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Abstract: In this paper, we introduce the (p, )-analog of the p-adic factorial function. By utilizing
some properties of (p, g)-numbers, we obtain several new and interesting identities and formulas.
We then construct the p-adic (p, 4)-gamma function by means of the mentioned factorial function.
We investigate several properties and relationships belonging to the foregoing gamma function,
some of which are given for the case p = 2. We also derive more representations of the p-adic
(0, 9)-gamma function in general case. Moreover, we consider the p-adic (p, g)-Euler constant derived
from the derivation of p-adic (p,q)-gamma function at x = 1. Furthermore, we provide a limit
representation of aforementioned Euler constant based on (p, g)-numbers. Finally, we consider
(p,q)-extension of the p-adic beta function via the p-adic (p,q)-gamma function and we then
investigate various formulas and identities.

Keywords: p-adic numbers; p-adic factorial function; p-adic gamma function; p-adic beta function;
p-adic Euler constant; (p, g)-numbers
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1. Introduction

The p-adic numbers are a counterintuitive arithmetic system, which were firstly introduced by
Kummer in 1850. Then, the German mathematician Kurt Hensel (1861-1941) developed the p-adic
numbers in a paper concerned with the development of algebraic numbers in power series in circa 1897
(cf. [1]). There are all kinds of numbers, such as natural, rational, real, complex, p-adic, and quantum
numbers. The p-adic numbers are less well known than the others; however, these numbers play
a main role in number theory and the related topics in mathematics. Since p-adic numbers have
penetrated some mathematical areas, e.g., algebraic number theory, algebraic geometry, algebraic
topology and analysis, they are now well-established in mathematical fields and are used also by
physicists. In conjunction with the introduction of these numbers, some mathematicians and physicists
started to investigate new scientific tools utilizing their useful and positive properties. Some effects of
this new research have emerged in mathematics and physics, such as p-adic analysis, string theory,
p-adic quantum mechanics, quantum field theory, representation theory, algebraic geometry, complex
systems, dynamical systems, genetic codes and so on (cf. [1-22]). One of the most important tools of
these investigations is p-adic gamma function, which was firstly described by Yasou Morita around
1975 (cf. [11]). Intense research activities in this area is principally motivated by its importance in
p-adic analysis. Therefore, in the recent forty years, p-adic gamma function and its generalizations
have been investigated and studied extensively by many mathematicians (cf. [1-13]).
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Here, we give some basic notations, definitions and properties belonging to the p-adic analysis
which are taken from the books [1,7,13].

Letp € {2,3,5,7,11,13,17, - - - } be a prime number. For any nonzero integer 4, let ordpa be the
highest power of p that divides 4, i.e., the greatest m such that 4 = 0 (mod p™) where we used the
notation 2 = b (mod ¢) meant c divides a — b.

Note that ord,0 = co. The following properties hold true for x = aband y = 3:

ordpx = ordpa + ordpb and ordpy = ord,c — ordpd.

The p-adic absolute value (norm) of x is given by

| pTortr forx #£0,
I*, = { 0 forx=0. @

The p-adic norm provides the so-called strong triangle inequality

[+ yl, < max {|x],., Iy, }

which is also known as non-Archimedean norm.

Now, we provide some basic notations: N = {1,2,3,---} denotes the set of all natural
numbers, Z = {---,,—1,0,1,---} denotes the ring of all integers, Q = {#[a,beZ,b#0}
denotes the field of all rational numbers, C denotes the field of all complex numbers, Q, =
{x =Y _anp™:0=a; < p—1} denotes the field of all p-adic numbers, Z, = {x €Qp: x|, = 1}
denotes the ring of all p-adic integers and C, denotes the completion of the algebraic closure of Q.
LetNyg = NU {0}

For more information about p-adic analysis, see, e.g., [1-22].

The notations p and g can be variously considered as indeterminates, complex numbers p and q €
1

1
Cwith0 < |g] < |p| £ 1, or p-adic numbers p and g € C, with |p — 1, <p PTand[g—1], <p 7!
so that p* = exp (xlogp) and g% = exp (xlogg) for |x|, <1
The classical gamma function is firstly introduced by Leonard Euler (1707-1783) as

r(x):/ol(—logt)"*ldt (x> 0).

