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Abstract

:

In this study, free vibration behaviors of various embedded nanowires made of different materials are investigated by using Eringen’s nonlocal elasticity theory. Silicon carbide nanowire (SiCNW), silver nanowire (AgNW), and gold nanowire (AuNW) are modeled as Euler–Bernoulli nanobeams with various boundary conditions such as simply supported (S-S), clamped simply supported (C-S), clamped–clamped (C-C), and clamped-free (C-F). The interactions between nanowires and medium are simulated by the Winkler elastic foundation model. The Galerkin weighted residual method is applied to the governing equations to gain stiffness and mass matrices. The results are given by tables and graphs. The effects of small-scale parameters, boundary conditions, and foundation parameters on frequencies are examined in detail. In addition, the influence of temperature change on the vibrational responses of the nanowires are also pursued as a case study.
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1. Introduction


Nanoscale structures/materials have very different characteristics. Nanostructures/nanomaterials have attracted great attention because their extraordinary features, such as high strength, low density, high elasticity modulus, and high hardness [1,2,3,4], have become the focus of researchers. The aforementioned unique properties of such structures, materials, and rapid developments in nanotechnology has led to use of these structural elements in designing micro- and nanoelectro mechanical systems (MEMS and NEMS) such as resonators, atomic force microscopes, switches, actuators, and sensors.



Some experimental studies have revealed the deformation behaviors of micro-/nanosized structures [5,6]. However, experiments are very difficult and quite expensive on these scales because high precision test devices are needed. On the other hand, atomistic modeling such as molecular dynamic simulations is computationally expensive and requires a long period of time. Consequently, this option is limited to structures that have only a few atoms [7].



To understand and accurately interpret the mechanical properties and behaviors of nanoscale structures, use of models based on continuum mechanics may be a better alternative than experiments and atomistic modelling. Unfortunately, classical continuum theories are not sufficient to predict and estimate size dependency because they lack internal/additional material length scale parameters. In ultrasmall scales (micrometer dimension, nanometer dimension) interactions between atoms and molecules have increasing importance and cannot be neglected. Therefore, the solution to classical continuum theories, which does not take into account size effects, does not give accurate results. In order to obtain more accurate results, higher-order continuum theories such as couple stress theory [8,9,10], modified couple stress theory [11], strain gradient theory [12], modified strain gradient theory [13], and nonlocal elasticity theory [14] have been developed and contain various length scale parameters. These theories were used by many researchers for various analyses such as buckling [15], bending [16,17], free vibration [18,19], forced vibration [20], and nonlinear vibration [21].



Rahmanian et al. [22] presented free vibrations of single-walled carbon nanotubes (SWCNT) on a Winkler elastic foundation via nonlocal elasticity theory. In this study, SWCNT was modeled as both beam and shell structures. Demir and Civalek [23] reported thermal vibration formulation of a nonlocal Euler–Bernoulli beam embedded in an elastic matrix. Finite element formulation for Eringen’s nonlocal elasticity theory was employed via Hermitian cubic shape functions. Thermal vibrational behaviors of silicon carbide nanowire on an elastic matrix were investigated for simply supported (S-S) and clamped–clamped (C-C) boundary conditions. Finite element formulations of nonlocal elastic Euler–Bernoulli and Timoshenko beam theories were achieved by Pradhan [24]. Vibration, buckling, and bending analyses of carbon nanotubes with four different boundary conditions were performed by the Galerkin finite element technique. Rajasekaran and Bakhshi Khaniki [25] reported static deformation, stability, and free vibration responses of small-scale beams. A finite element model of axial, functionally graded, nonuniform small-scale beams was investigated by using nonlocal strain gradient theory. Eltaher et al. [26] pursued free vibration analysis of functionally graded Euler–Bernoulli nanobeams by using Eringen’s nonlocal elasticity theory. Finite element results were given for a dynamic analysis of the nanobeam. Nejad and Hadi [27] studied bending analysis of non-homogeneous nanobeams. Eringen’s nonlocal elasticity theory was utilized in Euler–Bernoulli nanobeams made of bi-directional, functionally graded material. Murmu and Pradhan [28] studied the thermo-mechanical vibration response of embedded carbon nanotubes surrounded by an elastic matrix based on nonlocal elasticity theory. Reddy [29] developed nonlocal beam models based on four different beam theories. Static bending, free vibration, and buckling analyses of nanobeams are performed in this study. Tornabene et al. [30] presented a multiscale approach for three-phase carbon nanotube (CNT)/polymer/fiber-laminated nanocomposite structures. Detailed formulations can be found in the literature [31,32,33,34,35] about CNT-reinforcement or the finite element method (FEM). More recently, Uzun et al. [36] investigated the free vibration responses of carbon nanotubes and boron nitride nanotubes based on nonlocal elasticity theory. Nonlocal natural frequencies are obtained for various cross-section geometries.



