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Abstract: Three new iterative methods for solving scalar nonlinear equations using weight function
technique are presented. The first one is a two-step fifth order method with four function evaluations
which is improved from a two-step Newton’s method having same number of function evaluations.
By this, the efficiency index of the new method is improved from 1.414 to 1.495. The second one is a
three step method with one additional function evaluation producing eighth order accuracy with
efficiency index 1.516. The last one is a new fourth order optimal two-step method with efficiency
index 1.587. All these three methods are better than Newton’s method and many other equivalent
higher order methods. Convergence analyses are established so that these methods have fifth, eighth
and fourth order respectively. Numerical examples ascertain that the proposed methods are efficient
and demonstrate better performance when compared to some equivalent and optimal methods. Seven
application problems are solved to illustrate the efficiency and performance of the proposed methods.

Keywords: Newton’s method; nonlinear equation; multi-point iteration; optimal order; higher order
method; efficiency index
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1. Introduction

This paper concerns the numerical solution of nonlinear equations of the general form f (x) = 0.
Such equations appear in real world problems frequently while there is no closed form solution for
them. That is why the numerical solution of these types of equations draws much attention nowadays.
One of the common problems encountered in science and engineering is: given a single variable
function f (x), find the values of x for which f (x) = 0. The root of such nonlinear equations may be
real or complex. There are two general types of methods available to find the roots of algebraic and
transcendental equations. One of them is the direct methods which are not always applicable to find
the roots and the other one is iterative methods based on the concept of successive approximation.
In the second type, the general procedure for solving is to start with some initial approximation near
to the root and attain a sequence of iterates which in the limit converges to the true solution. The most
efficient existing root-solvers are based on multi-point iterations since they overcome theoretical limits
of one-point methods concerning the convergence order and computational efficiency.

To determine the solution of nonlinear equations, many iterative methods have been proposed
in [1–3] and the references therein. Construction of iterative methods for nonlinear equations is one
of the vital area of research in numerical analysis. Among them, the most familiar iterative without
memory method is the Newton–Raphson method which is given by

ψ2nd NM(x) = xn −
f (xn)

f ′(xn)
. (1)
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This method is an optimal method with efficiency index (EI) 1.414. Another well known method
is the Halley’s iteration method given by

ψ3rd HL(x) = xn −
2 f (xn) f ′(xn)

2 f ′(xn)2 − f (xn) f ′′(xn)
. (2)

To accelerate the convergence of Newton’s method, many authors have modified it as we can see
in [4,5]. Significant among them is the Arithmetic mean Newton’s method (3rd AM) [5] and the other
one is the Harmonic mean Newton’s method both having cubic convergence. These two-step methods
are respectively given as follows:

ψ3rd AM(x) = xn −
2 f (xn)

f ′(xn) + f ′(ψ2nd NM(x))
, (3)

ψ3rd HM(x) = xn −
f (xn)

2

(
1

f ′(xn)
+

1
f ′(ψ2nd NM(x))

)
. (4)

The efficiency index of the methods (3) and (4) is 1.442 with three function evaluations
per iteration.

Recently, some fourth and eighth order optimal iterative methods have been developed in [6,7].
A more extensive list of references as well as a survey on the progress made in the class of multi-point
methods is found in the recent book by Petkovic et al. [8]. In the recent past, many higher order
optimal and non-optimal iterative methods have been developed using the idea of weight functions
(see [7,9–13]).

The main objective of this paper is to construct multi-step iterative formula without memory
with improved convergence and better efficiency index. Therefore, we have presented three new
Newton-type iterative methods having fifth, eighth and fourth order convergence whose efficiency
indices are 1.495, 1.516 and 1.587 respectively. Among these three methods, fourth order method is a
class of optimal method. Section 2 discusses the preliminaries and Section 3 presents the construction
of new methods. Section 4 analyses the convergence order of the proposed methods. In Section 5,
the performances of new methods are compared with some well known equivalent methods. Seven
real life application problems are taken in Section 6, where all the listed methods and the proposed
methods are numerically verified. Finally, conclusions are given in Section 7.

2. Preliminaries

The following definitions given below are required for the ensuing convergence analysis.

Definition 1 ([14]). If the sequence {xn} tends to a limit x∗ in such a way that

lim
n→∞

xn+1 − x∗

(xn − x∗)p = C

for p ≥ 1, then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error
constant. If p = 1, p = 2 or p = 3, the convergence is said to be linear, quadratic or cubic, respectively.
Let en = xn − x∗, then the relation

en+1 = C ep
n + O

(
ep+1

n

)
(5)

is called the error equation. The value of p is called the order of convergence of the method.

Definition 2 ([15]). The Efficiency Index (EI) is given by

EI = p
1
d , (6)
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where d is the total number of new function evaluations (the values of f and its derivatives) per iteration.

Let xn+1 = ψ(xn) define an Iterative Function (I.F.). Let xn+1 be determined by new information
at xn, φ1(xn), ..., φi(xn), i ≥ 1 and no old information is reused. Thus, xn+1 = ψ(xn, φ1(xn), ..., φi(xn))

is called a multi-point I.F. without memory.
Kung–Traub Conjecture [16]: Let ψ be an iterative function without memory with d evaluations.

Then p(ψ) ≤ popt = 2d−1, where popt is the maximum order.

We state below a theorem which helps us to find out the order of the multi-point methods.

Theorem 1 ([17]). Let ψ1(x), ψ2(x), ...ψs(x) be iterative functions with the orders p1, p2, ..., ps, respectively.
Then the composition of iterative functions ψ(x) = ψ1(ψ2(....(ψs(x))...)) defines the iterative method of
order p1 p2...ps.

