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Abstract: Predictive analysis of epidemics often depends on the initial conditions of the outbreak, the
structure of the afflicted population, and population size. However, disease outbreaks are subjected
to fluctuations that may shape the spreading process. Agent-based epidemic models mitigate the
issue by using a transition matrix which replicates stochastic effects observed in real epidemics. They
have met considerable numerical success to simulate small scale epidemics. The problem grows
exponentially with population size, reducing the usability of agent-based models for large scale
epidemics. Here, we present an algorithm that explores permutation symmetries to enhance the
computational performance of agent-based epidemic models. Our findings bound the stochastic
process to a single eigenvalue sector, scaling down the dimension of the transition matrix to o(N2).

Keywords: Markov processes; computational methods; epidemic models; complex systems;
nonlinear dynamics

1. Introduction

In recent years, the emergence of Zika and Ebola viruses have attracted much attention from the
scientific community after reports of their aggressive effects, respectively, microcephaly in newborns [1]
and high mortality rate [2–4]. Despite their intrinsic differences concerning transmission mechanisms
and pathogen-host interaction, both viruses spread in a population starting from a few infected
individuals, based on their geographic location and network of contacts. Contact tracing and proper
clinical care planning are critical parts of the WHO strategic plan [5] to mitigate ongoing transmissions
and incidence cases, requiring the correct spatiotemporal dissemination of the disease. This assertion
has renewed the interest in agent-based epidemic models (ABEM).

ABEM are mathematical models that describe the evolution of infectious diseases among a finite
number N of agents over time (see Reference [6] for an extensive review). For that purpose, agents are
labeled using integer numbers k = 0, 1, . . . , N − 1, whereas contacts between agents are mapped via
an adjacency matrix A. The matrix elements are Aij = 1 if the j-th agent connects to the i-th agent and
otherwise vanishes. Accordingly, the set formed by agents and their interconnection is expressed as a
graph, as depicted in Figure 1. In this way, heterogeneity arises naturally since the individuality of
agents is taken into account, distinguishing ABEM from compartmental epidemic models [7–9].
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Figure 1. Agent network. Agents (vertices) and their interconnections (edges) are expressed as a graph.
The graph representation introduces heterogeneity among the agents, which must be accounted for
during disease spreading.

The susceptible-infected-susceptible model (SIS) is the simplest ABEM. It considers only two
health states for agents, infected |1〉 or susceptible |0〉, and the occurrence of the following events
during a time interval δt [10,11]. An infected agent may undergo a recovery event and return to
susceptible state with probability γ; an infected agent may infect a susceptible agent with transmission
probability β if and only if both agents are connected; or remains unchanged, as Figure 2 illustrates.
Therefore, the SIS ABEM is inherently a Markov process in discrete time. The time interval δt is often
chosen so that sequential recovery-recovery or transmission-recovery events are unlikely within the
available time window. This is the so-called Poissonian hypothesis [12–15].

Figure 2. Susceptible-infected-susceptible model (SIS) transition events. Infected agents (red dotted)
undergo recovery events with probability γ and change to susceptible (empty) health status. Infected
agents may also infect additional susceptible agents with probability β, as long they are connected.

Following Reference [16], any configuration of N agents is obtained by direct composition of
individual agent states. Let µ be an integer that labels the µ-th configuration so that:

|µ〉 ≡ |nN−1 · · · n1 n0〉 , (1)

with nk = 0, 1 and µ = nN−12N−1 + · · ·+ n020. A simple example for N = 4 is |8〉 ≡ |1000〉, which
represents the configuration where only the agent k = 3 is infected. From this scheme, it is already
clear that there exist 2N configurations in total since there are two available states for each agent.
In what follows, we employ the notation: Latin indices enumerate agents 0, 1, . . . , N − 1, while Greek
indices enumerate configuration states 0, 1, . . . , 2N − 1.

Let |π(t)〉 be the probability vector and πµ(t) = 〈µ|π(t)〉 the probability of observing the
configuration |µ〉 at time t [17,18]. The master equation for the general Markov process reads:

d
dt

πµ(t) = −∑
ν

Hµνπν(t), (2)

Ĥ = (1− T̂)/δt is the step operator, whereas T̂ stands for the transition matrix [19]. The transition
matrix T̂ encodes all transitions available between any two configuration vectors. Its matrix elements
Tµν are constructed from much simpler rules. These rules are model dependent and fully characterize
the stochastic model, as we shall see in details later. If a representation of T̂ is known, the solution
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of the master equation provides the instantaneous values of the probabilities πµ(t), i.e., the entire
probability distribution function. Therefore, it becomes possible to calculate any relevant statistics of
the problem at any instant of time, including those that may not be easily accessible or accurate by
other numerical methods, such as the instantaneous Shannon entropy or the characteristic function.