In the present study, free vibration analysis of three kinds of nanowires resting on a Winkler elastic foundation with various boundary conditions are performed. Simply supported (S-S), clamped simply supported (C-S), clamped–clamped (C-C), and clamped-free (C-F) boundary conditions are selected. Silicon carbide nanowire (SiCNW), silver nanowire (AgNW), and gold nanowire (AuNW) are modeled as nonlocal Euler–Bernoulli beams, and their vibration behaviors are investigated using the finite element method (FEM). A Galerkin weighted residual method is utilized to govern equations and matrices, and the Winkler foundation parameter and small-scale parameter are gained. Effects of boundary conditions, temperature rise, and small-scale and Winkler foundation parameters of frequency values are investigated and compared for three kinds of nanowires.




2. Euler–Bernoulli Nanobeam Resting on a Winkler Elastic Foundation


The nonlocal stress tensor σij at point x is expressed as follows [14]:


σij,j=0,



(1)






σij(x)=∫ΩK(|x′−x|),τ)CijklεkldΩ(x′),



(2)




where K(|x′−x|,τ) is the Kernel function, |x′−x| is the distance in the Euclidean form, τ=e0a/l is a material constant that depends upon the internal characteristic lengths (a) and external characteristic length (l), and e0 is a material constant that is determined experimentally. Cijkl and εkl represent the fourth-order elasticity and the strain tensors, respectively, and Ω is the region occupied by the body.



The nonlocal constitutive formulation is [28]:


[1−τ2l2∇2]σij=Cijklεkl.



(3)




x, y, z depict length, width, and height of the beam, respectively and u1, u2, u3 are the displacements in the x, y, z directions. The displacements for a Bernoulli–Euler beam can be written as below [17]:


u1(x,z,t)=−z∂w(x,t)∂x, u2(x,z,t)=0, u3(x,z,t)=w(x,t).



(4)




εij is the strain tensor, expressed as:


εij=0.5(∂ui,j+∂uj,i).



(5)







From Equation (5) we find the strains of the Euler–Bernoulli beam as follows:


εxx=−z∂2w(x,t)∂x2, εxy=εyx=εxz=εzx=εyy=εyz=εzy=εzz=0.



(6)







Stress σ for the linear elastic materials is expressed as follows:


σ=Eε,



(7)




where E is the elastic modulus of the material. If εxx, the only nonzero component of strain, is written in Equation (7), σxx is obtained as:


σxx=−Ez∂2w(x,t)∂x2.



(8)







Moment (M) and the moment of inertia (I) are given by:


M=∫AzσxxdA, I=∫Az2dA,



(9)




where A represents the cross-section area.



For the transverse vibration of an Euler–Bernoulli beam (shown in Figure 1) resting on a Winkler elastic foundation, the equilibrium conditions are:


∂V(x,t)∂x=−q(x,t)+ρA∂2w(x,t)∂x2+kww(x,t),



(10)






V(x,t)=∂M(x,t)∂x,



(11)






∂2M(x,t)∂x2=−q(x,t)+ρA∂2w(x,t)∂x2+kww(x,t),



(12)




where ρ, q(x,t), and kw are the mass density, distributed load, and Winkler foundation parameter, respectively.



The nonlocal constitutive relations can be simplified in the following form for a one-dimensional case [14,29]:


σxx−(e0a)2∂2σxx∂x2=Eεxx.



(13)







By multiplying z on both sides of Equation (13) and integrating the cross-sectional area of the beam, we obtain:


∫AzσdA−(e0a)2∫Az∂2σ∂x2dA=∫AzEεdA=0.



(14)







Substituting Equations (6) and (9) into (14), we get:


M(x,t)−(e0a)2∂2M(x,t)∂x2=−EI∂2w(x,t)∂x2.



(15)







By differentiating Equation (15) twice with respect to variable x and substituting Equation (12) into Equation (15), we obtain the governing equation for the vibration of an Euler–Bernoulli nanobeam resting on a Winkler elastic foundation, as below:


EI∂4w(x,t)∂x4+ρA∂w2(x,t)∂t2+kww−(e0a)2∂2∂x2[ρA∂2w(x,t)∂t2+kww]=0.