In 1964, the common form of the gamma function was given by Artin [23] with appropriate
variable change:

T (x) = /0 Tl (x> 0).

The classical gamma function is closely related with the factorial function n! as T (n + 1) = n! for
neN.

By inspiring the beautiful and interesting relation between gamma function and factorial function
above, the p-adic gamma function is also introduced by means of the p-adic factorial function (n!)p as
follows

Iy (x) = lim (—=1)" (n!)

n—sx p’

)

where the factorial function (n!),, in Q, is defined by

(n),= 1 j 3)

j<n

(pi)=1

for x € Z,, where n approaches x through positive integers. For detailed statement of these issue,
see [1,4,5,7,11,13].
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The g-extension of the p-adic gamma function is defined as follows (see [12])

: , .1y
T (x) = lim (—1)" ]:[ [, where [j], = ﬁ )
j<n
(pg)=1
These functions have been studied and investigated by many mathematicians, see [3-9,11,12].
The (p, g)-numbers are defined by

e ©)
which reduce to the g-numbers when p = 1as [}, , — [1],.

It is clear that [n], = "1 n] q/p» Which means that g-numbers and (p,q)-numbers are
different, that is, (p, g)-numbers cannot be obtained just by substituting g by q/p in the definition of
g-numbers (see [15-20,24,25] for details). However, when p = 1, g-numbers become a special case of
(p, g)-numbers, as shown above.

In conjunction with the introduction of these (p,q)-numbers (see [24]), (p,q)-calculus has
been investigated and studied extensively by many mathematicians and also physicists since 1991.
For example, Araci et al. [15] introduced an analog of Haar distribution based on (p, g)-numbers.
By means of this distribution, they derived (p, 9)-analog of Volkenborn integral (p-adic integral)
and obtained some properties. Then, they constructed (p,q)-Bernoulli polynomials arising from
(p,q)-Volkenborn integral. Aral et al. [16] defined a (p, g)-analog of Gamma function and, as an
application, they proposed (p, g)-Szasz—Durrmeyer operators, estimated moments and established
some direct results. Chakrabarti et al. [24] investigated the necessary elements of the (p, g)-calculus
involving (p, q)-exponential, (p,q)-integration, and the (p,q)-differentiation. Duran et al. [17]
considered a generalization of the fermionic p-adic measure based on (p, q)-integers and set the
corresponding integral to this measure. They also defined Carlitz-type (p, 7)-Euler polynomials and
numbers in terms of this corresponding integral and acquired some of their identities and properties.
Milovanovic et al. [25] provided a novel extension of beta functions based on (p, 4)-numbers and
committed the integral modification of the generalized Bernstein polynomials. Sadjang [18] introduced
new generalizations of the gamma and the beta functions and investigated their properties. Sadjang [19]
investigated some properties of the (p,q)-derivative and the (p, q)-integration and provided two
appropriate polynomial bases for the (p, q)-derivative, and then he obtained various properties of
these bases. As an application, he gave two (p, g)-Taylor formulas for polynomials. Furthermore,
he gave the fundamental theorem of (p,q)-calculus and proved the formula of (p, g)-integration
by part. Sahai et al. [20] developed the connection between (p, q)-analog of special functions and
representations of certain two parameter quantum algebras.

The paper is organized as follows. Section 1, the Introduction, provides the required information,
notations, definitions and motivation. In Section 2, we are interested in constructing the p-adic
(p,q)-gamma function I“g’ ) (x) by means of p-adic (p, q)-factorial function (x!) I[f Al We investigate
some properties and relationships of the mentioned gamma function. In Section 3, the p-adic
(p,q)-Euler constant is derived from the derivation of p-adic (p,q)-gamma function at x = 1 and
limit representation of this constant are shown. In Section 3, we also examine the results derived
in this paper and give some further remarks of our results. Section 4 provides the (p, )-extension
of the p-adic beta function via the p-adic (p, q)-gamma function and includes multifarious formulas
and identities.

2. The p-adic (p, q)-Gamma Function

This section provides a new definition of p-adic (p, 7)-gamma function and gives some properties,
identities and relations for the mentioned gamma function.
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We firstly introduce (p, q)-extension of the p-adic factorial function as follows.