Luckily, for time independent T̂, the solution is well known:

|π(t)〉 = e−Ĥt|π(0)〉 . (3)

Despite the existence of this exact solution, the applicability of Equation (3) at this stage is limited to
small population sizes N ∼ O(20). The reason is the exponential growth of the underlying vector space
with N. Here, we present algorithms to generate the operators T̂ and Ĥ using finite symmetries or,
equivalently, permutation symmetries via Cayley’s theorem [20]. These algorithms are usually applied
to condensate matter physics [21,22], but they may also be employed in epidemiology studies, due to
recent developments in the disease spreading dynamics [16]. For pedagogical reasons, we first show
how to build the complete 2N vector space and the corresponding transition matrix. Next, we explore
cyclic permutations to construct the cyclic vector space, in which T̂ is broken down into N smaller
blocks. Lastly, we consider the most symmetric cases, which reduce the problem to O(N). These
instances correspond to the mean field or averaged networks. The iteration of sparse T̂ over |π(t)〉
produces the desired disease evolution among agents. Relevant steps are shown in Algorithm A1..

2. Transition Matrix

The transition matrix T̂ for an SIS model considering N two-state agents is [16]:

T̂ = 1− β ∑
kj

[
Ajk(1− n̂j − σ̂+

j ) + Γδkj(1− σ̂−j )
]

n̂k , (4)

where Γ = γ/β, δkl is the Kronecker delta, n̂k|nk〉 = nk|nk〉 , is the local number operator (nk =

0, 1), and σ̂+
k |nk〉 = δnk ,0|1k〉 , σ̂−k |nk〉 = δnk ,1|0k〉 are the Pauli raising and lowering local operators,

respectively. Local algebraic relationships are [n̂k, σ̂±k′ ] = ±δk′k and [σ̂+
k , σ̂−k′ ] = δk′k(2n̂k−1). Inspection

of Equation (4) readily shows T̂ is not Hermitian. This means left- and right-eigenvectors are not related
by Hermitian conjugation. In this scenario, the correct time evolution of πµ(t) using Equation (3)
requires the complete eigendecomposition, i.e., 2N eigenvalues accompanied by 2N right-eigenvectors
and 2N left-eigenvectors. This is often the main criticism against ABEM [12].

However, the scenario described above is not entirely correct. The rationale behind it assumes all
eigenstates are equally relevant, which is incorrect whenever A exhibits invariance upon the action
of a particular group (sets of transformations). Symmetries allow the matrix representation of T̂
to be in block diagonal form, as depicted in Figure 3. Eigenvectors related to each block share the
same eigenvalue (degeneracy), as usual in quantum mechanics [23]. Therefore, the trick to simplify
problems involving the transition matrix lies in the selection of the appropriate basis in respect to a
given symmetry, creating matrix representations with smaller blocks. The computational performance
using this methodology surpasses that of working with the full matrix because each block can be
treated separately, reducing memory storage and access. In particular, if only a few blocks are relevant
to the analysis, the remaining blocks can be neglected. This property often produces massive reductions
in the typical dimensions of the problem, enhancing computation times.
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a) b)

Figure 3. Reduction of the transition matrix to block diagonal form. (a) In the configurational vector
space, {|µ〉}, the matrix representation of T̂ lacks an explicit mathematical pattern. (b) The emergence of
organizational patterns are observed whenever symmetries of T̂ are correctly addressed by employing
the eigenvectors {ψ} and eigenvalues {λ} corresponding to the symmetry group considered. Under
the invariant basis {ψ}, the matrix representation of T̂ is brought to a block diagonal form, with blocks
labeled by eigenvalues {λ}.

In the SIS model, recovery events result from actions of one-body operators, σ̂−k n̂k ≡ σ̂−k , on
configuration vectors. Infection events are two-body operators: one infected agent may transmit the
communicable disease to a susceptible agent after interaction between them, in the time interval δt.
Interestingly, the resulting interaction also depends on symmetries available to the adjacency matrix A.
The symmetries available to A may be further explored to assemble the initial vector space, reducing T̂
to its block diagonal form.

Group operations over A are always finite transformations. One may explore the isomorphism
between finite groups and the permutation group via Cayley theorem [20] to build permutation
invariant subspaces. To that end, one must select the finite group and the corresponding symmetry. For
graphs, the circular representation provides a convenient context to explore the existing symmetries,
as Figure 4a depicts. From Figure 4b, connections among agents remain unchanged after cyclic
permutation of agents, hence, A exhibits invariance under cyclic permutations. Cyclic permutations
form a subset of permutation group and often represent geometric transformations, such as rotations
and translations.

(a) (b)

Figure 4. Regular graph in circular representation for N = 8 and single infected agent (red dotted). (a)
The infected agent lies at node k = 0. (b) Graph obtained from cyclic permutation of nodes k→ k + 1
and N − 1→ 0. Connections remain unchanged.



