
Mathematical

and Computational

Applications

Article

A Fast Factorisation of Semi-Primes Using Sum
of Squares

Anthony Overmars and Sitalakshmi Venkatraman *

Department of Information Technology, Melbourne Polytechnic, Preston 3072, Australia;
anthonyovermars@melbournepolytechnic.edu.au
* Correspondence: sitavenkat@melbournepolytechnic.edu.au; Tel.: +61-3-9269-1171

Received: 16 May 2019; Accepted: 2 June 2019; Published: 11 June 2019
����������
�������

Abstract: For several centuries, prime factorisation of large numbers has drawn much attention
due its practical applications and the associated challenges. In computing applications, encryption
algorithms such as the Rivest–Shamir–Adleman (RSA) cryptosystems are widely used for information
security, where the keys (public and private) of the encryption code are represented using large
prime factors. Since prime factorisation of large numbers is extremely hard, RSA cryptosystems take
advantage of this property to ensure information security. A semi-prime being, a product of two
prime numbers, has wide applications in RSA algorithms and pseudo number generators. In this
paper, we consider a semi-prime number whose construction consists of primes, N = p1p2, being
Pythagorean and having a representation on the Cartesian plane such that, p = x2 + y2. We prove
that the product of two such primes can be represented as the sum of four squares, and further,
that the sums of two squares can be derived. For such a semi-prime, if the original construction is
unknown and the sum of four squares is known, by Euler’s factorisation the original construction
p1p2 can be found. By considering the parity of each of the squares, we propose a new method of
factorisation of semi-primes. Our factorisation method provides a faster alternative to Euler’s method
by exploiting the relationship between the four squares. The correctness of the new factorisation
method is established with mathematical proofs and its practical value is demonstrated by generating
RSA-768 efficiently.

Keywords: Euler’s factorisation; semi-prime factorisation; encryption key; RSA cryptosystem;
Pythagorean prime; Gaussian prime

1. Introduction

Several mathematicians, since the work of Euclid, have been trying to uncover the mysteries
behind prime numbers as they have a unique property of being divisible only by themselves and
one [1,2]. The use of large prime numbers in providing information security in this digital age
has triggered much research in this direction. With the advent of Rivest–Shamir–Adleman (RSA)
encryption system in 1978, prime numbers are being combined innovatively to create cryptographic
keys to allow secure transmission of private and sensitive information over computer networks [3,4].
Higher security can be enforced with larger prime numbers since prime factorisation is extremely hard
and the RSA system takes advantage of this elegant property [5,6]. However, using very large prime
numbers for RSA involves more computational time in encrypting and decrypting the information,
which needs to be balanced for real-time applications. With this limitation, malicious attacks target on
breaking the RSA system by finding efficient methods of prime factorisation [7,8].

Another advancement in this digital age is the evolution of the Internet of Things (IoT) that
connects intelligent devices to work together in providing new personalised capabilities of products
and services. However, the IoT has limited computing capabilities, storage and connectivity. In this

Math. Comput. Appl. 2019, 24, 62; doi:10.3390/mca24020062 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0002-2772-133X
http://dx.doi.org/10.3390/mca24020062
http://www.mdpi.com/journal/mca
https://www.mdpi.com/2297-8747/24/2/62?type=check_update&version=3

Math. Comput. Appl. 2019, 24, 62 2 of 13

context, the greatest challenge is in securing IoT devices as well as the confidential communication
of information over the IoT network [9]. In such an environment, the cryptographic algorithms are
appropriately scaled down and the smaller prime numbers used in the encryption keys can provide
more scope for hackers to perform their attacks [10]. Implementing information security capabilities
involves several approaches to protect confidential data such as: (i) off-chip cryptographic memories
to store sensitive information, (ii) cryptosystems such as symmetric and asymmetric cryptography,
and (iii) hardware-level authentication of peripherals. In many situations, efficient and faster prime
factorisation method facilitates in breaking the security algorithm in real-time, which serves as a test
for establishing the security limits of the computing systems from any possible attack.

In recent years, several prime factorisation methods have been proposed, improving their efficiency
to factor composite prime numbers (semi-primes) as large as 250 decimal digits utilising sufficiently
large computing power [11,12]. However, semi-prime factorisation still remains a challenge that draws
interest from the perspective of research in computational number theory as well as the practical
difficulty of cracking RSA keys used in cryptosystems [13,14].