(16)








3. Solution to the Vibration Problem


3.1. Galerkin Weighted Residual Method


The shape function for beam φ is as follows [37,38]:


φ={φ1φ2φ3φ4}={1−3ξ2+2ξ3L(ξ−2ξ2+ξ3)3ξ2−2ξ3L(−ξ2+ξ3)},



(17)




where ξ = x/L is a non-dimensional local coordinate. In order to obtain the weak form of the governing equation of an Euler–Bernoulli nanobeam resting on a Winkler elastic foundation, the residue can be expressed as:


[EI∂4w(x,t)∂x4+ρA∂w2(x,t)∂t2+kww−(e0a)2∂2∂x2(ρA∂2w(x,t)∂t2+kww)]=residue.



(18)







To determine the weighted residue, Equation (18) is multiplied by a weighting function φ. When the weighted residual is integrated over the length:


∫0L[φEI∂4w(x,t)∂x4+φρA∂w2(x,t)∂t2+φkww−φ(e0a)2∂2∂x2(ρA∂2w(x,t)∂t2+kww)]dx=0.



(19)







Equation (19) is integrated by parts. According to the chain rule, in the general form:


∫0L[EI∂2φ∂x2∂2φT∂x2+ρAφφTw¨+kwφφT−(e0a)2ρA∂φ∂x∂φT∂xw¨−(e0a)2kw∂φ∂x∂φT∂x]dx=0.



(20)







By using the shape function in Equation (17) and the non-dimensional local coordinate, bending stiffness matrix Kb, Winkler foundation stiffness matrix Kw, and the mass matrix M, the following are obtained:


Kb=EI∫0L{φ1″φ2″φ3″φ4″}{φ1″φ2″φ3″φ4″}dx;



(21a)






Kb=EIL3[126L−126L6L4L2−6L2L2−12−6L12−6L6L2L2−6L4L2];



(21b)






Kw1=kw∫0L{φ1φ2φ3φ4}{φ1φ2φ3φ4}dx;



(22a)






Kw1=kw420[156L22L254L−13L222L24L313L2−3L354L13L2156L−22L2−13L2−3L3−22L24L3];



(22b)






Kw2=(e0a)2kw∫0L{φ1′φ2′φ3′φ4′}{φ1′φ2′φ3′φ4′}dx;



(23a)






Kw2=(e0a)2kw30L[363L−363L3L4L2−3L−L2−36−3L36−3L3L−L2−3L4L2];



(23b)






M1=ρA∫0L{φ1φ2φ3φ4}{φ1φ2φ3φ4}dx;



(24a)






M1=ρA420[156L22L54L−13L222L24L313L2−3L354L13L2156L−22L2−13L2−3L3−22L24L3];



(24b)






M2=(e0a)2ρA∫0L{φ1′φ2′φ3′φ4′}{φ1′φ2′φ3′φ4′}dx;



(25a)






M2=(e0a)2ρA30L[363L−363L3L4L2−3L−L2−36−3L36−3L3L−L2−3L4L2].



(25b)







The vibration of the Euler–Bernoulli beam is found as follows:


|K−ω2M|=0,



(26)




where K = Kb + Kw1 + Kw2, M = M1 + M2, and ω is frequency.




3.2. Thermal Effect on the Vibrational Response of Embedded Nanowires


Here, the effect of temperature change on the natural frequencies of embedded nanowires in a thermal environment is investigated. Equation (16) can be rewritten in the presence of thermal loading as:


(EI−NT(e0a)2)∂4w∂x4+kww+(NT−kw(e0a)2)∂2w∂x2+ρA∂2w∂t2−ρA(e0a)2∂4w∂x2∂t2=0,



(27)




where the additional term NT is the axial load resulting from the temperature change and can be defined as [28]:


NT=EA1−2vαΔT,



(28)




in which α is the thermal expansion coefficient in the axial direction, ΔT is the temperature change, and v is Poisson’s ratio. It is notable that only an axial load resulting from temperature change exists for the nanowires in this study [28].



The following Navier’s solution procedure is applied to achieve simply supported (S-S) nanowires as an illustrative example:


w(x,t)=∑n=1∞Wnsinβeiωnt,



(29)




where n is the mode number, Wn is the unknown Fourier coefficient, and β=nπxL. Using Equation (29) in Equation (27) yields the following relation for small-scale-dependent natural frequencies of embedded S-S nanowires that includes the thermal effect:


ωn=β4(EI−NT(e0a)2)+kw−β2(NT−kw(e0a)2)ρA(1+β2(e0a)2).