Math. Comput. Appl. 2019, 24, 44 5 of 17

Vectors with N agents and invariant by cyclic permutations are built as follows. Consider the
representative vector:

|µp〉 ≡
1
Nµ

N−1

∑
k=0

(
e2iπp/N P̂

)k
|µ〉 , (5)

where Nµ is the normalization and P̂ is the single step cyclic permutation with p = 0, 1, . . . , N − 1.
The eigenvalues e−2iπp/N are derived from P̂N = 1. Eigenvalues can be associated with invariant
subspaces, or sectors, spanned by their corresponding eigenvectors. For the sake of convenience,
the integer p labels the eigenvalue sector. The representative vector |µp〉 describes the linear
combination of N-agent configurations related to |µ〉 by cyclic permutations. For instance, |30〉 =
(|011〉+ |110〉+ |101〉) /

√
3 corresponds to the representative vector for µ = 3, with N = 3 in the

p = 0 sector. By construction, the vectors |µp〉 satisfy the eigenvalue equation P̂|µp〉 = e−2iπp/N |µp〉.
They are also useful to identify symmetries, as they never change link distributions, only node labels.
If T̂ is symmetric under cyclic permutations, T̂ and P̂ commute with each other [T̂, P̂] = 0, meaning
they share a common set of eigenvectors. Thus, T̂ can be written using |µp〉 and, more importantly,
transitions between eigenvectors with distinct eigenvalues are prohibited. This feature leads to a block
diagonal form to the matrix representation of T̂.

3. Cyclic Vector Space

The complete picture of infection dynamics generated by the SIS model requires the utilization of
2N configuration vectors. For completeness sake, we discuss the algorithm to obtain the vector space
using both string and numeric representations. Matrix elements of T̂ in Equation (4) are calculated
from an adjacency matrix and user input dictionary (lookup table) based on off-diagonal transition
rules.

According to Equation (1), the configuration vector |µ〉 is obtained from the binary representations
of the labels µ, as exemplified in Figure 5. There are two common equivalent routes to implement the
configuration in computer codes. The first method employs string objects whereas the second method
makes use of discrete mathematics. The second approach tends to be more efficient for two-state
problems as optimized and native libraries for binary operations are widely available. For pedagogical
purposes and generalization for more than two-states, we avoid exclusive binary operations in favor
of usual discrete integer division and modulo operations.

Figure 5. Agent configurations using binary representation for µ = 3 and 5 with N = 4. For
|µ = 3〉 = |0011〉, whereas |µ = 5〉 = |0101〉. In both configurations, two agents are infected (red
dotted).
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In Python programming language, classes provide a convenient mechanism to enable both
formalisms for each instanced object (vector). Here, the custom class SymConf is used to encapsulate
two instance variables: label stores the string representation of N agents, while label_int stores the
corresponding integer number. In addition, the custom class also encapsulates three global class
variables, base, dimension, and basemax, whose default values are 2, N, and 2N . Base corresponds to
the number of available states per agent. The class main method generates the eigenvectors |µp〉 with
eigenvalue exp(−2iπp/N), relative to the cyclic permutation operator P̂ using Equation (5).

In what follows, we address four relevant points regarding the permutation eigenvectors |µp〉,
namely, the criteria used to label eigenvectors; normalization; number of infected agents; and the
permutation operation.

Labels. Equation (5) claims permutation eigenvectors are a linear combination of all configuration
vectors related by cyclic permutations. Here, we set the convention to adopt the smallest value µ

present in the linear combination to label the representative vector. As examples, consider the following
representatives of µ = 1, N = 4, and p = 0, 1, 2, 3:

|10〉 =
|0001 = 1〉+ |0010 = 2〉+ |0100 = 4〉+ |1000 = 8〉√

4
. (6a)

|11〉 =
|1〉+ i|2〉 − |4〉 − i|8〉√

4
. (6b)

|12〉 =
|1〉 − |2〉+ |4〉 − |8〉√

4
. (6c)

|13〉 =
|1〉 − i|2〉 − |4〉+ i|8〉√

4
. (6d)

The order convention is necessary to calculate the relative phase between configurations related
by permutations in non-trivial linear combinations. For instance, consider the vector |φ〉 =

P̂|µp〉 = (1/Nµ)∑k(e2iπp/N P̂)k P̂|µ〉. Since |µp〉 and |φ〉 are related by a single cyclic permutation,
they differ by a phase factor: |φ〉 = e−2iπp/N |µp〉. Note that the linear combination P̂|µp〉+ |µp〉 =
(1 + e−2iπp/N)|µp〉 vanishes for p = N/2. Despite the simplicity of the previous example, it already
illustrates the relevance of phase difference among cyclic vectors.

Normalization. According to Equation (5), the squared norm of representative vectors is:

〈µp|µp〉 =
1
Nµ

N−1

∑
k=0

e−2iπpk/N〈µ|P̂−k|µp〉 =
N
Nµ
〈µ|µp〉 . (7)

The evaluation of the scalar product 〈µ|µp〉 follows directly from Equation (5). One notices the
configuration |µ〉may appear only once for several linear combinations |µp〉, so that 〈µ|µp〉 = 1/Nµ.
For instance, this is the case of 〈1|1p〉. However, a given configuration |µ〉may contribute more than
once if there exists an integer 1 ≤ r ≤ N such that P̂r|µ〉 = |µ〉, i.e., after r cyclic permutations the
configuration repeats itself. Since P̂N = 1, it follows N/r is the number of times the configuration |µ〉
appears in |µp〉. Each contribution adds e2iπpm/N/Nµ (m = 0, 1, . . . , N/r− 1) in Equation (7). This
result is conveniently summarized using the repetition number:

Rµ,p =
N/r−1

∑′

m=0
(e2iπp r/N)m, (8)

where the primed sum indicates N/r in the upper limit is an integer number. Therefore, 〈µ|µp〉 =
Rµ,p/Nµ and one obtains Nµ =

√
NRµ,p from Equation (7).