Definition 1. Let p and q € Cp, with |p — 1\p <land|q—1[, <1,p # land q # 1. We introduce the
p-adic (p, q)-factorial function (x!) LM] in Qp as

a1 o—q _ . .
(xt) 7 = lim [[ =g Al ]1:1 loa ©
(pj)=1 (pj)=1

for x € Zy, where n approaches x through positive integers.

Note that, for n € N, the p-adic (p, g)-factorial function can be written as

)7 =TT [flpg- )
j<n

(pi)=1

Proposition 1. For n € N, we have

(ugm:L(mgm:1mmMmﬁmL:L

Example 1. We provide some examples of the foregoing function:

(3!)£P/‘7] -1 (3!):[3.0/‘7] _ [2} (3!)ép/‘7] _ [2]

049 04
)97 =3,,08,, 6V =0, [4,,05,, 6O =1],,05],,4,,
P =B, 8, @ =12, [4,,6,, " =1,,8l,, 4,06,

By Equation (5), we note that
[ 4l = " [mly g +q" ] g = p" (1] +q" [m], - ®)
Using the addition property in Equation (8) of the (p, q)-integers, we give the following theorem.

Theorem 1. For n,m € N, we have

(Pn (m!)L,D,q] + [n]p,q q(mzl)—P(l+2+...+{’"’,1D> ifd =0

(Gl = oyl § | - .
et I [l tnly, IT ¢ ifde A
j<m j<m
(pd+j)=1 (pd+j)=1

wheren = pk+dand A = {1,2,...,p — 1} and | -] is the greatest integer function.
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Proof. In view of Equations (6) and (8), we get

(n+m®a =TT o= T1 Wpy I1 In+il,,

j<n+m j<n j<m

(pj)=1 (pj)=1 (pm+j)=1
=TI Gy T (" 0lpg+d'l,,)

j<n j<m

(pj)=1 (pm+j)=1

) e TT g+, I1 @

(p+i)=1 (pn+j)=1
1 (o] (mzl)—<P+2P+---+V’p1Jp)> 0
= (n!)LPftﬂ {(p (it + [l 4 1 ,
ot I llpgtnl,, I @ ifd e A
j<m j<m
(pd+j)=1 (pd+j)=1

wheren = pk+dand A = {1,2,...,p — 1}. Thus, we attain the asserted result in Equation (9). [

We give the following interesting result.

Theorem 2. For m € N, we have

(pp ()2 = @VPITT TT lop =) 411, (10)

=1 jicapt
(pj)=1

where @, (m) = ag+ a1p + axp® + - + ap™ with ag, ay, ... am € {1,2,...,p — 1}.

Proof. Indeed,

(9p (m)2" = ((9p m=1))Y" TT [@p m=1)+1l,,
(e
= ((pp =20 [T lopm-2)+],, T1 [ep(m-1)+il,,
el i

= @] TT [op -1+,

=1 jcapt
(pj)=1

which completes the proof of this theorem. [

The following definition is new and plays an important role in deriving the main results of this
paper. Now, we are ready to state the following Definition 2.

Definition 2. Let pand q € Cy with |p — 1], < Land |q 1|, <1,p # Land q # 1. We define the p-adic
(0, q)-gamma function as follows

, : P—q .
P (x) = lim (~1)" [T =5 = im0 TT g an
(pj)=1 (pj)=1
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for x € Zp, where n approaches x through positive integers.

Note that for n € N, the p-adic (p, q)-gamma function can be written as

) (n) = (1" TT [fl,,-

j<n

(pi)=1

Example 2. We give some examples of the aforementioned function:

1"[2”"’] (3) =-1 1—-:[)),0,11] (3) == [2}p,q r[SP,q] (3) = [Z]P/q
r[ZPIq] (6) = [3}(1,4 [5]p,q r[SP/ﬂ] (6) = [Z}p,q [4]p,q [5]p,q ng’q] (6) = [2].0/'1 [3]Prq [4}947
e (7) = — 3] 0 Blpg Pl (7) = - 21, 4104 15lpq 2 (7) = - 2l Blpq (40 16l

Remark 1. Upon setting p = 1 in Definition 2, p-adic (p, q)-gamma function reduces to the p-adic q-gamma
function in Equation (4).

Remark 2. When q — p = 1 in Definition 2, Equation (11) yields to the p-adic gamma function in
Equation (2).