(30)









4. Results and Discussion


In this section, frequency values of nanowires were obtained with various non-dimensional small-scale parameters (e0a/L), different non-dimensional Winkler foundation parameters (KW), different boundary conditions, and different number of elements (N). The material properties for the three nanowires are listed in Table 1. The results obtained were shown in tables and graphs. The dimensionless Winkler parameter used for the results is expressed as the formula below:


KW=kwL4EI.



(31)







Table 2 presents the natural frequencies of nanowires with C-C, C-S, S-S, and C-F boundary conditions. Finite element solutions for the three nanowires were compared with each other. It was clearly observed from the table that the highest frequency value occurred for both SiCNW and the C-C boundary condition, while the lowest value was seen in both AuNW and C-F boundary conditions.



Table 3, Table 4, Table 5 and Table 6 show natural frequencies of embedded simply supported nanowires for KW = 1, KW = 10, KW = 100, and KW = 1000, respectively, with different e0a/L values. It was found from these tables that frequency values increased as KW values increased, but frequencies decreased by increasing e0a/L. Moreover, it was evident that small-scale effects became more considerable for higher modes.



In Table 7, the frequency values of C-C nanowires are given by analytical and finite element solutions for e0a/L = 0.2. For the finite element solution, as the element number increased, the results approached the real value.



Effects of both temperature rise and the Winkler parameter on the first three natural frequencies of nanowires are revealed in Table 8. It is apparent from the table that an increase temperature rise led to a decrease in frequency, contrary to the Winkler parameter. Also, it can be emphasized that the frequencies of AuNW were more affected than the other nanowires because of their related material properties, given in Table 1. Moreover, it can be observed that the influence of temperature rise was more prominent for lower modes and smaller Winkler parameters.



Effects of nanoscale and foundation parameters on the first five natural frequencies are respectively depicted in Figure 2 and Figure 3. It can be concluded from these figures that size dependency was more pronounced for higher modes, while the natural frequencies in lower modes were more affected from foundation parameters. As stated before, it was clear that the natural frequencies decreased and increased by increasing e0a/L and KW, respectively.



Figure 4 displays the variation of fundamental frequencies of the three embedded nanowires with respect to temperature rise for various small-scale parameter values. It can be recognized from the figure that the effect of e0a/L was more prominent for SiCNW than the other ones. On the other hand, the influence of temperature rise was more significant for gold and silver nanowires than the silicon carbide nanowire.




5. Conclusions


Three types of nanowires, SiCNW, AgNW, and AuNW, are modeled as nonlocal Euler–Bernoulli nanobeams resting on a Winkler elastic foundation. Frequency values of these nanowires are obtained via a finite element solution, and results are given by tables and graphs. The effect of temperature change on the vibrational responses of simply supported nanowires is also examined as a case study. It can be concluded from the results that among all boundary conditions, C-C has the highest frequency values and C-F has the lowest ones. Also, it can be emphasized that by increasing the Winkler parameter value, frequency values increase, while by increasing non-dimensional small-scale parameter (e0a/L), frequency value decreases. When we compare the frequency values of nanowires, SiCNW has the highest frequency values, while AuNW has the lowest frequency values because of its different material properties. Additionally, it is revealed that the effects of temperature change and small-scale parameters on the frequencies of nanowires are both considerable and negligible depending on the values of the involved material properties.
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Figure 1. Euler–Bernoulli beam resting on a Winkler foundation. 
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Figure 2. Variation of the first five natural frequencies of nanowires with respect to e0a/L. 
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Figure 3. Effect of the Winkler parameter on the first five natural frequencies of nanowires. 
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Figure 4. Variation of the fundamental frequency for several e0a/L against temperature rise (L = 30 d, Kw = 1000). 
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Table 1. Material properties of the nanowires.
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	Material Properties
	SiCNW
	AuNW
	AgNW





	E(GPa)
	524.8
	79
	82.7



	v
	0.14
	0.42
	0.37



	ρ(kg/m3)
	3100
	19,320
	10,490



	α(1/℃)
	3.7 ×10−6
	14.2 ×10−6
	19.68 ×10−6
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Table 2. The first three natural frequencies (GHz) of isolated nanowires for four different boundary conditions (KW = 0, e0a/L = 0.1).
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Mode Number