We now show two examples to consolidate the discussion around Rµ,p and Nµ, for N = 4 and
two infected agents. The configuration state |3〉 = |0011〉 requires N cyclic permutations to repeat
itself, so that R3,p = 1 for any p and the corresponding normalization for |3p〉 is simply N3 =

√
N, as
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expected. The first non-trivial case arises for |5p〉 because the base configuration |5〉 = |0101〉 satisfies
P̂2|5〉 = |5〉. According to Equation (8), R5,p = 1 + e4iπp/N and assume only values: R5,0 = R5,2 = 2
and R5,1 = R5,3 = 0. Thus, depending on p, certain linear combinations are forbidden because they
produce vectors with null norm, ensuring the correct dimension of vector space. The remaining
non-null states for N = 4 are shown in Table 1 for further reference.

Table 1. Cyclic permutation eigenvectors with N = 4 agents. The first column shows the number of
infected agents in the eigenvector. Each remaining column corresponds to a permutation sector p,
and each row the corresponding state |µp〉. The cross symbol indicates null-normed vector and the
dimension of the vector space is d = 24.

n p = 0 p = 1 p = 2 p = 3

0 |00〉 × × ×
1 |10〉 |11〉 |12〉 |13〉
2 |30〉 |31〉 |32〉 |33〉
2 |50〉 × |52〉 ×
3 |70〉 |71〉 |72〉 |73〉
4 |150〉 × × ×

Number of Infected Agents. The number of infected agents using representative vectors is
calculated as:

〈n̂〉µ = ∑
k
〈µp|n̂k|µp〉. (9)

In the string representation, native string methods, such as count(’x’), count the number agents with
health state x = 0, 1, 2 . . .. If native methods are unavailable, one may always perform a comparative
loop over the string. Algorithm A2. explains the standard procedure to count bits in the integer
representation. It is worth mentioning that the operator ∑k n̂k commutes with P̂.

Permutation. Cyclic permutations are the core transformations here. In the string representation,
cyclic permutations consist of one copy and one concatenation call, as exemplified in Figure 6a.

(a) (b)

Figure 6. Cyclic permutation for configuration µ = 9 with N = 4. (a) String representation executes
one copy and one concatenation operation; (b) integer representation requires both integer division
and modulo operation by 2N .

Meanwhile, in the integer representation, cyclic permutations are obtained using modulo and
integer division: µ′ = (2µ % 2N) + (2µ//2N), the new configuration µ′ is obtained from configuration
µ taking the modulo of 2µ by 2N in addition to the result of the integer division 2µ by 2N . Multiplication
by the number of available states translates bit fields to the left. The modulo operation crops
contributions larger than those available to N-bit fields. Integer division 2µ/2N selects the bit associated
to largest binary position and shifts it to the lowest binary position (see Figure 6b).

Next, we focus our attention on the sector with p = 0, which plays an important role in epidemic
models (see Section 5 for further discussion). This invariant subspace holds only symmetric linear
combinations of configuration vectors. Incidentally, that also means that configurations with short
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cycles—or large repetition numbers—can only have representative vectors with non-vanishing norms
iff p = 0. The most important cases are: a) the all-infected configuration |111 · · · 1〉, and b) disease-free
configuration |000 · · · 0〉. This occurs because these two configurations are invariant by every cyclic
permutation available, including a single cyclic permutation (short cycle). As a direct consequence, the
probability of disease eradication, π0(t), and the probability that the disease has infected each element
of the population, π2N−1(t), can only be evaluated at p = 0. Moreover, this sector holds the largest
dimension being the worst scenario for numerical computations.

To construct the vectors for this particular sector, consider each integer µ in [0, 2N) as a potential
candidate to assemble the symmetric vector spaces for fixed p. By performing N− 1 cyclic permutations
over |µ〉, one determines the representative state |µp〉 in Equation (5), as well as the number of
repetitions Rµ,p, hence the normNµ. Algorithm A3. calculates the representative vector |µp〉 associated
with configuration |µ〉. Due to the order convention adopted here, the string representation must be
converted to the integer representation at the if -clause test. The representative configurations are then
stored either in a list or dictionary. As an additional benefit, since vector spaces are independent of the
problem at hand, the set of representatives may also be stored in a database for further use in different
problems, as long as they are subjected to the same symmetry.