We now investigate some properties and relations of the aforementioned function.
Lemma 1. For n € N, we have

K 0) =1, 147 ) = 1,17 @) = o [ ) =1,

Proof. The proof of this lemma just follows from the Definition 2. Thus, we omit the proof. [

Taking into account Theorem 1, we obtain the following relation.

Corollary 1. For n,m € N, we have

T (04 m) = (1) T4 () { . | , :
et IT [ty 11 @ ifd e A
j<m j<m
(pd+j)=1 (pd+j)=1

wheren = pk+dand A = {1,2,...,p — 1} and | -] is the greatest integer function.
Considering that Theorem 2, we have the following identity.

Corollary 2. For m € Ny, we have

4 (pp () = (07 @ TT TT lon -1+,

E=1 j<apt
(pi)=1

where @, (M) = ag +ar1p + agp® + - - - + amp™ with ag, a1, . ..am € {1,2,...,p — 1}.

Here is a recurrence relation for l"l[f d (n) by the following theorem.
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Theorem 3. The following recurrence formula holds true for all x € Zy:
T (x4 1) = e (x) TA (),

where NI .
—[x],, if |x], =1,

egpfq] (x) = { B 1p,q F Ix p< )

p <1

Proof. Using Definition 2 and Equation (1), we easily get

n—x X o4 n—x
j<n+1

(pj)=1 (pj)=1

I—'L‘D'q] (x+1) — lim (_1)n+1 H []] = | lim (_1)11 H mp,q { -1

which gives the desired result in Equation (12). O

if |x], <1,

7 of 20

(12)

(13)

=[xy, if |x], =1,

The result obtained in the Theorem 3 seems to be the p-adic (p, g)-analog of the well known result

for classical gamma function I (x + 1) = xT (x) for x > 0.

We now give an explicit formula for F;f ) (n) as follows.

Theorem 4. The following recurrence formula holds true for all n € N:

T (n+1) = (=1)"*!

Bl
s (3],
where | -| is the greatest integer function.
Proof. From Definition 2, we observe that
/ 1 .
o n+1) = (=" TT [l
j<n
(pi)=1

mp,q [Z]P,q o [”]p,q .
[Plog 2Ploq - H%J p} 0

Using the product rule [kp] 0q = k] v g [P] pq fOT (p,q)-numbers, we acquire

_ (71)n+1

[n],p,4"

[ T

’Z mppﬂ’“ [Z}P”ﬂ” o H?Hpmﬂ

which yields to the asserted result in Equation (14). O

T (4 1) = (—1)"*!

[p]

Particularly, we derive the following result.

Corollary 3. We have
n
[p - 1]p,q!

n—1_ ‘
Pl P = 1!

7 (p") = (=1)F

[o.]

(14)

(15)

Here are two relations for I';”" (x) and the latter provides a representation of (p, q)-factorial

function associated with p-adic (p, g)-gamma function.
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Theorem 5. Forn € N, let my be the sum of digits of n = Y ;i ajpj (am # 0) in base p. We then derive

H;”HM! _ (—qyrHiem (_ [p]p’q>(nfmn)/(p71)

' i=0

_n_ |
- * pa? yrelea (|1
i e e 3] ) oo
and

gt = 1 (= 1) 2], w o (] +1) a7

Proof. By Equation (14), we have

[n],q! = (~1)"*! [p]FL,%J H”H ) (n41).

Then, if we put {ﬁJ where jliesin {0,1, - - - ,m} instead of 1, respectively, we observe that

L], s oo™ | o (] ).

Multiplying the both sides above, one can acquire with ease that

o - colleltapon ol st

pm
n m—1 H#Hpm]n! LY n
2ol 310 e (5

n—p - n+1l—m n—my)(p— n
= (D) D gy ) UHP’”“H |
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Thus, we get the asserted result in Equation (16):

HPZHPM! = (e (_[P]p,’i)(n_mn)(p_l)

T e (5]

In addition, from the applications above,

], = (4)%*@* ) pw [t oot
-[{’;JLp,qplﬁH[”[;HM. e ([2] 1)

= (—1)mm D) (qyrtiom [p}‘(()nq—mn)(p—l) HnH |
’ o¥,q¥

P
A e ()

04

\
I
N
Lo—
—
=

O

We give the following theorem.

