Also, how Schmidt parameter Sc influences the concentration
of fluid has been discussed through Figure 13. It is observed that concentration of fluid, C(y, t) increases with
decreasing values of Sc at a given time and vice-versa. Increasing Schmidt number causes mass diffusion to
increase, thus lowering the mass concentration. Both Figures 12 and 13 validate the facts of zero temperature and
mass concentration attained at higher y-values.

Figure 12. Temperature of fluid, T(y, t) versus y at t = 2.
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Figure 13. Mass concentration of fluid, C(y, t) versus y at t = 2.

To substantiate the accuracy of our analytical solutions, we have obtained the numerical results for
concentration. Numerical values of concentration have been obtained using Stehfest’s algorithm [46] for calculating
the Inverse Laplace transform of Equation (18). In fact, these values have been generated by making γ → 1 in
(Equation (3.1)) [36]. These numerical values have been compared with the values of concentration calculated
from Equation (19) for n = 55 terms. The computations presented in Table 1 have been remarkably similar to
numerical values in [36]. Stehfest’s algorithm is defined by the following relation

C(y, t) = L−1{C̄(y, q)} ≈ ln 2
t

2r

∑
k=1

bkC̄
(

y, k
ln 2

t

)
, (35)

where r is a positive integer,

bk = (−1)k+r
min(k,r)

∑
s=

[
k+1

2

] sr(2s)!
(r− s)!s!(s− 1)!(k− s)!(2s− k)!

(36)

and [p] denotes the integer part of the real number p. Table 1 [36] indicates the accuracy of analytical results up
to the order of 10−6, thus authenticating our solutions of concentration. Similarly, the results of velocity and
temperature can be validated.

Table 1. Values of concentration C(y, t) resulting from the analytic solution Equation (19) and the
numerical algorithm applied to Equation (17) at t = 5, Sc = 1.

y C(y, t)—Equation (19) C(y, t)—Equation (17) Absolute Error

0 5 5.00001 6.031× 10−6

0.1 4.66656 4.66658 1.694× 10−5

0.2 4.35403 4.35404 1.338× 10−5

0.3 4.06119 4.0612 3.346× 10−6

0.4 3.7869 3.78691 6.425× 10−6

0.5 3.53007 3.53008 5.33× 10−6

0.6 3.28967 3.28968 4.329× 10−6

0.7 3.06472 3.06473 6.388× 10−7

0.8 2.8543 2.8543 5.092× 10−6

0.9 2.65753 2.65754 6.509× 10−6

1 2.47359 2.47359 2.626× 10−6

6. Conclusions

Exact expressions of velocity, temperature and mass concentration of elasto-viscous fluid past an infinite
plate have been calculated using Laplace and inverse-Laplace transform. It has been deduced that provision



Math. Comput. Appl. 2019, 24, 31 18 of 21

of temperature to the boundary of plate in non-temporal pattern and a choice of slip parameter increases fluid
velocity in the presence of magnetic field of specific strength. The following salient points of current flow model
have been accumulated:

1. Unlike the usual adoption of numerical solutions approach for elasto-viscous fluid models, exact closed-form
solutions of velocity, temperature and mass concentration have been determined and have shown to meet
initial and boundary conditions.

2. Expressions of velocity for no-slip and timed provision of temperature on boundary were obtained.
An observation of slip-parameter’s strength and temporal temperature boundary condition hindering
the speed of flow was substantiated through graphical analysis.

3. Validation of current results was approached through retrieving Newtonian fluid velocity expression and
graphical profiles by considering very small value of elasto-viscous parameter (K → 0).

4. Elasto-viscous fluid velocity increases with increase in thermal Grashof number Gr and mass Grashof
number Gm and decreases with increase in Prandtl number Pr, Schmidt number Sc, Hartmann number M
and thermal radiation parameter F.

5. Temperature of fluid is inversely related with F and Pr.
6. Mass concentration of fluid increases with decrease in Sc and vice-versa.
7. Increasing the strength of elatso-viscous parameter K hinders the smooth flow as would be suggested by

empowered viscous forces and thus decreases the flow velocity and vice-versa.
8. To validate the accuracy of analytical expressions, we have generated numerical solutions for concentration

of fluid. The comparison of analytical and numerical solutions points to an absolute error of order 10−6.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

Symbols Description SI Units
u(y, t) velocity m/s
T(y, t) temperature K
C(y, t) mass concentration kg/m3

ρ density of fluid kg/m3

ν kinematic viscosity m2/s
σ electrical conductivity S/m
κ thermal conductivity J/(s·m·K)
Cp specific heat at constant pressure J/(kg·K)
qr radiation heat flux J/(s·m2)
β thermal expansion coefficient 1/K
β∗ mass expansion coefficient m3/kg
g gravitational acceleration m/s2

D mass diffusion coefficient m2/s
M Hartmann number dimensionless
Gr thermal Grashof number dimensionless
Gm mass Grashof number dimensionless
F thermal radiation parameter J/(s·m2)
Pr Prandtl number dimensionless
Sc Schmidt number dimensionless
ω frequency of oscillation 1/s
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