In this paper, we consider the application of prime factorisation for testing the security of RSA
cryptography, which is based on a positive integer N, where the encryption and decryption of any
message using a pair of public and private keys depends on N. In the RSA algorithm, N is a product of
two prime numbers (N = p1p2) and is a semi-prime [15]. In the secured transmission of a message, p1

and p2 are employed in RSA to generate the key pairs for encryption and decryption. If p1 and p2 are
known, then the cracking of the RSA keys becomes possible [16]. Hence, the security of RSA depends
on how difficult the factorisation of N is. This motivates research works to propose new factorisation
methods. Euler’s factorisation is the most popular method that is well suited for finding prime factors
of semi-primes whose constructions are based on Pythagorean primes [17]. We identify the limitations
of Euler’s method as it is applicable to only semi-prime constructs that are Pythagorean primes. Our
aim in this paper is to propose an improved method by considering the parity of the squares approach.
We provide a proof theory that our proposed method requires much fewer steps for the factorisation
process of RSA modulus N. Hence, our enhanced method could be applied to test for factorisation
attacks that would provide insights into choosing the key size and the time period until which an
RSA-based public key algorithm is safe from an attack.

2. Theory and Proposed Method

The definition of a generic Pythagorean triple is denoted as the triple:

(a, b, c)

where a, b, c ∈ N\{0}, with c > max{a, b}, i.e., a and b denote the sides of a right triangle, and c denotes
the length of the hypothenuse [18]. From the fundamental property of right-angled triangles, we have,
a2 + b2 = c2 which is among the Diophantine equations [19]. The set of all Pythagorean triples is
denoted by P.

For every m, n ∈ N\{0}, with the series of odd and even Pythagorean triples defined in terms of m
and n, it has been proved in previous work by Overmars et al. [17] that:

a = (2m + n− 1)2
− n2

b = 2 (2m + n− 1) n
c = (2m + n− 1)2 + n2.

The above is referred to as the Overmars triangles, and we are interested in the properties of the
hypotenuse of the triangle in this paper. As commonly represented, let us denote the hypotenuse in
this paper by N, which could be represented as N = (2m + n− 1)2 + n2. From this equation, if n is
odd, then n2 is also odd and it follows that 2m + n− 1 will be even and (2m + n− 1)2 will also be even.
Conversely, if n is even, n2 will be even and both 2m + n− 1 and (2m + n− 1)2 will be odd.

Math. Comput. Appl. 2019, 24, 62 3 of 13

Fermat’s Christmas theorem [20] showed that for a Pythagorean prime p ≡ 1 mod 4 = x2 + y2.
This was extended by Overmars [19] taking into consideration the parity of x and y such that
x2 + y2 = (2m + n− 1)2 + n2, noting that for a particular Pythagorean triangle, the sides making up
the hypotenuse where opposite in parity. For a semi-prime consisting of two such triangles whose
hypotenuse are prime, it will be shown here that its two sums of two squares will have the following
parity:

N = p1p2 = odd2
1 + even2

1 = odd2
2 + even2

2.

If we consider the following differences:

∆o = odd1 − odd2 , ∆e = even1 − even2, and g = gcd(∆o, ∆e).

It can be shown that one of the primes p2 can be represented as:

p2 =

(
∆o
g

)2

+

(
∆e
g

)2

, p1 =
N
p2

.

Euler’s factorisation method is suited to semi-primes whose construction are prime factors that
are said to be Pythagorean [21,22] and can further be improved upon by considering the parity of the
squares. The limitations of this method pertain only to semi-prime constructs that are Pythagorean
primes (p = 1 mod 4). It can also be shown (Section 3) that the combinations of Pythagorean primes with
Gaussian primes cannot be represented as the sum of two squares. The implication here is that if the
semi-prime construction selects Pythagorean and/or Gaussian primes randomly, only one quarter of the
semi-prime constructions avail themselves to this factorisation method. The distribution of Pythagorean
and Gaussian primes appear in the set of natural numbers with equal probability. A comprehensive
description on the Pythagorean and Gaussian primes and their probabilistic distributions are provided
by Oliver Knill [23].