	
SiCNW




	
C-C

	
C-S

	
S-S

	
C-F




	
1

	
21.8286

	
15.0969

	
9.7369

	
3.5540




	
2

	
52.7211

	
43.2195

	
34.5672

	
19.7887




	
3

	
88.6384

	
77.4034

	
66.8450

	
48.0785




	
Mode Number

	
AuNW




	
C-C

	
C-S

	
S-S

	
C-F




	
1

	
3.3525

	
2.3186

	
1.4954

	
0.5458




	
2

	
8.0970

	
6.6378

	
5.3089

	
3.0392




	
3

	
13.6133

	
11.8878

	
10.2662

	
7.3840




	
Mode Number

	
AgNW




	
C-C

	
C-S

	
S-S

	
C-F




	
1

	
4.6550

	
3.2195

	
2.0764

	
0.7579




	
2

	
11.2430

	
9.2167

	
7.3716

	
4.2200




	
3

	
18.9025

	
16.5066

	
14.2550

	
10.2529
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Table 3. The first three natural frequencies (GHz) of embedded nanowires corresponding to various values of e0a/L (KW = 1).
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Mode Number

	
SiCNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
10.2583

	
9.7916

	
8.7034

	
7.4989




	
2

	
40.8373

	
34.5827

	
25.4413

	
19.1602




	
3

	
91.8603

	
66.8530

	
43.0600

	
30.6452




	
Mode Number

	
AuNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
1.5755

	
1.5038

	
1.3367

	
1.1517




	
2

	
6.2719

	
5.3113

	
3.9073

	
2.9427




	
3

	
14.1081

	
10.2675

	
6.6133

	
4.7066




	
Mode Number

	
AgNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
2.1876

	
2.0881

	
1.8560

	
1.5992




	
2

	
8.7087

	
7.3749

	
5.4255

	
4.0860




	
3

	
19.5896

	
14.2567

	
9.1827

	
6.5352
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Table 4. The first three natural frequencies (GHz) of embedded nanowires for various values of e0a/L (KW = 10).






Table 4. The first three natural frequencies (GHz) of embedded nanowires for various values of e0a/L (KW = 10).





	
Mode Number

	
SiCNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
10.7171

	
10.2713

	
9.2398

	
8.1152




	
2

	
40.9550

	
34.7215

	
25.6298

	
19.4097




	
3

	
91.9126

	
66.9249

	
43.1716

	
30.8018




	
Mode Number

	
AuNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
1.6460

	
1.5775

	
1.4191

	
1.2464




	
2

	
6.2900

	
5.3326

	
3.9363

	
2.9810




	
3

	
14.1162

	
10.2785

	
6.6304

	
4.7306




	
Mode Number

	
AgNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
2.2855

	
2.1904

	
1.9704

	
1.7306




	
2

	
8.7338

	
7.4045

	
5.4656

	
4.1392




	
3

	
19.6007

	
14.2720

	
9.2065

	
6.5686
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Table 5. The first three natural frequencies (GHz) of embedded nanowires with respect to various values of e0a/L (KW = 100).
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Mode Number

	
SiCNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
14.5292

	
14.2035

	
13.4764

	
12.7318




	
2

	
42.1135

	
36.0808

	
27.4431

	
21.7480




	
3

	
92.4347

	
67.6401

	
44.2722

	
32.3263




	
Mode Number

	
AuNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
2.2314

	
2.1814

	
2.0697

	
1.9554




	
2

	
6.4679

	
5.5414

	
4.2148

	
3.3401




	
3

	
14.1964

	
10.3883

	
6.7994

	
4.9648




	
Mode Number

	
AgNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
3.0984

	
3.0290

	
2.8739

	
2.7151




	
2

	
8.9809

	
7.6944

	
5.8524

	
4.6379




	
3

	
19.7121

	
14.4245

	
9.4412

	
6.8937
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Table 6. The first three natural frequencies (GHz) of embedded nanowires against various values of e0a/L (KW = 1000).






Table 6. The first three natural frequencies (GHz) of embedded nanowires against various values of e0a/L (KW = 1000).