Theorem 6. The following relation holds true for any prime p and n € N:

(P"=0/(p-1) _
" =1yt = (=17 (— mpq) Plog [ 1], ! (18)
n—2 n
1—[ p” 9" Hr[pq
p p]+1 — 1 pq =0 ( )

Proof. In view of Equation (15), we have

R 1 T L
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Ifweput0,1,2,...,n instead of k, respectively, we then get

P = o ()
{Pl - 1L»,q! = (- (pl) [p]g}q_lil {qu a 1}/?"/‘7”!’
P =t = COTET M ]
If we multiply to the both sides above, we attain
n—2 n
1, (qyw [p]ﬁ,’f};”um”wl_n {p Lﬂ’ qp, ]U P]“ = i” q’; Hrfw] <p1)

which gives to the asserted result in Equation (18). O

Theorem 7. For n € N, let p be a prime number and my, be the sum of digits of n = i a]-pf (am #0) in
base p. The following identity holds true for j = 0,1,...m

0<k<m). (19)

Proof. For 0 = j < m, we get

H%HM! g Plog- Hﬁ”w

q
n 4 \‘lJp
(;;L,,P) Lﬂ pP—qP % —g2 pLﬂ/J —ql?

pp qP pP qP ppfql’

(=) (0 —q*) - (,;M _qM)
(0% —q7) (0% —q?F) -+ (PM”—qUJP)’

which completes the proof of this theorem. [

The following result can be easily derived from Theorems 5 and 7.

Corollary 4. For n € N, let p be a prime number and m;, be the sum of digits of n = Z}n:o ajpj (am #0) in
base p. We then get

S| (kp ok ol kp ok
P (oo WY et I (2] ).
oA o1 (F—4) o (O =d5) i ? P
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We here provide a representation for l"gj ) (—n) via the following theorem.

Theorem 8. The following relation holds true for any prime p and for any n € N:

o (ny = (0" UL T Gogy/ (187 (1)

j<{’l+1
(pj)=1

Proof. In view of Lemma 1 and Theorem 3, we can write

1 = ) =1l (14 (—1)) = P (1) Tl (—1)
—_ eLp’q] (_1) eLPrﬂi] (_2) rLPrﬂ] (_2) = Heg’rq] (_]) Tg)’q] (—n),
j=1

therefore, we get
(F[P Al _p ) H el (

[0.4]

By utilizing the definitons of (p,q)-numbers and €, ", we have

(rgv,q](_n))’l - (—1)M IT (o)1,

j<n+1
(pj)=1
2l 1 _j ,
= b T e ey 1T 0,
(et (et
p.])= )=
n|_yq —i o
= Ol T e ).
i<n+1
(p)=1

Thereby, the proof of this theorem is completed. O

Corollary 5. Substituting n — 1 by n in Theorem 8, one can readily write that

rlpl () 1) (1= ) = (<1 7] I1 (o). (20)

(pj)=1

Now, we introduce | : Z, — {1,2,---,p} by assigning to x € Z, its residue modulo pZ,.
Letn = ag+a1p + azpz + --- be a positive in base p. If a9 # 0, then V—;lJ =ay+ap+---

Thus,weobtainn—p{”—;lJ =ag=1(n). Ifayg =0, thenn —1 :p—1+b1p+b2p2+~~. Thus,

{L;lJ =b;j+byp+---. Thus, wegetn —p {%J =1+(p—-1)=p=1I1(n).
Hence, we give the following theorem.

Theorem 9. For p # 2 and all x € Zy, we have

o e (1 2) = (<1 tim T (pg). @1

j<n

(pj)=1
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Letting x = % in Theorem 9 yields to the following result

1\\? 1y .. <
<F£M] <2>> = (1)@ tim TT (pq)
n—s j<n
(p.f)=1

—lim, 1 [] jn (oq) if p=1(mod4),
= { 2T pa=

im 1 [] o (og) if p=3(mod4),
2T )=t

where we used the equality [ (%) =1 (’%1) = pTH by definition.
Corollary 6. We have for p = 2 in Theorem 8,

rg),q] (n+l)r£p,q] (—n) = (_1)n+1—L%J H (pq)j - (_1)”+1—L%J (pq)(”—L%J)z- (22)

j<n+1
(2/)=1
We give an identity for special case p = 2.
Theorem 10. For all x € Z,, we obtain
o P (-0 = (<) lim T (eg), 23)
j<n
(24)=1

where 11 (2]90:0 ajzf) =a.