Consider a semi-prime number whose construction consists of primes p1, p2 with N = p1p2, being
Pythagorean, and having a representation on the Cartesian plane such that, p = x2 + y2. It can easily
be shown that the product of two such primes can be represented as the sum of four squares from
which two sums of two squares can be derived. For such a semi-prime, if the original construction is
unknown and the sum of four squares is known, the original construction p1, p2 can be found. This
paper considers the sum of four squares from which two sums of squares is determined, and hence by
Euler’s factorisation the original construction p1p2 can be found. By considering the parity of each
of the squares, a new way of determining the semi-prime construction is described. Our proposed
method provides an alternative to Euler and uses Overmars triangles. This exploits the relationship
between the four squares, from which the two sums of two squares can be determined by considering
each squares’ parity, and thereby the factorisation is determined. We describe the Euler’s factorisation
forming the foundation of our proposed method and the related proofs in the next two sections of
the paper.

3. Euler’s Factorisation Method

We begin by considering Gaussian primes and Pythagorean primes. From the literature, Gaussian
primes are of the form [24,25]:

4x− 1 ≡ 3 mod 4,

and Pythagorean primes of the form:
4x + 1 ≡ 3 mod 4.

According to Fermat’s Christmas theorem on the sum of two squares, we have the following:

an odd prime p = x2 + y2 if p ≡ 1 mod 4.

Math. Comput. Appl. 2019, 24, 62 4 of 13

Gaussian primes are of the form p ≡ 3 mod 4 and are not representable as the sum of two squares.

Proposition: A semi-prime whose prime factors are Pythagorean can be expressed as the sum of four squares,
from which two sums of squares can be derived.

Lemma: A semi-prime N = p1p2, p1 = a2 + b2, p2 = c2 + d2 is expressed as the sum of four squares, such that:

N = p1p2 =
(
a2 + b2

)(
c2 + d2

)
= (ac)2 + (bc)2 + (ad)2 + (bd)2.

Proof: Euler’s factorisation
Let us consider the method of Euler’s factorization, where a number (N) can be factored by writing

it as a sum of two squares in two different ways as follows:

N = r2 + s2 = t2 + u2
⇒ r2

− t2 = u2
− s2
⇒ (r− t)(r + t) = (u− s)(u + s)

p1 =
(

gcd(r−t,u−s)
2

)2
+

(
gcd(r+t,u+s)

2

)2
, p2 =

(
gcd(r+t, u−s)

2

)2
+

(
gcd(r−t, u+s)

2

)2

Let us consider the example N = 2137458620009 to find p1 and p2, using the sum of squares as
follows:

N = 3244032 + 14255602 = 6436032 + 13127202,

combining even and odds we get:

14255602
− 13127202 = 6436032

− 3244032

a2
− c2 = d2

− b2 =⇒ (a− c)(a + c) = (d− b)

(d + b)= (968006) (319200) = (2738280) (112840),

using the greatest common divisor (gcd):

gcd(a− c, d− b)

2
=

gcd(968006, 2738280)
2

= 1201,

gcd(a + c, d + b)
2

=
gcd(319200, 112840)

2
= 140,

p1 = 12012 + 1402 = 1462001

gcd(a + c, d− b)
2

=
gcd(319200, 2738280)

2
= 1140,

gcd(a− c, d + b)
2

=
gcd(968006, 112840)

2
= 403,

p2 = 11402 + 4032 = 1462009.

The above example illustrates how the semi-primes of N can be derived as the sum of two squares
using Euler’s factorisation method.

Now, express the sum of four squares as two sums of two squares.
Let r = ad + bc, s = bd− ac, t = ac + bd, u = ad− bc

⇒ r2 = (ad)2 + 2abcd + (bc)2, s2 = (ac)2
− 2abcd + (bd)2,

t2 = (ac)2 + 2abcd + (bd)2, u2 = (ad)2
− 2abcd + (bc)2

⇒ r2 + s2 = (ac)2 + (ad)2 + (bc)2 + (bd)2 = t2 + u2

N = p1p2 =
(
a2 + b2

)(
c2 + d2

)
(1)

N = (ac)2 + (bc)2 + (ad)2 + (bd)2 (2)

Math. Comput. Appl. 2019, 24, 62 5 of 13

N = (ad + bc)2 + (bd− ac)2 = (ad− bc)2 + (bd + ac)2 (3)

�

4. Proposed Semi-Prime Factorisation Using Sum of Squares

Overmars et al. [17] showed that all Pythagorean triples could be represented as N = n2 +

(n + 2m− 1)2. If the semi-prime is constructed using two Pythagorean primes (4x + 1) then two
representations as the sum of two squares can be found and Euler’s factorisation method can be
applied. Finding these two representations is non-trivial and computationally intensive for large
numbers even with computers with a high performance central processing unit (CPU). The equation
N(m, n) = n2 + (n + 2m− 1)2 provides an elegant search using increments of n and fine convergence
using m, and the CPU-intensive square root can be avoided. In this way n is incremented and m is
decremented about N to find one of the two solutions along the diagonal of a field of N(m, n) ≈ N. It
can also be shown (as a future work) that once one sum of the squares is known, this can be used to
find the other.