3. Construction of New Methods

Consider the two-step Newton’s method discussed in [18] given below:

ψ2nd NM(x) = xn −
f (xn)

f ′(xn)
; ψ4th NR(x) = ψ2nd NM(x)−

f (ψ2nd NM(x))
f ′(ψ2nd NM(x))

. (7)

As per Theorem 1, method (7) has fourth-order convergence and it requires four function
evaluations. However, the efficiency index of (7) does not increase and remains equal to Newton’s
method (1.414).

New Fifth Order Method (5thPJ): Our aim is to improve the order and efficiency index of (7)
by proposing a modification of this method. We achieve this by introducing a weight function G(η)

as follows:

ψ2nd NM(x) = xn −
f (xn)

f ′(xn)
; ψ5thPJ(x) = ψ2nd NM(x)−

f (ψ2nd NM(x))
f ′(ψ2nd NM(x))

G(η), (8)

where G(η), η =
f ′(ψ2nd NR(x))

f ′(xn)
, is chosen as per the requirement of the error term in order to produce fifth

order convergence; details are found in the next section. As a consequence, the order of convergence
has improved from four to five with four function evaluations and the efficiency index has increased
from 1.414 to 1.495.

New Eighth Order Method (8thPJ): Further, we extend 5thPJ method by taking one more
weighted Newton’s step and obtain a new eighth order method with one more function evaluation
as follows:

ψ2nd NM(x) = xn −
f (xn)

f ′(xn)
; ψ5thPJ(x) = ψ2nd NM(x)−

f (ψ2nd NM(x))
f ′(ψ2nd NM(x))

G(η);

ψ8thPJ(x) = ψ5thPJ(x)−
f (ψ5thPJ(x))

f ′(ψ2nd NM(x))
(H(η)),

(9)

where H(η) is a weight function. The efficiency index of this method is 1.516, which is better than that
of the methods (7) and (8).

3.1. Further Development

Class of Optimal Fourth Order Method: A new two-step optimal iterative method of order four,
requiring three function evaluations per iteration, where it uses weight function θ(τ) is presented.
This means the new class satisfies the Kung–Traub conjecture and it is given below:

ψ2nd NM(x) = xn −
f (xn)

f ′(xn)
; xn+1 = xn −

f (xn)

f ′(xn)
×
(

θ(τ)
)

, (10)
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where τ =
f (ψ2nd NM(x))

f (xn)
. The above method (10) has fourth order convergence.

4. Convergence Analysis

In order to establish the convergence of the proposed methods (8) and (9), we prove the following
theorem with the help of MATHEMATICA software.

Theorem 2. Let f , G, H : D ⊂ R→ R be sufficiently smooth functions in the neighborhood of the root. If f (x)
has a simple root x∗ in the open interval D and x0 is chosen in a sufficiently small neighborhood of x∗, then the
methods (8) and (9) have local fifth and eighth-order convergence, when

G(1) = 1, G′(1) = 0, G′′(1) = 1/4, |G′′′(1)| < ∞,

H(1) = 1, H′(1) = 0, H′′(1) = 1/2, |H′′′(1)| < ∞.
(11)

These fifth and eighth order methods respectively satisfy the following error bounds:

ψ5thPJ(x)− x∗ = (4c4
2 − c2

2c3)e5
n + O(e6

n), ψ8thPJ(x)− x∗ = 2c3
2(−4c2

2 + c3)
2e8

n + O(e9
n),

where en = xn − x∗ and ck =
f (k)(x∗)
k! f ′(x∗) , k ≥ 2.

Proof. Expanding f (xn) and f ′(xn) about x∗ by Taylor’s method, one gets

f (xn) = f ′(x∗)[en + c2e2
n + c3e3

n + c4e4
n + c5e5

n + c6e6
n + . . .] (12)

and
f ′(xn) = f ′(x∗)[1 + 2c2en + 3c3e2

n + 4c4e3
n + 5c5e4

n + 6c6e5
n + 7c7e6

n + . . .]. (13)

Now substituting (12) and (13) in (1), we get

ψ2nd NM = x∗ + c2e2
n − 2(c2

2 − c3)e3
n + (4c3

2 − 7c2c3 + 3c4)e4
n

+ (−8c4
2 + 20c2

2c3 − 6c2
3 − 10c2c4 + 4c5)e5

n

+ (16c5
2 − 52c3

2c3 + 33c2c2
3 + 28c2

2c4 − 17c3c4 − 13c2c5 + 5c6)e6
n + . . . .

(14)

Expanding f (ψ2nd NM(x)) about x∗ and taking into account (14), we have

f (ψ2nd NM(x)) = f ′(x∗)[c2e2
n − 2(c2

2 − c3)e3
n + (5c3

2 − 7c2c3 + 3c4)e4
n − 2(6c4

2 − 12c2
2c3 + 3c2

3 + 5c2c4 − 2c5)e5
n

+ (28c5
2 − 73c3

2c3 + 34c2
2c4 − 17c3c4 + c2(37c2

3 − 13c5) + 5c6)e6
n + . . .].

(15)

f ′(ψ2nd NM(x)) = f ′(x∗)[1 + 2c2
2e2

n + 2c2(−2c2
2 + 2c3)e3

n + (3c2
2c3 + 2c2(4c3

2 − 7c2c3 + 3c4))e4
n

+ (6c2c3(−2c2
2 + 2c3) + 2c2(−8c4

2 + 20c2
2c3 − 6c2

3 − 10c2c4 + 4c5))e5
n

+ (4c3
2c4 + 3c3((−2c2

2 + 2c3)
2 + 2c2(4c3

2 − 7c2c3 + 3c4)) + 2c2(16c5
2 − 52c3

2c3 + 33c2c32

+ 28c2
2c4 − 17c3c4 − 13c2c5 + 5c6))e6

n + . . .].