4. Matrix Elements

The next step is the evaluation of the transition matrix in the sector p = 0. Infection and recovery
dynamics are the main actors in this context, as they inform the way representative vectors |µ0〉 interact
with each other, T̂|µ0〉 = ∑′{ν} Tνµ|ν0〉. The prime indicates the sum runs over all eigenvectors in the
p = 0 sector, while cyclic permutation invariance implies:

T̂|µ0〉 =
1
Nµ

N−1

∑
k=0

P̂k T̂|µ〉 . (10)

Equation (10) tells us the action of T̂ on the linear combination |µ0〉 is calculated from the simpler
operation T̂|µ〉. The resulting vectors are then permuted, producing the corresponding matrix elements.
The practical advantages of this method come from the order of the operations: By doing the transitions
first and then finding the respective representatives, one divides the workload by a factor N. If the
normal ordering were used instead, one would evaluate the transitions for each element of the linear
combination and then find the corresponding representative, hence N times the number of operations
required with transition first. For instance, consider T̂|70〉 for N = 3:

T̂|70〉 =
1
N7

2

∑
k=0

P̂kT̂|7〉 = γ

N7

2

∑
k=0

P̂k (|3〉+ |5〉+ |6〉)

=
γ

N7

2

∑
k=0

P̂k
(
|3〉+ P̂|3〉+ P̂2|3〉

)
=

(
3γ
N3

N7

)
|30〉 (11)

=
√

3γ|30〉.

The relevant data structure for T̂ are the off-diagonal transitions, which are further subdivided
into two categories: one or two-body contributions. This is illustrated in Figure 7 for the SIS model.
The finite set of transition rules are passed as a lookup table or, if available, a dictionary. Data is
organized as follows: Each entry represents a one or two-body configuration whose value corresponds
to one tuple. Each tuple holds two immutable values: the configuration to which the entry transitions
to and the assigned coupling strength.
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Figure 7. Off-diagonal transitions in the SIS model. Data structure follows the income-outcome
convention. Data entries represent the current one-body (two-body) health state, whereas
the corresponding data values, organized as tuples, express the outcome one-body (two-body)
configuration and coupling strength.

With off-diagonal transition rules in hand, one-body actions are evaluated by scanning each agent
and applying the corresponding transition rule in Algorithm A4.. The resulting one-body transitions
are stored in the outcome variable. Figure 8 depicts an example for N = 3 and one infected agent
at k = 1. Two-body operators differ from their one-body counterparts due to the fact they require
two agent loops and information from the adjacency matrix A, as seen in Algorithm A5.. Figure 9
exhibits an example for N = 3. After both one- and two-body transitions are computed, the diagonal
element is obtained via probability conservation: Tµµ = 1−∑′µ 6=ν Tµν. The process is iterated until all
eigenvectors and their respective transitions are accounted.

Figure 8. Recovery operator action on configuration vector |2〉, in the SIS model with N = 3.
Non-vanishing transition is observed only for agent k = 1, which is infected, producing |0〉.



Math. Comput. Appl. 2019, 24, 44 10 of 17

Figure 9. Infection operator action on configuration vector |2〉, in the SIS model with N = 3 and
mean field network. Disease transmission events are evaluated for each pair of agents. Whenever
the pair health state differs, and the pair also shares one connection expressed by the adjacency
matrix, the configuration changes to contemplate the recently infected individual. For |2〉, k = 1 agent
contaminates k = 0 (k = 2) agent, producing the configuration |3〉 ( |6〉 ).

5. Casimir Vector Space

The recent advances in the disease spreading dynamics in realistic populations are intimately
linked to network theory [12,24]. Networks are traditionally associated with graphs holding a large
number of nodes and links [25]. The graph must be large enough to produce a degree distribution,
which describes the probability distribution of links per node. The degree distribution, or alternatively
its statistical moments, characterizes the network type and its properties. However, some networks,
including random networks, require an ensemble of graphs to provide an accurate picture. Thus, a
graph becomes a sample or realization of the network. Statistical properties of networks are derived
for each graph, followed by ensemble average and deviation. In practice, when graphs in the ensemble
are large enough (N � 1) and representatives, statistics may also be evaluated for each graph and
extrapolated as those of the network.

Two cases hold particular importance for applications of network theory in epidemic models: the
mean field and random networks. In the first case, all agents are connected, meaning one infected
agent may potentially infect anyone. Hence, the disease tends to spread faster than in constrained
networks. Furthermore, all graphs in the mean field ensemble share the same adjacency AMF. In the
other case, the connection between agent i and j occurs with fixed probability ρ. However, graphs in
the random network ensemble differ from each other. Here, we only consider ensemble averages as a
way to extract statistical properties, which is equivalent to set Arandom

ij = ρ (1− δij) = ρAMF
ij . Thus, all

relevant symmetries lie only in the mean field adjacency matrix AMF. Naturally, AMF remains invariant
under cyclic permutations, enabling the application of the algorithm explained in the previous sections.
However, AMF is also symmetric under the action of any permutation, which drastically reduces the
diagonal blocks of T̂ from O(2N/N) to O(N).