Consider the example of a large number, N = 2137458620009.

N(m1, n1) = n2
1 + (n1 + 2m1 − 1)2

= 3244032 + (324403 + 2(550579) − 1)2

= 3244032 + 14255602

N(m2, n2) = n2
2 + (n2 + 2m2 − 1)2

= 6436032 + (643603 + 2(334559) − 1)2

= 6436032 + 13127202

N1(324403, 550579) = N2(643603, 334559)
= 2137458620009.

For completeness, N can be represented as two Pythagorean triangles as shown [2]:

∆(m, n) = ∆(a, b, c)
a(m, n) = 2n(n + 2m− 1),
b(m, n) = (2m− 1)(2n + 2m− 1),
c(m.n) = n2 + (n + 2m− 1)2

∆(m1, n1) = ∆(a1, b1, c1) :
∆(324403, 550579) = ∆(28197495801360, 8357740887191, 29410042540009)
∆(m2, n2) = ∆(a2, b2, c2) :
∆(643603, 334559) = ∆(1689741060320, 1309008976791, 29410042540009).

Once the two sums of two squares have been found, Euler’s factorisation method can be used.
N : N = p1p2.

5. Proposed Method Using Gaussian and Pythagorean Primes

According to Fermat’s Christmas theorem, if Pythagorean primes (4x + 1 ≡ 4x− 3) are used to
construct a composite of the semi-prime number (N), a solution exists as two sums of two squares.
However, if N is constructed using Gaussian primes (4x− 1 ≡ 4x + 3), then Euler’s sum of two squares
method cannot be used [26,27]. There is a lack of research in this direction [28,29]. This motivates us to
investigate in this paper, if there is a test case which we can use to see if a composite of the semi-prime
number has been constructed using Pythagorean primes.

Consider the following composite constructions:

(i) N = (4x + 1)(4y + 1) using Pythagorean primes;

Math. Comput. Appl. 2019, 24, 62 6 of 13

(ii) N = (4x− 1)(4y− 1) using Gaussian primes;
(iii) N = (4x + 1)(4y− 1) or (4x− 1)(4y + 1) using mixed Pythagorean and Gaussian primes.

(i) Pythagorean prime construction

N = (4x + 1)(4y + 1) = 16xy + 4(x + y) + 1.

We have verified that two sums of two squares representations exist and Euler’s factorisation can
be used.

1 ≡ N mod 4.

As an illustration, consider the following example for N = 793.

793 = 102 + 122 + 152 + 182 = 13 ∗ 61 = 32 + 282 = 82 + 272.

Note the parity of the sum of four squares is (odd, even, even, even).

(ii) Gaussian prime construction

N = (4x− 1)(4y− 1) = 16xy− 4(x + y) + 1 ≡ 4m− 3 ≡ 4n + 1.

Sums of three squares exist 1 ≡ N mod 4.
As an illustration, consider the following example for N = 649.

649 = 11× 59 = 12 + 182 + 182 = 32 + 82 + 242 = 62 + 172 + 182 = 82 + 122 + 212

= 102 + 152 + 182 = 122 + 122 + 192.

(iii) Mixed Pythagorean-Gaussian prime construction

− 1 ≡ N mod 4.

N = (4x + 1)(4y− 1) = 16xy− 4(x− y) − 1, N = (4x− 1)(4y + 1) = 16xy + 4(x− y) − 1.