(16)

Expanding the weight functions G(η) about 1, then we get

G(η) = G(1) + (η − 1)G′(1) +
1
2
(η − 1)2G′′(1) +

1
6
(η − 1)3G′′′(1) + . . . , (17)



Math. Comput. Appl. 2019, 24, 59 5 of 16

where

η =
f ′(ψ2nd NM(x))

f ′(x)
= 1− 2c2en + (6c2

2 − 3c3)e2
n − 4(4c3

2 − 4c2c3 + c4)e3
n

+ (40c4
2 − 61c2

2c3 + 9c2
3 + 22c2c4 − 5c5)e4

n + (−96c5
2 + 198c3

2c3 − 66c2c2
3 − 88c2

2c4 + 24c3c4 + 28c2c5 − 6c6)e5
n

+ (224c6
2 − 584c4

2c3 − 15c3
3 + 300c3

2c4 + 16c2
4 + 7c2

2(45c2
3 − 16c5) + 30c3c5 + c2(−194c3c4 + 34c6)− 7c7)e6

n + O(e7
n).

(18)

Finally, using Equations (14)–(17) into (8), we have

ψ5thPJ(x)− x∗ = (4c4
2 − c2

2c3)e5
n + O(e6

n),

which shows fifth order convergence.
Again Expanding the weight functions H(η) about 1, then we get

H(η) = H(1) + (η − 1)H′(1) +
1
2
(η − 1)2H′′(1) +

1
6
(η − 1)3H′′′(1) + . . . . (19)

Now Expanding f (ψ5thPJ(x)) by using Taylor’s series about x∗ and taking into account (4),
we have

f (ψ5thPJ(x)) = (4c4
2 − c2

2c3)e5
n + (−30c5

2 + 30c3
2c3 −

17
4

c2c2
3 − c2

2c4)e6
n + 2(70c6

2 − 120c4
2c3

− 9
4

c3
3 + 19c3

2c4 −
11
2

c2c3c4 + c2
2(

173
4

c2
3 −

1
2

c5))e7
n + (−525c7

2 + 1260c5
2c3 − 318c4

2c4

− 75
4

c2
3c4 − 3c3

2(
1027

4
c2

3 − 16c5) + c2(
453

4
c3

3 − 7c2
4 −

27
2

c3c5) + c2
2(221c3c4 − c6))e8

n + O(e9
n).

(20)

Now, using Equations (16), (19) and (20) into (9) then we have

ψ8thPJ(x)− x∗ = 2c3
2(−4c2

2 + c3)
2e8

n + O(e9
n),

which shows eighth order convergence.

The following theorem can be proved similar to the above theorem with the help of MATHEMATICA

software and hence proof is not given.

Theorem 3. Let x∗ ∈ D be a simple zero of sufficiently differentiable function f : D ⊂ R→ R, D is an open
interval. If x0 is sufficiently close to x∗, then the method (10) has convergence order four, when

θ(0) = 1, θ′(0) = 1, θ′′(0) = 4, |θ′′′(0)| < ∞ (21)

and it satisfies the error equation en+1 =
(
(5− θ′′′(0))c3

2 − c2c3

)
e4

n + O(e5
n).

A Special Case of Optimal Fourth Order Method (4thPJ): For different choice of θ′′′(0) in (21)
will produce a different member of the fourth-order class. A particular case from the class of
method (10) satisfying (21) with a specific weight function, for the choice of θ′′′(0) = 4, is given
in the following:

ψ2nd NM(x) = xn −
f (xn)

f ′(xn)
;

xn+1 = xn −
f (xn)

f ′(xn)
×
(

1 + τ + 2(τ)2 +
2
3
(τ)3

)
.

(22)
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5. Numerical Examples

In this section, several numerical examples are considered to confirm the convergence order
and to illustrate the performance of the new methods 4thPJ, 5thPJ and 8thPJ. The new methods
are compared with some existing methods such as 2ndNM, 3rd AM, 4thNR, 4thSBS, 4thCH, 5thFLM,
8thPKJ and 8thPKPDM which are given below. Note that all computations are carried out using
variable precision arithmetic that uses floating point representation with 500 decimal accuracy using
the MATLAB software. The number of iterations (N), Error and cpu time in seconds are listed under
the condition that Error = |xN − xN−1| < ε, where ε = 10−50. In addition, to testify the theoretical
order of convergence, we calculate the computational order of convergence (ρ) defined by

ρ =
ln |(xN − xN−1)/(xN−1 − xN−2)|

ln |(xN−1 − xN−2)/(xN−2 − xN−3)|
.

For demonstrating numerical results of equivalent methods, we have given below a few methods
from literature:

A fourth order optimal method proposed by Sharifi–Babajee–Soleymani (4thSBS) [19] is given by

yn = xn −
2
3

f (xn)

f ′(xn)
,

xn+1 = xn −
f (xn)

4

(
1

f ′(xn)
+

3
f ′(yn)

)(
1 +

3
8

( f ′(yn)

f ′(xn)
− 1
)2
− 69

64

( f ′(yn)

f ′(xn)
− 1
)3

+
( f (xn)

f ′(yn)

)4
)

.
(23)

Another fourth order optimal method proposed by Chun et al. (4thCH) [20] is given by

yn = xn −
2
3

f (xn)

f ′(xn)
, xn+1 = xn −

16 f (xn) f ′(xn)

−5 f ′(xn)2 + 30 f ′(xn) f ′(yn)− 9 f ′(yn)2 . (24)

A fifth order method proposed by Liang Fang et al. (5thFLM) [21] is given by

ψ5th FLM(x) = ψ2nd NM(x)−
(5 f ′2(xn) + 3 f ′2(ψ2nd NM(x))

f ′2(xn) + 7 f ′2(ψ2nd NM(x))
f (ψ2nd NM(x))

f ′(xn)

)
. (25)

An optimal eighth order method proposed by Petkovic et al. (8thPNPDM) [8] is given by

ψ2nd NM(x) = xn −
f (xn)

f ′(xn)
, z = xn −

(( f (ψ2nd NM(x))
f (xn)

)2
− f (xn)

f (ψ2nd NM(x))− f (xn)

)
f (xn)

f ′(xn)
,

ψ8thPNPDM(x) = zn −
f (zn)

f ′(xn)

(
ϕ(t) +

f (zn)

f (ψ2nd NM(x))− f (zn)
+

4 f (zn)

f (xn)

)
,

where ϕ(t) = 1 + 2t + 2t2 − t3 and t =
f (ψ2nd NM(x))

f (xn)
.