Proof. For n € N, by Equation (20), we have

o G e (1 = (-1 L5 TT (o)

j
(2j)=1

Let n = ag +a12 +a22 + --- in base 2. If ag # 0, thereby a4y = 1 in base 2 and VT_lJ =
a1 (mod2). Hence, we obtain (—1)”7L%J = (1) = (- = ()N If 45 = 0,
then we see{%J = {%J = {1+(a1—1)§+a222+~~J = a1 — 1 (mod 2). Therefore, we get

(—1)"7L%J = (=¥ @ = (—ptHm = ()™ Consequently, we derive the following
identity

r[2P/'4] (n) rgpr‘ﬂ (1-n)= (_1)1+771(n) H (pq)f,
j<n

(2/)=1
which provides the claimed result in Equation (23). O
3. The p-adic (p, q)-Euler Constant
The p-adic Euler constant 7y, € Qy is firstly given by Diamond [2] in 1977 as follows:

LM
T Ip(1)

In this section, we explore the (p, g)-analog of the p-adic Euler constant. We can readily consider

that l"l[f A is locally analytic function thanks to Lemma 1.
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Then, we derive the following theorem.

Theorem 11. For n € N, we have

’ /
(r%"q]) (n) _ (F,[gp'q]) (1) . 1 ’fpflogp—qj log g (24)
r,[j"q] (n) r’[f'ﬂ] (1) (b—4) =3 [loq '

Proof. From Theorem 3, we know that
log (er,q] (n)) = log (F,[f’q] (n— 1)) +log (e,[f’q] (n— 1)) .
Then,
/ / !
(rP7) () (ry™) (n——1)+_(e¥ﬂg (n—1)
4 (n) T (n 1) o (n—1)

/ /
() @) s ()6
AORE I 0

7

which implies the desired result in Equation (24). O

Remark 3. Equation (24) can be called (p, q)-generalization of the known formula for p-adic gamma function

Oy T, .

p p
- + 7/
TR WOV REP Y
(pj)=1

or (p, q)-generalization of p-adic analog of the formula for classical gamma function

I"(n) T'(1) 1

- + .
Fo ~ () &

Thereby, we are ready to define (p, q)-analog of the p-adic Euler constant 'yLP Al as follows
lpal)’
r (1) / /
o] ._ ( P ) _ (tleal — _ (oAl
'Yp T FLP,‘?] (1> - (rp ) (l) o (rp ) (0) ’ (25)

The p-adic (p, q)-Euler constant has a limit representation by the following theorem.

Theorem 12. We have

. —n [pn _ 1] 7 !
,Y]E]Pr‘ﬂ — nh_rgolop 1-— (_1)P pr—1-1 npq I
[Pl5,q {bﬂww'

Proof. In conjunction with Equation (15), we have

[p" =1, ‘
e |

(") = (-1



Math. Comput. Appl. 2019, 24, 53 14 of 20

Then, we investigate

n_1 ! 1— r[P"ﬂ n
lim p~"{1—(-1)¥ n*[?—l }P'q = lim 7}7” (")
n—00 [p]P [{EJ} ! =0 P
04 P1lppgr

_ (Fﬁf””)l (0) = ,YLp,q].

O

<1,
P

!
Corollary 7. By means of the Lemma 1, we deduce that ‘fpr /) ‘ = ‘ (FLP "7]) (1)
p

4. The p-adic (p, q)-Beta Function

In this section, we define (p, 7)-extension p-adic beta function by means of the p-adic (p, 7)-gamma
function discussed in Section 2. Then, we present several properties, identities and relations for the

mentioned beta function.
The classical beta function B (x, y) is defined by means of the classical gamma functions as follows:

TOTG) (e

N SR

which also have the following subsequent properties (cf. [10]):

B(x,y) =B(y,x)
B(x,y)=B(x,y+1)+B(x+1,y)

B(x+1,y)=B(xy)

xX+y
¥y
xX+vy

B(x+1,y)=$B(x,y+1).