Here, our primary concern is to employ the cyclic permutation eigenvectors |µp〉 to generate the
eigenvectors of the complete permutation group, |s, m; p〉. The eigenvectors |s, m; p〉 reduce T̂ in mean
field or random networks to block diagonal form with dimension O(N). The indices s and m may
assume the following values s = N/2, N/2− 1, . . . with s > 0 and m = −s,−s + 1, . . . , s, respectively.
The relationship between s and m are the same as those observed for quantum spin operators. The
explanation goes as follows. As shown in Reference [16], Equation (4), in either mean field or random
networks, contains operators Ŝ± ≡ ∑k σ̂±k and n̂ ≡ ∑k n̂k. From the important relation n̂ = Ŝz + N/2,
one retains spin operators and the upper bound s = N/2, as expected from the combination of N
1/2-spin particles.
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In what follows, we only consider the p = 0 sector. First, let Ŝ2 = (Ŝz)2 + (Ŝ+Ŝ− + Ŝ−Ŝ+)/2
be the Casimir operator, so that [Ŝ2, Ŝα] = [P̂, Ŝα] = 0 for α = z,± and Ŝ2|s, m; 0〉 = s(s + 1)|s, m; 0〉.
Accordingly, [Ŝ2, T̂] = 0 and s and p are good quantum numbers. In general, the eigenvector |s, m; p〉
may always be expressed as:

|s, m; p〉 = ∑
µ

csmp
µ |µ〉 . (12)

Clearly, csmp
µ = 0 if the number of infected agents in the configuration µ, nµ = ∑k〈µ0|n̂k|µ0〉, fails to

satisfy the constraint nµ = m + N/2. The idea is to write Equation (12) as a linear combination of
representative vectors |µp〉 with m + N/2 infected agents, ensuring all available permutations are
accounted for. The implications for numerical codes is quite obvious: it allows the reuse of numerical
codes to obtain eigenvectors |µp〉.

The most relevant sector for epidemic models contains the configuration with all (none) infected
agents. According to previous sections, this implies p = 0 while m = ±N/2 requires s = N/2. In the
(s = N/2, p = 0) sector, the desired linear combination is:

|s = N/2, m, p = 0〉 = 1
N ∑′

{µ}
Rµ,0

−1/2|µ0〉 , (13)

with normalization |N |2 = ∑′µ|Rµ,0|−1. The prime indicates the sum is subjected to the constraint
nµ = m + N/2 for m = −N/2, . . . , N/2. The result in Equation (13) agrees with the standard theory
of spin addition. Generalization for p and s is straightforward and omitted. It is worth mentioning the
formalism adopted here already accounted for forbidden states in p 6= 0 sectors.

Examples are available to appreciate Equation (13) for increasing values of N. We begin
considering N = 4. This translates into s = 2 and m = −2, . . . , 2. The relevant representative
eigenvectors |µ0〉 are expressed in Table 2. The only non-trivial correspondence occurs for m = 0,

|2, 0; 0〉 =
√

2|30〉+ |50〉√
3

=
|0011〉+ |1001〉+ |1100〉+ |0110〉+ |0101〉+ |1010〉√

6
. (14)

Next, consider N = 6 which fixes s = 3 and m = −3, . . . , 3. The eigenvector |3, 0; 0〉 holds contributions
from four cyclic eigenvectors or, equivalently, 20 configurations:

|3, 0; 0〉 =
√

3|70〉+
√

3|110〉+
√

3|190〉+ |210〉√
10

(15)

=
|000111〉+ |100011〉+ |110001〉+ |111000〉+ |011100〉+ |001110〉√

20
.

+
|001011〉+ |100101〉+ |110010〉+ |011001〉+ |101100〉+ |010110〉√

20
.

+
|010011〉+ |101001〉+ |110100〉+ |011010〉+ |001101〉+ |100110〉√

20
.

+
|010101〉+ |101010〉√

20
.



Math. Comput. Appl. 2019, 24, 44 12 of 17

Table 2. Eigenvectors |µ0〉 with N = 4.

µ0 Rµ,0 m |µ〉

0 4 −2 |0000〉
1 1 −1 |0001〉
3 1 0 |0011〉
5 2 0 |0101〉
7 1 1 |0111〉

15 4 2 |1111〉

6. Discussion

The algorithms presented in this study assumed only two health states for each agent.
Generalization for q number of states is readily available by changing to the integer representation
µ = aN−1qN−1 + · · · + a0q0, with ak = 0, 1, . . . , q − 1, concomitant with additional off-diagonal
transitions. For instance, the susceptible-infected-recovered-susceptible (SIRS) ABEM generalizes the
SIS model as it introduces the removed (R) health state for agents. This additional state often means
the agent has recovered from the illness and developed immunity, has been vaccinated, or has passed
away. In any case, once removed, the agent takes no part in the dynamics of disease transmission,
hindering infection events [12]. As such, recovery with immunization or death events produce the
transition I → R, with probability γ while vaccination S → R occurs with probability ξ. If death
events are excluded, temporary immunization is achieved via R→ S with probability η. Therefore,
the vectors |nN−1 · · · n0〉 with nk = 0, 1 or 2 describe configurations of the SIRS model. However,
the algorithm to explore cyclic permutations remains unchanged as it explores symmetries of the
underlying network. As a result, eigenvalues and number of sectors are the same, but degeneracy and
eigenvectors change to accommodate the increased number of health states.