(26)

A non-optimal eighth order method proposed by Parimala et al. (8thPKJ) [22] is given by

yn = xn −
2
3

f (xn)

f ′(xn)
,

wn = xn −
f (xn)

f ′(yn)

(
1 +

1
4

(
τ(xn)− 1

)
+

3
8

(
τ(xn)− 1

)2
)

,

zn = wn −
f (wn)

f ′(yn)

(
1 +

3
2
(η(xn)− 1) +

15
8
(η(xn)− 1)2

)
,

xn+1 = zn −
f (zn)

f ′(yn)

(
1 +

3
2
(η(xn)− 1) +

15
8
(η(xn)− 1)2,

)
, where τ(xn) =

f ′(yn)

f ′(xn)
, η(xn) =

f ′(xn)

f ′(yn)
.

(27)
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The following examples are used for numerical verification:

f1(x) = sin(2 cos x)− 1− x2 + esin(x3), x∗ = −0.7848959876612125352...

f2(x) = xex2 − sin2x + 3 cos x + 5, x∗ = −1.2076478271309189270...

f3(x) = sin(x) + cos(x) + x, x∗ = −0.4566247045676308244...

f4(x) = (x + 2)ex − 1, x∗ = −0.4428544010023885831...

f5(x) = x3 + 4x2 − 10, x∗ = 1.3652300134140968457...

f6(x) = x4 cos(x2)− x5 log(1 + x2 − π) + (π)2, x∗ = 1.7728106144972171...

f7(x) =
√

x2 + 2x + 5− 2 sin x− x2 + 3, x∗ = 2.3319676558839640103...

f8(x) = ln(x2 + x + 2)− x + 1, x∗ = 4.1525907367571583...

Table 1 shows the efficiency index of the new methods with some known methods. Tables 2 and 3
display initial value x0, number of iteration (N), computational order of convergence (ρ), Error and
CPU time (in seconds) for all the listed methods. From the computational results, we observe
that all the proposed methods 4thPJ, 5thPJ and 8thPJ have a lower number of iterations when
compared to the other equivalent methods for most of the test functions. In addition, it can be
seen that the computational order of convergence perfectly coincides with the theoretical results.
Based on the numerical results, it is observed that the presented methods produce converging roots
for all the functions, whereas 4thSBS method and 8thPKPDM method diverge for the functions
f1(x), f3(x), f4(x) and f2(x), f3(x), f4(x) respectively.

Table 1. Comparison of Efficiency Indices (EI) and Optimality.

Methods p d EI Optimal/Non-Optimal

2nd NM 2 2 1.414 Optimal
3rd AM 3 3 1.442 Non-optimal
4th NR 4 4 1.414 Non-optimal
4thSBS 4 3 1.587 Optimal
4thCH 4 3 1.587 Optimal
4thPJ 4 3 1.587 Optimal

5thFLM 5 4 1.495 Non-optimal
5thPJ 5 4 1.495 Non-optimal

8thPKJ 8 5 1.516 Non-optimal
8thPKPDM 8 4 1.682 Optimal

8thPJ 8 5 1.516 Non-optimal
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Table 2. Numerical results for test functions.

f (x) Methods x0 N ρ Error CPU (s) x0 N ρ Error CPU (s)

f1(x)

2nd NM

−1.2

7 1.99 0 0.8132

−0.5

8 1.99 0 0.9678
3rd AM 5 3.00 6.5582 × 10−52 0.7480 6 2.99 5.5304 × 10−147 0.7804
4th NR 4 3.99 1.5646 × 10−60 0.5541 5 3.99 3.0230 × 10−141 0.7190
4thSBS 5 4.00 2.7218 × 10−133 0.7791 5 3.99 2.6895×10−58 0.8414
4thCH 4 4.00 2.3926 × 10−69 0.6136 5 3.99 5.7198 × 10−83 0.7323
4thPJ 5 3.99 3.8598 × 10−161 0.6428 5 3.99 2.6927 × 10−56 0.6831

5thFLM 4 4.99 7.3159 × 10−102 0.6233 5 5.00 5.3712 × 10−208 0.7877
5thPJ 4 4.99 3.9606 × 10−101 0.6101 5 5.00 1.5469 × 10−172 0.8262

8thPKPDM Div - - - 9 7.97 9.7884 × 10−89 1.5789
8thPKJ 3 7.56 3.9357 × 10−51 0.5658 4 8.00 2.5440 × 10−146 0.7457
8thPJ 4 7.99 0 0.6522 4 7.99 4.1301 × 10−109 0.6288

f2(x)

2nd NM

−2.0

11 2.00 0 1.1878

−0.9

9 2.00 0 1.0422
3rd AM 8 3.00 9.7915 × 10−131 1.1058 6 3.00 1.7913 × 10−57 0.8341
4th NR 6 3.99 1.8759 × 10−82 0.8596 5 3.99 3.3034 × 10−85 0.6873
4thSBS 6 4.00 2.8346 × 10−110 0.8757 Div - - -
4thCH 6 3.99 1.3659 × 10−81 0.8342 6 3.99 1.7462 × 10−198 0.8838
4thPJ 7 3.99 2.6627 × 10−172 0.8589 6 3.99 4.1837 × 10−79 0.8242