Sums of four squares exist.
3 ≡ N mod 4.
13× 59 = 767
= 12 + 12 + 62 + 272 = 12 + 12 + 182 + 212

= 12 + 32 + 92 + 262 = 12 + 62 + 172 + 212

= 12 + 92 + 182 + 192 = 12 + 102 + 152 + 212

= 22 + 32 + 52 + 272 = 22 + 32 + 152 + 232

= 32 + 62 + 192 + 192 = 32 + 72 + 152 + 222

= 32 + 112 + 142 + 212 = 52 + 62 + 92 + 252

= 62 + 92 + 112 + 232 = 62 + 92 + 172 + 192

= 62 + 112 + 132 + 212 = 72 + 92 + 142 + 212

= 72 + 132 + 152 + 182 = 92 + 92 + 112 + 222

= 92 + 102 + 152 + 192

= 112 + 142 + 152 + 152.
Note the parity of the sum of four squares is (even, odd, odd, odd).
In summary, a semi-prime whose composite construction is based upon both Pythagorean and

Gaussian primes can easily be identified when N mod 4 ≡ 3 is true and the sum of four squares parity
is (even, odd, odd, odd) and Euler’s factorisation cannot be used. Table 1 provides possible composite
constructs of a semi-prime number using Pythagorean and Gaussian primes as the factors. When
P mod 4 ≡ 1 is true, the composite could be constructed using Pythagorean primes or Gaussian primes.
When the Pythagorean construct is confirmed, we can verify that: (i) the sum of four squares parity is

Math. Comput. Appl. 2019, 24, 62 7 of 13

(odd, even, even, even), (ii) the two sums of two squares can be found, and (iii) Euler’s factorisation
can be employed.

Table 1. Possible composite constructs using Pythagorean and Gaussian primes.

Composite 4x−1 4x+1 3.15 11 13

4y− 1 16xy− 4(x + y) + 1 16xy− 4(x− y) − 1 59 649 767
4y + 1 16xy− 4(y− x) − 1 16xy+ 4(x + y) + 1 61 671 793

Proof: Let N be a semi-prime and p1 and p2 are its two prime factors so that N = p1p2. Assume also
that p1 and p2 are distinct. Suppose that the primes p1 and p2 are “Pythagorean” (2-square), that is, they
can each be written as the sum of two squares of natural numbers: p1 = a2 + b2, p2 = c2 + d2, then:

N = p1p2 =
(
a2 + b2

)(
c2 + d2

)
= a2c2 + a2d2 + b2c2 + b2d2

N = a2c2 + 2abcd + b2d2 + a2d2
− 2abcd + b2c2

= a2d2 + 2abcd + b2c2 + a2c2
− 2abcd + b2d2

= (ac + bd)2 + (ad− bc)2

= (ad + bc)2 + (ac− bd)2

= t2 + u2 = r2 + s2.

Therefore, N is also Pythagorean, and can be represented as the sum of two squares in two
different ways:

r = ad + bc , s = ac− bd ,
t = ac + bd, u = ad− bc.

The problem is rephrased as:
Given N = r2 + s2 = t2 + u2, is known. r, s, t, u, N ∈ N\{0}. Find p1 and p2.

s + t = 2ac, r + u = 2ad,
g = gcd(s + t, r + u) = gcd(2ac, 2ad) = 2a

s+t
g = 2ac

2a = c, r+u
g = 2ad

2a = d,

p2 = c2 + d2 =
(

s+t
g

)2
+

(
r+u

g

)2

=
(s+t)2+(r+u)2

g2

then the factors of N are:

p2 = c2 + d2 =

(
s + t

g

)2

+

(
r + u

g

)2

, p1 =
N
p2

�

6. Verification with Ordering Ambiguity

In this section, we verify that the ordering of the odd and even pairs does not affect the results.
Consider the following example 1 of ordering of odd and even pairs as follows:

1000009 = 10002 + 32 = 9722 + 2352,

a = 1000, b = 3, c = 972, d = 235

g = gcd(1000 + 972, 235 + 3) = 34,

Math. Comput. Appl. 2019, 24, 62 8 of 13

x1 = 1972/34 = 58, y1 = 238/34 = 7

p2 = 582 + 72 = 3413.

Consider the following example 2 of ordering of odd and even pairs as follows:

1000009 = 10002 + 32 = 2352 + 9722,

a = 1000, b = 3, c = 235, d = 972,

g = gcd(1000 + 235, 972 + 3) = 65,

x1 = 1235/65 = 19, y1 = 975/65 = 15,

p1 = 192 + 152 = 586 = 2 ∗ 293.

Furthermore, we have additional information which can assist in removing this ambiguity. If
we consider odd and even pairs when ordering the sums, we can use Overmars triangles to conserve
parity and remove this ambiguity.