Parallelism merits further discussion. The computation of representative vector space may be
performed in parallel by dividing the set of qN integers among Q processes. Each process runs one
local set of representative vectors which, posteriorly, is compared against the sets from the remaining
processes. The union of all Q sets produces the desired representative vector space. Parallelism is
also obtained at the evaluation of T̂: Columns ( |µp〉 ) are distributed among Q processes and the
corresponding matrix elements are calculated for each process. The union of all matrix elements
from each process produces the complete description of T̂ in the representative vector space. Lastly,
parallelism is also available for sparse products T̂|π(t)〉 necessary to execute the time evolution.

We also emphasize the algorithms explained here are most useful to evaluate quantities within a
single permutation sector of T̂. This is likely the case whenever the probability for disease eradication
or complete population contamination are concerned. Another relevant situation occurs when the
initial condition itself falls within a single sector. For instance, the initial probability vector |π(0)〉 =
(1/3)(|001〉+ |010〉+ |100〉) states only one among N = 3 agents is infected. However, the identity of
the infected agent is unknown a priori, so that configurations with one infected agent occurs with equal
probability 1/N. Now, the decomposition of |π(0)〉 in the |µp〉 basis results in |π(0)〉 = (1/

√
3)|10〉.

Thus, the time evolution of |π(0)〉 by the action of T̂ is again restricted to a single permutation sector.
Without loss of generality, the initial condition can always be written as |π(0)〉 =

∑′
{µ}

N−1
∑

k=0
πµk P̂k|µ〉, where the primed sum runs only over the indices µ, which also labels the

representative vectors. The cyclic permutation P̂k generates the remaining configurations related to |µ〉
whereas the coefficients πµk are the corresponding initial probabilities. Using the eigenvalue equation
for P̂, one calculates the scalar product:

〈νp|π(0)〉 = ∑′

{µ}

N−1

∑
k=0

πµk〈νp|P̂k|µ〉 = ∑′

{µ}

N−1

∑
k=0

πµke2iπpk/N〈νp|µ〉 =
√

Nπ̃νp
Rνp

Nµ
, (16)
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where π̃µp = N−1/2 ∑k πµke2iπpk/N is the discrete Fourier transform of πµk. Using the previous
example, with one infected among N = 3 agents, |π(0)〉 = ∑2

k=0 π0k P̂k|0〉 + ∑2
k=0 π1k P̂k|1〉 +

∑2
k=0 π3k P̂k|3〉+ ∑2

k=0 π7k P̂k|7〉, with πµk = δµ1/3 so that R1p = 1, π̃1p = δp0/
√

3, and the previous
result is recovered.

Now we address the case where the evaluation of the desired statistics requires several
permutation sectors. In the worst case scenario, every permutation sector contributes equally to the
computation. Therefore one must diagonalize each block in order to obtain the relevant eigenvalues
and eigenvectors. As a crude approximation, one may consider that the N blocks have the same
dimension d/N for a d-dimensional vector space. The complexity of diagonalization methods in the
LAPACK library range from O((d/N)2) up to O((d/N)3) for each block [26], whereas the complexity
range for full diagonalization is [O(d2), O(d3)]. Thus diagonalization of N blocks reduces the total
complexity from N−1 up to N−2. More importantly, blocks can be diagonalized in different processors
because they are disjointed.

The algorithms presented here are most suitable for networks with invariance by cyclic
permutations. However, they are also convenient whenever the algebraic commutator can be
approximated by [T̂, P̂] = Ô, where the operator Ô is symmetric under cyclic permutations, [Ô, P̂] = 0.
In particular, Ô = q01 + q1P̂y + ∑β=z,± qβŜβ, with constant qj (j = 0, 1, z,±) and y ∈ R, creates
interesting disease-spreading dynamics, such as a localized disease source for qβ = qδβ,0.