5thFLM 6 4.99 2.1352 × 10−159 0.8704 5 5.00 4.4090 × 10−124 0.7426
5thPJ 6 4.99 2.8057 × 10−173 0.8623 5 5.00 2.0232 × 10−53 0.7656

8thPKPDM 5 8.00 5.8749 × 10−135 0.8416 119 8.00 1.0781 ×10−105 17.7770
8thPKJ 4 7.68 5.1416 × 10−51 0.7209 4 7.97 9.8731 × 10−88 0.7306
8thPJ 5 7.99 4.2577 × 10−170 0.7774 5 7.99 1.0553 × 10−221 0.8288

f3(x)

2nd NM

−1.2

7 2.00 0 0.8068

0.8

8 2.00 0 0.8805
3rd AM 5 3.00 1.4490 × 10−63 0.6772 6 3.00 1.2843 × 10−116 0.7820
4th NR 4 3.99 2.2852 × 10−81 0.5533 5 3.99 1.3264 × 10−122 0.6884
4thSBS 5 3.99 5.7143 × 10−64 0.7173 Div - - -
4thCH 4 4.00 5.9510 × 10−56 0.6520 6 3.99 3.7788 × 10−121 0.9109
4thPJ 4 4.00 8.5723× 10−55 0.5414 13 3.99 3.8629 × 10−71 1.7274

5thFLM 4 4.99 2.4053 × 10−120 0.5989 5 5.00 1.1557 × 10−131 0.7365
5thPJ 4 4.99 2.9953 × 10−120 0.5914 5 5.00 1.5506 × 10−108 0.7225

8thPKPDM 3 7.74 5.5579 × 10−57 0.5180 Div - - -
8thPKJ 4 7.99 0 0.7201 4 7.87 1.5381 × 10−68 0.6986
8thPJ 3 7.86 8.7996 × 10−56 0.5023 4 7.79 1.0871 × 10−86 0.6341

f4(x)

2nd NM

−1.0

9 2.00 5.5018× 10−92 0.9648

1.5

10 1.99 1.8602× 10−58 1.1393
3rd AM 6 3.00 2.1659 × 10−70 0.7591 7 2.99 1.0232 × 10−67 0.8760
4th NR 5 3.99 5.5018 × 10−92 0.6659 6 3.99 2.4067 × 10−116 0.7890
4thSBS Div - - - Div - - -
4thCH 6 3.99 7.1333 × 10−186 0.8267 6 3.99 7.0897 × 10−109 0.9089
4thPJ 6 3.99 2.3006 × 10−90 0.8025 6 3.99 5.5180 × 10−66 0.7802

5thFLM 5 5.00 5.7748 × 10−127 0.7305 6 4.99 8.4900 × 10−239 0.8507
5thPJ 5 5.00 2.4834 × 10−60 0.7004 5 4.99 6.4034 × 10−51 0.6945

8thPKPDM Div - - - 5 8.00 2.3085 ×10−210 0.8507
8thPKJ 4 7.93 2.6279 × 10−88 0.7209 4 7.73 4.7311 × 10−70 0.6901
8thPJ 5 7.99 6.1227 × 10−279 0.7822 5 7.99 3.4785 × 10−257 0.7926
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Table 3. Numerical results for test functions.

f (x) Methods x0 N ρ Error CPU(s) x0 N ρ Error CPU(s)

f5(x)

2nd NM

1.0

8 1.99 2.8512 × 10−88 0.8804

2.2

8 1.99 1.8136 × 10−65 0.8893
3rd AM 5 3.00 9.0984 × 10−54 0.6280 6 3.00 7.9943 × 10−119 0.7683
4th NR 5 3.99 3.9853 × 10−176 0.6986 5 3.99 1.6125 × 10−130 0.6460
4thSBS 5 3.99 1.3911 × 10−161 0.7247 6 3.99 2.1296 × 10−156 0.8241
4thCH 5 3.99 7.6378 × 10−145 0.7035 5 3.99 3.0782 × 10−118 0.7342
4thPJ 5 3.99 1.3424 × 10−108 0.6296 5 3.99 1.7014 × 10−96 0.6713

5thFLM 4 5.00 1.5020 × 10−67 0.5712 4 4.99 1.4522 × 10−52 0.6284
5thPJ 4 5.00 2.6952 × 10−62 0.5796 4 4.99 1.4276 × 10−52 0.6432

8thPKPDM 4 8.00 2.2899 × 10−212 0.7505 4 8.00 6.4495 × 10−171 0.6770
8thPKJ 4 7.99 7.0019 × 10−291 0.7096 4 7.99 2.1122 × 10−258 0.7279
8thPJ 4 7.99 1.6051 × 10−218 0.6474 4 7.99 8.8152 × 10−190 0.6374

f6(x)

2nd NM

1.6

7 2.00 4.9817 × 10−90 0.7685

2.0

7 2.00 4.4019 × 10−92 0.7804
3rd AM 5 3.00 2.7315 × 10−83 0.6341 5 3.00 2.0696 × 10−82 0.6916
4th NR 4 3.99 4.9817 × 10−90 0.5649 4 3.99 4.4019 × 10−92 0.5460
4thSBS 4 4.00 2.7447 × 10−52 0.6037 4 4.00 4.0535 × 10−58 0.6011
4thCH 4 3.99 4.2436 × 10−53 0.5605 4 4.00 9.3200 × 10−69 0.5643
4thPJ 4 4.00 5.8466 × 10−62 0.5432 4 3.99 2.7833 × 10−63 0.5424

5thFLM 4 5.00 1.3386 × 10−143 0.5997 4 4.99 4.8310 × 10−166 0.6264
5thPJ 4 5.00 1.8295 × 10−142 0.6202 4 4.99 3.2860 × 10−164 0.6171