B(x,y+1)=B(xy)

The p-adic beta function is defined by means of the p-adic gamma functions as follows:

B, (x,y) = w, (x,y € Zy)

which also have the following subsequent properties (cf. [5,10]):

By (x,y) = By (v, x)

p(x+y)

h
By (x,y) = oy (1) Ty (7) (Bp (x,y +1) + By (x + L y))

By (x+1,y) = By (x,y) —T—y
By (x,y+1) =By (x,y )x+y
By (x+1,y) = iy E;; (x,y+1).
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Definition 3. Let p and q € Cp with |p —1[, < Land |q—1[, <1, p # 1and q # 1. We define the p-adic
(o, q)-beta function via the p-adic (p, q)-gamma functions as follows:

() T ()
FL‘"‘” (x+vy)

BY (x,y) = , (26)

for x,y € Zy.
Remark 4. In the case p = 1, the p-adic (p, q)-beta function reduces to the the p-adic q-beta function (cf. [5]).

Remark 5. When q — p = 1, the p-adic (p, q)-beta function reduces to the usual p-adic beta function
(cf. [10]).

We are now ready to investigate the properties of the p-adic (p, g)-beta function.
Theorem 13. For x,y € Zy, the p-adic (p, q)-beta function is symmetric about x and y:
B][gp’q] (x,y) = ka’lﬂ (y,x). (27)
Proof. By Equation (26), we readily get

r}[ﬂﬁzﬂ] (x) r,[f’ﬂ (]/) _ r][gpfq] (]/) r][gprll] (x)
FLP’[’] (x+y) FLM] (y+x)

B’[]p,q] (x,y) = _ B;[,p"ﬂ (x,1),

which is the asserted result in Equation (27). O
Theorem 14. For x,y € Zy, the p-adic (p, q)-beta function has the following formula:

[o.4]
B (x 1 1,y) = e (%)
P Y [o4]
e (x+y)

B (x,y). (28)

Proof. In view of Equations (12) and (26), we readily get

T (x 4+ 1) T ()
T x4y +1)
e/ ()T () TP (y)
e,[f’q] (x+v) F%"q] (x+v)
_ eLP’”] (x) FLP/Q] (x) FLW] () _ egpxq] (x) "y
eif’”’] (x+v) F;‘”C’] (x+v) eLP’E’] (x+y)

B (x+1y) =

which is the desired result in Equation (28). O

Theorem 15. For x,y € Zy, the p-adic (p, q)-beta function satisfies the following identity:

[o.q]
, e (y)
B,[fq} (x,y+1) = 7

[o.]
B (x,y). (29)
eLP"’] (x+v) ’
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Proof. By Equation (26), we readily get

T () T4 (y 4 1)
T (x4 +1)

iy () e ) T8 ()

e][f'q] (x+v) FL’J”H (x+y)

") Oy )
P
T (xpy)y TV (xpy)y W (x gy

B,[,p’q] (x,y+1) =

which is the claimed result in Equation (29). O

By Theorems 14 and 15, we see that

[o.4] [o.4]
, , e (x) o, (v)
B (x+1,9) + B (ry+1) = —h——— - )BLP ")+ o )BLM] (x,y)
e (x+y € (x+y
— egw] (x) + GLFW] (]/) B[P"ﬂ (x y)
equ (x+v) b
and
[o4]
[o4] _ ep (X)) Lioal
By (x+1y) = ekp'q] <x+y)BP (x,y)
_ €][gp,q] (x) el[ﬂp 7 (y) [0.4] (x y)
e () e (x+y)
[p.4]
er ™ (y)

which implies the following results.

Corollary 8. For x,y € Zy, the following formulas are valid:

[0.4]
, e (x+y)
BLP 7 (x, y) = 4

el (x) + e (y)

(B]E,p’q] (x+1,y)+ BL‘O’q] (x,y+ 1))

and

el (x
BL’W] (x+1,y)=-2L B][gp’q] (x,y+1).

We give the following theorem.