	
Mode Number

	
SiCNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
34.2564

	
34.1196

	
33.8234

	
33.5336




	
2

	
52.3064

	
47.5839

	
41.4190

	
37.8864




	
3

	
97.5017

	
74.4150

	
54.0595

	
44.8040




	
Mode Number

	
AuNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
5.2612

	
5.2402

	
5.1947

	
5.1502




	
2

	
8.0333

	
7.3081

	
6.3612

	
5.8187




	
3

	
14.9746

	
11.4288

	
8.3026

	
6.8811




	
Mode Number

	
AgNW




	
e0a/L




	
0.0

	
0.1

	
0.2

	
0.3




	
1

	
7.3053

	
7.2761

	
7.2130

	
7.1512




	
2

	
11.1545

	
10.1475

	
8.8328

	
8.0794




	
3

	
20.7926

	
15.8693

	
11.5284

	
9.5546
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Table 7. Convergence of the present results with the analytical results of different element numbers.
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Mode Number

	
SiCNW




	
N = 4

	
N = 5

	
N = 6

	
N = 7

	
N = 8

	
N = 9

	
N = 10

	
Analytical




	
1

	
18.9418

	
18.9252

	
18.9189

	
18.9162

	
18.9148

	
18.9141

	
18.9137

	
18.9129




	
2

	
38.0339

	
37.8398

	
37.7549

	
37.7155

	
37.6955

	
37.6845

	
37.6781

	
37.6656




	
3

	
56.8236

	
57.2104

	
56.8478

	
56.6515

	
56.5467

	
56.4878

	
56.4529

	
56.3826




	
Mode Number

	
AuNW




	
N = 4

	
N = 5

	
N = 6

	
N = 7

	
N = 8

	
N = 9

	
N = 10

	
Analytical




	
1

	
2.9091

	
2.9066

	
2.9056

	
2.9052

	
2.9050

	
2.9049

	
2.9048

	
2.9047




	
2

	
5.8413

	
5.8115

	
5.7985

	
5.7924

	
5.7894

	
5.7877

	
5.7867

	
5.7848




	
3

	
8.7271

	
8.7865

	
8.7308

	
8.7007

	
8.6846

	
8.6755

	
8.6702

	
8.6594




	
Mode Number

	
AgNW




	
N = 4

	
N = 5

	
N = 6

	
N = 7

	
N = 8

	
N = 9

	
N = 10

	
Analytical




	
1

	
4.0394

	
4.0359

	
4.0345

	
4.0340

	
4.0337

	
4.0335

	
4.0334

	
4.0332




	
2

	
8.1109

	
8.0695

	
8.0514

	
8.0430

	
8.0387

	
8.0364

	
8.0350

	
8.0323




	
3

	
12.1179

	
12.2003

	
12.1230

	
12.0811

	
12.059

	
12.0462

	
12.0388

	
12.0238
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Table 8. The first three small-scale-dependent natural frequencies (GHz) of embedded nanowires for different Winkler parameters and temperature changes (e0a/L = 0.1, d = 1 nm, and L = 20 d).






Table 8. The first three small-scale-dependent natural frequencies (GHz) of embedded nanowires for different Winkler parameters and temperature changes (e0a/L = 0.1, d = 1 nm, and L = 20 d).





	
Mode Number

	
SiCNW




	
ΔT=0

	
ΔT=30 ℃




	
Kw = 100

	
Kw = 500

	
Kw = 1000

	
Kw = 100

	
Kw = 500

	
Kw = 1000




	
1

	
17.7768

	
31.4013

	
42.7034

	
17.3120

	
31.1405

	
42.5119




	
2

	
45.1580

	
52.0507

	
59.5551

	
44.4297

	
51.4201

	
59.0047




	
3

	
84.6569

	
88.5259

	
93.1362

	
83.7854

	
87.6928

	
92.3448




	
Mode Number

	
AuNW




	
ΔT=0

	
ΔT=30 ℃




	
Kw = 100

	
Kw = 500

	
Kw = 1000

	
Kw = 100

	
Kw = 500

	
Kw = 1000




	
1

	
2.7628

	
4.8802

	
6.6368

	
0.9103

	
4.1246

	
6.1026




	
2

	
7.0182

	
8.0895

	
9.2558

	
4.6945

	
6.1824

	
7.6454




	
3

	
13.157

	
13.7583

	
14.4748

	
10.5767

	
11.3159

	
12.177




	
Mode Number

	
AgNW




	
ΔT=0

	
ΔT=30 ℃




	
Kw = 100

	
Kw = 500

	
Kw = 1000

	
Kw = 100

	
Kw = 500

	
Kw = 1000




	
1

	
3.8362

	
6.7764

	
9.2153

	
1.8782

	
5.8932

	
8.5868




	
2

	
9.7450

	
11.2325

	
12.8519

	
7.0859

	
9.0229

	
10.9734




	
3

	
18.2689

	
19.1038

	
20.0987

	
15.2661

	
16.2559

	
17.4143
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