8thPKPDM 3 7.99 5.1214 × 10−54 0.5122 3 7.71 1.3362 × 10−61 0.5367
8thPKJ 4 7.99 0 0.6343 3 8.07 1.3967 × 10−54 0.5533
8thPJ 3 7.77 1.1800 × 10−67 0.5008 3 7.54 6.0931 × 10−81 0.5262

f7(x)

2nd NM

1.8

6 2.00 6.6344 × 10−52 0.7203

3.0

7 1.99 2.1862 × 10−64 0.8478
3rd AM 5 2.99 1.3353×10−77 0.6675 5 3.00 1.4340 × 10−61 0.6600
4th NR 4 4.00 4.3869 × 10−104 0.5734 4 4.00 2.1862 × 10−64 0.6237
4thSBS 5 3.99 3.5927 × 10−120 0.7383 5 4.00 5.5106 × 10−77 0.7201
4thCH 4 4.00 1.1320 × 10−72 0.5769 4 3.99 2.8160 × 10−59 0.5804
4thPJ 4 4.00 1.2249 × 10−75 0.5229 4 3.99 3.8770 × 10−56 0.6859

5thFLM 4 5.00 7.0404 × 10−175 0.6536 4 4.99 1.2813 × 10−125 0.6304
5thPJ 4 5.00 1.4577 × 10−175 0.6405 4 4.99 2.7292 × 10−130 0.6365

8thPKPDM 3 7.74 4.0285 × 10−77 0.5814 3 8.02 1.0750 × 10−51 0.5063
8thPKJ 3 7.90 2.4999 × 10−62 0.5627 3 7.98 1.2998 × 10−51 0.5532
8thPJ 3 7.74 6.7632 × 10−85 0.5260 3 7.90 8.2127 × 10−64 0.5289

f8(x)

2nd NM

3.5

7 1.99 3.6080 × 10−86 0.7916

4.5

6 2.00 5.1377 × 10−54 0.6740
3rd AM 5 3.00 2.3142 × 10−143 0.6406 4 2.99 8.3066 × 10−61 0.5327
4th NR 4 3.99 3.6080 × 10−86 0.5628 4 3.99 1.5930 × 10−108 0.5565
4thSBS 5 4.00 5.1837 × 10−94 0.7469 5 3.99 1.2140 × 10−199 0.6957
4thCH 4 3.99 7.9595 × 10−73 0.5529 4 3.99 1.1510 × 10−95 0.5738
4thPJ 4 3.99 2.2758 × 10−68 0.5378 4 3.99 1.7406 × 10−92 0.5665

5thFLM 4 5.00 4.8205 × 10−145 0.6274 4 4.99 1.6926 × 10−190 0.5912
5thPJ 4 5.00 2.2821 × 10−143 0.5859 4 4.99 1.8760 × 10−189 0.6060

8thPKPDM 3 8.08 3.9144 × 10−63 0.4873 3 7.97 1.8996 × 10−87 0.4825
8thPKJ 3 7.99 1.5408 × 10−79 0.5438 3 7.99 4.6567 × 10−97 0.5478
8thPJ 3 8.07 1.1064 × 10−68 0.4959 3 7.97 1.6959 × 10−92 0.5261

6. Some Real Life Applications

In this section we give some applications and compare the proposed methods to other well
known methods:

Application 1: We consider the classical projectile problem [23] in which a projectile is launched
from a tower of height h > 0, with initial speed v and at an angle φ with respect to the horizontal
distance onto a hill, which is defined by the function ω, called the impact function which is dependent
on the horizontal distance, x. We wish to find the optimal launch angle φm which maximizes the
horizontal distance. In our calculations, we neglect air resistance.
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The path function y = P(x) that describes the motion of the projectile is given by

P(x) = h + x tan φ− gx2

2v2 sec2 φ. (28)

When the projectile hits the hill, there is a value of x for which P(x) = ω(x) for each value of x.
We wish to find the value of φ that maximizes x.

ω(x) = P(x) = h + x tan φ− gx2

2v2 sec2 φ. (29)

Differentiating Equation (29) implicitly w.r.t. φ, we have

ω′(x)
dx
dφ

= x sec2 φ +
dx
dφ

tan φ− g
v2

(
x2 sec2 φ tan φ + x

dx
dφ

sec2 φ

)
. (30)

Setting
dx
dφ

= 0 in Equation (30), we have

xm =
v2

g
cot φm (31)

or

φm = arctan
(

v2

g xm

)
(32)

An enveloping parabola is a path that encloses and intersects all possible paths. This enveloping
parabola is obtained by maximizing the height of the projectile for a given horizontal distance x which
will give the path that encloses all possible paths. Let w = tan φ, then Equation (28) becomes

y = P(x) = h + xw− gx2

2v2 (1 + w2). (33)

Differentiating Equation (33) w.r.t. w and setting y′ = 0, Henelsmith obtained

y′ = x− gx2

v2 (w) = 0, w =
v2

g x
, (34)

so that the enveloping parabola is defined by ym = ρ(x) = h + v2

2g −
gx2

2v2 .
The solution to the projectile problem requires first finding xm which satisfies ρ(x) = ω(x) and

solving for φm in Equation (32) because we want to find the point at which the enveloping parabola
ρ intersects the impact function ω, and then find φ that corresponds to this point on the enveloping
parabola. We choose a linear impact function ω(x) = 0.4x with h = 10 and v = 20. We let g = 9.8.
Then we apply our I.F.s starting from x0 = 30 to solve the non-linear equation

f (x) = ρ(x)−ω(x) = h +
v2

2g
− gx2

2v2 − 0.4x,

whose root is given by xm = 36.102990117... and φm = arctan
(

v2

g xm

)
= 48.5◦.