Finally, we compare performances of the SIS ABEM using the transition matrix method with and
without our algorithm. Numerical experiments were performed using Python on an Intel-PC i7-7700
3.8 GHz. The decision to pick up Python instead of a more performance-oriented language was based
on the ability to quickly disseminate the method. For data intensive research, we strongly recommend
performance-oriented languages, such as C or high-performance Fortran. The results are summarized
in Table 3. As expected, cyclic permutations greatly improve computation times, most noticeable for
large populations sizes. For N = 20, the improved numerical code runs two orders of magnitude
faster, while only consuming a fraction—about 6%—of the original memory. We reiterate methods
involving the transition matrix to compute the probabilities of each configuration available to the
system πµ(t), with µ = 0, 1, . . . , 2N − 1, up to numerical errors (floating point and rounding errors),
often around O(10−12). Because they include all configurations, they can provide accurate statistics
and data predictions along the evolution of the epidemics. However, direct Monte Carlo methods
(DMCM) are far more efficient if one is solely interested in a few statistical moments of relevant
variables, not in the entire joint pdf [27,28]. There are mainly two flavors of DMCM, depending on
whether the time interval is fixed or distributed according to a given PDF [29]. The latter case is
more commonly known as the Gillespie algorithm [30–32], and it has been successful to simulate
epidemics. In DMCMs, execution times are directly related to the number of independent runs m, with
error scaling as m−1/2. Usually, m ∼ O(106) produces errors around O(10−3). Smaller errors can be
obtained by increasing m. Regardless, DMCM are always more efficient if the joint PDF is not required,
as they probe the configurations that are more likely to occur. Indeed, computation times of DMCM
with N = 20, τ = 0.19 s, are far lower than the 41 s obtained previously. Furthermore, DMCM hold
small memory footprint and can simulate ABEM with N ∼ O(104).
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Table 3. Computation times and memory usage of time evolution of the SIS agent-based epidemic
models (ABEM) for various population sizes, with (block) and without (full matrix) cyclic permutations.

N Time (s) Memory (MB)

Block Full Matrix Block Full Matrix

10 0.02(9) 0.45(7) 23.3(0) 24.7(1)
12 0.10(0) 2.91(4) 23.9(8) 32.3(9)
14 0.41(1) 19.59(6) 26.5(2) 62.4(8)
16 1.76(6) 132.31(5) 34.8(1) 201.0(8)
18 8.38(4) 837.86(9) 66.4(5) 784.6(8)
20 41.93(1) 4529.09(7) 184.0(4) 3251.0(7)

7. Conclusions

ABEM describe the stochastic dynamics of disease-spreading processes in networks. Direct
investigation of epidemic Markov processes is often hindered due to the exponential increase of the
dimension of the vector space with the number of agents. By exploiting cyclic permutation symmetries,
relevant elements of the dynamics are confined to a single permutation sector, significantly reducing
computational efforts. In practical terms, by selecting a single cyclic permutation eigensector, one
selects only relevant information from the stochastic process. The p = 0 sector holds particular
importance, as it contains configurations where none or all agents are infected, with dimension
scaling as O(N) for highly connected networks. Our findings show that using symmetric basis
significantly improves computation times and reduces memory usage, providing a detailed picture of
the joint probability distribution function. This development allows for a more detailed investigation
of fluctuations and correlation functions in epidemics. For global statistics that describe the evolution
of the epidemic, DMCM provide much faster computation times subjected to a given statistical error.
In closing, the inclusion of finite symmetries brings down ABEM to the same footing of compartmental
models regarding the number of agents but does not neglect the role played by fluctuations.
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Appendix A. Algorithms

Appendix A.1. Time Evolution

Algorithm A1. Time Evolution

Require: p ∈ N, matrix A and off-diagonal transitions
S = { } . Basis
for µ = 0 to µ < 2N do

ψ,Nψ ← calculates eigenvector and norm from µ
Add ψ to S

end for . p invariant eigensector
for ψ in S do

for k = 0 to k < N do
ψ′ ← off-diagonal transitions from k-th component of ψ
Evaluate Tψ′ψ . Sparse storage

end for
end for
π ← initial condition
for t = 0 to t < tmax do

π ← T̂ × π
end for . End time evolution

Appendix A.2. Number of Infected Agents

Algorithm A2. Number of Infected Agents

1: function COUNT(µ,count)
2: c← µ
3: count← 0
4: for k = 0 to k < N do
5: count← count + c % 2
6: c← c // 2
7: end for
8: end function

Appendix A.3. Representative Vectors

Algorithm A3. Representative Vectors

1: function REPRESENTATIVE(µ, ψ, r)
2: ψ← µ
3: r ← 1
4: for k = 0 to k < N − 1 do
5: µ← P̂µ
6: if µ < ψ then
7: ψ← µ
8: else if µ = ψ then
9: r ← r + 1

10: end if
11: end for
12: end function
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Appendix A.4. One-Body Off-Diagonal Transitions

Algorithm A4. One-Body Off-Diagonal Transitions

1: function ONEBODY(label,rules,output)
2: for k = 0 to k < N do . Loop over agents
3: if label[k] in rules then
4: new← label with label[k]← rule[label[k]][0]
5: output[new]← coupling
6: end if
7: end for
8: end function

Appendix A.5. Two-Body Off-Diagonal Transitions

Algorithm A5. Two-Body Off-Diagonal Transitions

1: function TWOBODY(L,A,rules,outcome)
2: for j = 0 to j < N do
3: for i = 0 to i < N do
4: q← (LjLi)
5: if q in rules then
6: x ← L
7: xj ← rules[q]00
8: xi ← rules[q]01
9: output[x]← output[x] + Aji

10: end if
11: end for
12: end for
13: end function
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