Theorem 16. Let x,y € Zp. For p = 2, we get

0] [0.4] — i J
By (x,y) By (x+y,1—y) = lim [] (eq) (30)
4 Y) Bp y Y e,[gp’q] (x) " Pq
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and for p # 2, we have

(-n)'®

[o.1] [0.4] _ j
By (v, y) By (x +y,1-y) = T () W EI (eq)"- (31)
(p)=1
Proof. From Definition 3, we easily compute that
gl o gl o1 @I I Gy T -y
Py BT x4y l-y) mq] [0
" (x+y) " (x+1)
Y C) r[ Tyt a-y)
B T o)
- r,E,” (y ) P“(l y)
7 (x)

It just remains to use Equations (21) and (23) to obtain desired result in Equations (30) and (31). O

We provide the following theorem.

Theorem 17. Let x,y € Zp. We then obtain

o] [0.q]
DG W) pea ). )

[0.4]
By (x+1y+1) =
L T ey ) o)

Proof. In view of Definition 3 and using Equation (12), we readily see that

Tl (x4 1) T (y+1)

TP (x+14y+1)

7 () e ()7 )
P x4y + TP (x 4y +1)

e (y)
P (x 4y +1)

BLM] (x+1y+1)

B (x+1,y),

which implies the asserted Equation (32) thanks to Equation (28). O
For x,y,¢,v € Z;, we note that

i I ) T @ ()

BY (v, y) BY (x+y,8) BY (x+y+8,7) = -
Iy (x+y+3¢+17)

We give the following theorem.

Theorem 18. Let x € Zy. For p = 2, we obtain

BY (1= 2) = (<1 tim T (oq) (33)

j<n

(pi)=1
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and for p # 2, we attain
B}[gp/ﬂ] (x,1—x) = (_1)l(y)+1 lim H (pq)j. (34)

n=y j<n

(pj)=1

Proof. From Definition 3, we easily compute that

T4 () Tl (1 - x)

_ 4] [p.q]
=T x)T 1—x),
e (1) Y

BLW} (x,1—x) =

which implies the claimed result in Equations (33) and (34) in conjunction with Equations (21)
and (23). O

By the motivation for usual binomial coefficient, for n, k € N with n > k, we consider the p-adic

]

(p,q)-binomial coefficients (';)g)q by means of the p-adic (p, g)-factorial in Equation (6) as follows:

K/, ( k!)][f’q]
Thus, we give the following theorem.

Theorem 19. Let n,k € N with n > k. We have

[o4]
(”) B (n—k+1k+1) = - LI
k) ef (n+1)

Proof. The proof just follows from Equations (26) and (35) with Equation (12). O

We provide the following theorem.
Theorem 20. Let n,k € N. We have

IT j<k+1 (PQ)]

[0.9]
’ 1|k | _fa| k] ey (n4k) 1 =1
BLM] (—n,—k) = (-1) ﬂ g J {PJ M [p,‘; o o (p]) 7
ep " (n)ep™ (k) By (n,k) H(?;T:ll (0q)

Proof. The proof of this theorem just follows from Equations (26) and (12) and Theorem 8 with some
basic computations. [

Finally, we present the following theorem.

Theorem 21. Let x € Zp. For p = 2, we obtain

BLP:‘?] (x,1—x) = (_1)2+771(x) %&% [,[l g (36)
(pi)=1
and for p # 2, we attain
B}[gp,q] (x,1—x) = (_1)l(y)+1 ilgb H q. (37)

j<n
(pi)=1
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Proof. From Definition 3, we easily compute that

[0.q] [p.q]
[0.4] TR A-x) g lo4]
B x,1—x)= =T/ ()T (1—x),

which implies the claimed result in Equations (33) and (34) in conjunction with Equations (21)
and (23). O

Remark 6. The results derived in this part are generalizations of the results obtained in [5,10].

5. Conclusions

In this paper, we have firstly generalized p-adic factorial function and p-adic gamma function
based on (p,q)-numbers. Utilizing these generalizations, we have constructed some recurrence
relations and identities. By using some properties of (p, g4)-numbers, we have derived several new

and interesting identities and formulas for (n!)][ﬂp 4 and Fgf ) (x). As an application, we have derived
the p-adic (p, q)-Euler constant by means of the p-adic (p, 7)-gamma function and have given a limit
representation for the foregoing constant. Moreover, we have considered (p, 7)-extension of the p-adic
beta function via the p-adic (p, q)-gamma function and then we have acquired several formulas and
identities.

Author Contributions: U.D. wrote the most part of this paper. M.A. took part in deriving some relations and
editing this paper. Authors together discussed some applications of these functions considered in this paper.
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