Figure 1 shows the intersection of the path function, the enveloping parabola and the linear
impact function for this application when 5thPJ method is applied.
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Figure 1. The enveloping parabola with linear impact function.

Application 2: The depth of embedment x if a sheet-pile wall is governed by the equation [24]:

x =
x3 + 2.87x2 − 10.28

4.62
.

It can be rewritten as

f (x) =
x3 + 2.87x2 − 10.28

4.62
− x.

An engineer has estimated the depth to be x = 2.5. Here we find the root of the equation f (x) = 0
with initial guess 2.5 and compare some well known methods to our methods.

Application 3: The vertical stress σz generated at point in an elastic continuum under the edge of
a strip footing supporting a uniform pressure q is given by Boussinesq’s formula [24] to be:

σz =
q
π

x + Cosx Sinx.

A scientist is interested to estimate the value of x at which the vertical stress σz will be 25 percent
of the footing stress q. Initially it is estimated that x = 0.4. The above can be rewritten for σz being
equal to 25 percent of the footing stress q:

f (x) =
x + Cosx Sinx

π
− 1

4
.

Now we find the root of the equation f (x) = 0 with initial guess 0.4 and compare some well
known methods to our methods.

Application 4: Generally, many problems in scientific and engineering which involve
determination of any unknown appearing implicitly give rise to a root-finding problem. The Planck’s
radiation law problem appearing in [25,26] is one among them and it is given by

ϕ(λ) =
8πchλ−5

ech/λkT − 1
, (35)

which calculates the energy density within an isothermal blackbody. Here, λ is the wavelength of
the radiation; T is the absolute temperature of the blackbody; k is Boltzmann’s constant; h is the
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Planck’s constant; and c is the speed of light. Suppose we would like to determine wavelength λ,
which corresponds to maximum energy density ϕ(λ). From Equation (35), we get

ϕ′(λ) =
( 8πchλ−6

ech/λkT − 1

)( (ch/λkT)ech/λkT

ech/λkT − 1
− 5
)
= A · B.

It can be checked that a maxima for ϕ occurs when B = 0, that is when
(
(ch/λkT)ech/λkT

ech/λkT−1

)
= 5.

Here, taking x = ch/λkT, the above equation becomes

1− x
5
= e−x. (36)

Let us define
f (x) = e−x − 1 +

x
5

. (37)

The aim is to find a root of the equation f (x) = 0. Obviously, one of the root x = 0 is not
taken for discussion. As argued in [25], the left-hand side of Equation (36) is zero for x = 5 and
e−5 ≈ 6.74× 10−3. Hence, it is expected that another root of the equation f (x) = 0 might occur
near x = 5. The approximate root of the Equation (37) is given by x∗ ≈ 4.96511423174427630369.
Consequently, the wavelength of radiation (λ) corresponding to which the energy density is maximum
is approximated as λ ≈ ch

(kT)4.96511423174427630369 .
Application 5: Study of the multipactor effect [27]:
The trajectory of an electron in the air gap between two parallel plates is given by

x(t) = x0 +
(
v0 + e

E0

mω
sin(ωt0 + Ψ)

)
(t− t0) + e

E0

mω2

(
cos(ωt + Ψ) + sin(ω + Ψ)

)
, (38)

where E0 sin(ωt + Ψ) is the RF electric field between plates at time t0, x0 and v0 are the position and
velocity of the electron, e and m are the charge and mass of the electron at rest respectively. For the
particular parameters, one can deal with a simpler expression as follows:

f (x) = x− 1
2

cos(x) +
π

4
. (39)

The required zero of the above function is x∗ ≈ −0.3094661392082146514....
Application 6: Van der Waals equation representing a real gas is given by [28] :

(P +
an2

V2 )(V − nb) = nRT.

Here, a and b are parameters specific for each gas. This equation reduces to a nonlinear equation
given by

PV3 − (nbP + nRT)V2 + an2V − an3b = 0.

By using the particular values for unknown constants, one can obtain the following
nonlinear function

f (x) = 0.986x3 − 5.181x2 + 9.067x− 5.289, (40)

having three zeros. Out of them, two are complex zeros and the third one is a real zero. However, our
desired root is x∗ ≈ 1.9298462428478622184875...

Application 7: Fractional conversion in a chemical reactor [29]: In the following expression

f (x) =
x

1− x
− 5 log

[0.4(1− x)
0.4− 0.5x

]
+ 4.45977, (41)

x represents the fractional conversion of species A in a chemical reactor. Our required zero to this
problem is x∗ ≈ −0.8197851865....
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Tables 4–10 display the numerical results with respect to number of iterations (N), Error, order of
convergence (ρ) and CPU time (in seconds). The numerical experiments of the above real life problems
demonstrate the validity and applicability of the proposed methods. It is observed that the presented
methods take less CPU time and equal number of iterations among the equivalent compared methods.
This shows that the proposed methods are very much suitable for all the application problems. In most
of the cases, the proposed methods show better performance in comparison to the existing methods.

Table 4. Comparison of results for Application 1.

Methods N Error ρ CPU (s)

2nd NM 7 4.3980×10−76 1.99 0.830575
3rd AM 5 1.2300×10−96 2.99 0.681488
4th NR 4 4.3980×10−76 3.99 0.630004
4thSBS Div - -
4thCH 4 4.6073×10−69 3.99 0.588361
4thPJ 4 1.8103×10−61 3.99 0.547790

5thFLM 4 5.7478×10−132 5.00 0.586715
5thPJ 4 2.0709×10−129 5.00 0.551062

8thPKPDM 3 4.2702×10−57 8.06 0.513597
8thPKJ 3 7.6302×10−95 10.05 0.538007
8thPJ 3 1.7219×10−61 8.05 0.508273

Table 5. Comparison of results for Application 2.

Methods N Error ρ CPU (s)

2nd NM 9 1.0193×10−52 1.99 0.996467
3rd AM 7 1.3489×10−139 2.99 0.849512
4th NR 5 1.0193×10−52 3.99 0.672037
4thSBS 6 4.6521×10−79 4.00 0.873925
4thCH 6 6.7960×10−181 3.99 0.812545
4thPJ 6 1.8054×10−131 3.99 0.776537

5thFLM 5 1.2111×10−93 4.99 0.732066
5thPJ 5 4.0117×10−95 4.99 0.730307

8thPKPDM 4 8.3867×10−56 7.93 0.630707
8thPKJ 4 4.2397×10−116 7.85 0.759305
8thPJ 4 5.6798×10−65 7.96 0.590362

Table 6. Comparison of results for Application 3.

Methods N Error ρ CPU (s)

2nd NM 6 6.5591×10−51 1.99 0.685187
3rd AM 5 5.5187×10−105 3.00 0.637279
4th NR 4 3.9349×10−102 3.99 0.557325
4thSBS 4 7.1728×10−65 4.00 0.584073
4thCH 4 9.1666×10−80 4.00 0.560651
4thPJ 4 1.4377×10−75 3.99 0.536090

5thFLM 4 2.8696×10−159 5.00 0.605519
5thPJ 4 1.1523×10−158 5.00 0.617395

8thPKPDM 3 3.7116×10−71 8.10 0.501966
8thPKJ 3 3.6878×10−75 8.01 0.578021
8thPJ 3 1.1154×10−75 8.11 0.517710
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Table 7. Comparison of results for Application 4.

Methods N Error ρ CPU (s)

2nd NM 6 4.8109×10−59 2.00 0.753920
3rd AM 5 5.3700×10−108 300 0.613745
4th NR 4 4.1831×10−119 3.99 0.589578
4thSBS Div - - -
4thCH 4 1.1795×10−79 3.99 0.583455
4thPJ 4 4.3121×10−90 3.99 0.540330

5thFLM 4 1.9579×10−192 4.99 0.594375
5thPJ 4 3.1518×10−192 4.99 0.579986

8thPKPDM 3 2.0800×10−82 7.87 0.595976
8thPKJ 3 2.6914×10−77 7.91 0.550664
8thPJ 3 2.1349×10−92 7.88 0.508991

Table 8. Comparison of results for Application 5.

Methods N Error ρ CPU (s)

2nd NM 8 3.1841×10−78 2.00 0.876498
3rd AM 6 7.3356×10−125 2.99 0.766441
4th NR 5 2.8479×10−156 3.99 0.704363
4thSBS 5 2.2538×10−61 3.99 0.727041
4thCH 5 6.8913×10−142 3.99 0.714278
4thPJ 5 6.8517×10−96 3.99 0.673176

5thFLM 4 3.8194×10−59 5.00 0.595414
5thPJ 4 7.5097×10−53 5.00 0.594544

8thPKPDM 4 3.6257×10−221 7.99 0.665352
8thPKJ 4 3.7564×10−258 7.99 0.624762
8thPJ 4 1.8860×10−182 7.99 0.647974

Table 9. Comparison of results for Application 6.

Methods N Error ρ CPU (s)

2nd NM 10 3.1818×10−79 1.99 1.168129
3rd AM 7 1.9114×10−102 3.00 0.938796
4th NR 6 6.1785×10−157 3.99 0.828477
4thSBS 6 6.3885×10−183 3.99 0.858490
4thCH 6 3.4420 × 10−136 3.99 0.828262
4thPJ 6 2.6446 × 10−94 3.99 0.765311

5thFLM 5 1.8367 × 10−68 4.99 0.786621
5thPJ 5 4.1015 × 10−70 4.99 0.690104

8thPKPDM 5 1.5540 × 10−306 7.99 0.745657
8thPKJ 4 5.4031 × 10−79 7.92 0.653454
8thPJ 5 0 7.99 0.718040
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Table 10. Comparison of results for Application 7.

Methods N Error ρ CPU (s)

2nd NM 8 1.4633×10−90 2.00 0.934292
3rd AM 6 1.8047×10−148 3.00 0.743453
4th NR 5 7.5786×10−181 3.99 0.685801
4thSBS 5 2.3233×10−127 3.99 0.733919
4thCH 5 2.5520×10−187 3.99 0.716272
4thPJ 5 1.8851×10−146 4.00 0.700729

5thFLM 4 2.6523×10−78 5.00 0.551580
5thPJ 4 5.6837×10−78 5.00 0.532049

8thPKPDM 4 8.3091×10−268 7.99 0.643239
8thPKJ 4 0 7.99 0.687932
8thPJ 4 1.2107×10−291 7.99 0.641357

7. Conclusions

We have presented a modification of Newton’s method producing fifth, eighth and fourth order
convergence for solving nonlinear equations. At each iteration, the methods require respectively
four, five and three function evaluations. The optimal methods 4thSBS and 8thPKPDM diverge for
the functions f2(x), f3(x), f4(x) and f1(x), f3(x), f4(x) respectively for some initial points. For these
functions, the proposed methods converge even though two methods are non-optimal. Moreover,
the proposed new methods 5thPJ and 8thPJ require a lower number of iterations and less cpu
time for convergence when compared with other methods. 4thPJ method also performs well when
compared with equivalent methods. Table of efficiency indices shows that the new algorithms have
better efficiency and perform better than classical Newton’s method and other existing non-optimal
methods. Seven application problems are solved where the new methods produce better results than
other compared methods. For all the applications, proposed methods consume less cpu time and
perform equivalent to other compared methods with respect to iteration number and residual error.
For application problems 1 and 4, 4thSBS method diverges, whereas the proposed methods converges.
Hence, the new methods can be considered as very good competitors to Newton’s method and many
other existing equivalent optimal/non-optimal methods.
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