Consider the following form:

p = a2 + b2 = (2m + n− 1)2 + n2, a = 2m + n− 1, b = n.

When n = odd, 2m + n− 1 = even⇒ a is even, b is odd .
Conversely, n = even, 2m + n− 1 = odd⇒ a is odd, b is even .
Odd/even or even/odd parity is thus assured and preserved for each of the sums of squares and

this additional information can be used to remove the ordering ambiguity.
Consider the difference between odd and even parts of the two sums of two squares, this removes

the ordering ambiguity:

∆o = odd1 − odd2, ∆e = even1 − even2, g = gcd(∆o, ∆e),

one of the primes p2 can be given as:

p2 =
(

∆o
g

)2
+

(
∆e
g

)2
∆o = |3− 235| = 232,

∆e = |1000− 972| = 28,
g = gcd(232, 28) = 4,

⇒ p2 =
(

232
4

)2
+

(
28
4

)2
= 582 + 72 = 3413.

Proof: Express p1, p2 as Overmars triangles.

p1 = a2 + b2 = (2m1 + n1 − 1)2 + n2
1,

p2 = c2 + d2 = (2m2 + n2 − 1)2 + n2
2

N = p1p2 =
(
a2 + b2

)(
c2 + d2

)
=

(
(2m1 + n1 − 1)2 + n1

2
)(
(2m2 + n2 − 1)2 + n2

2
)

= (ac)2 + (bd)2 + (ad)2 + (bc)2

= ((2m1 + n1 − 1)(2m2 + n2 − 1))2 + (n1n2)
2

+((2m1 + n1 − 1)n2)
2 + (n1(2m2 + n2 − 1))2

Math. Comput. Appl. 2019, 24, 62 9 of 13

N = (ac + bd)2 + (ad− bc)2 = s2 + t2

= ((2m1 + n1 − 1)(2m2 + n2 − 1) + n1n2)
2

+((2m1 + n1 − 1)n2 − n1(2m2 + n2 − 1))2

= (ad + bc)2 + (ac− bd)2 = u2 + r2

= ((2m1 + n1 − 1)n2 + n1(2m2 + n2 − 1))2 + ((2m1 + n1 − 1)(2m2 + n2 − 1) − n1n2)
2.

Let us express two semi-primes N1, N2 as Overmars triangles as follows:

N1 = s2 + t2 = (2v + t− 1)2 + t2,
N2 = u2 + r2 = (2w + r− 1)2 + r2,

where v = s−t+1
2 , w = u−r+1

2 .
Substitute for v, t, w, r,

N1 = s2 + t2 = (2v + t− 1)2 + t2,
v = 2m1m2 −m1 + 2n1m2 + n1n2 − n1 −m2 + 1,
t = 2m1m2 − 2n1m2 + n1 − n2,

N2 = u2 + r2 = (2w + r− 1)2 + r2,
r = 4m1m2 + 2m1n2 − 2m1 + 2n1m2 − n1 − 2m2 − n2 + 1,
w = −2m1m2 + m1 + m2 + n1n2,

N1 = 16 m1
2 m2

2 + 16 m2
1 m2 n2 − 16 m2

1 m2 + 8 m2
1 n2

2 − 8 m2
1 n2 + 4 m2

1 + 16 m1 n1 m2
2

+ 16 m1 n1 m2 n2 − 16 m1 n1 m2 + 8 m1 n1 n2
2 − 8 m1 n1n2 + 4 m1 n1

− 16 m1 m2
2 − 16 m1 m2 n2 + 16 m1 m2 − 8 m1 n2

2 + 8 m1 n2 − 4 m1 + 8 n2
1 m2

2
+ 8 n2

1 m2 n2 − 8 n2
1 m2 + 4 n2

1 n2
2 − 4 n2

1 n2 + 2 n2
1 − 8 n1 m2

2 − 8 n1 m2 n2

+ 8 n1 m2 − 4 n1 n2
2 + 4 n1 n2 − 2 n1 + 4 m2

2 + 4 m2 n2 − 4 m2 + 2 n2
2 − 2 n2

+ 1,

N2 = 16 m1
2 m2

2 + 16 m2
1 m2 n2 − 16 m2

1 m2 + 8 m2
1 n2

2 − 8 m2
1 n2 + 4 m2

1 + 16 m1 n1 m2
2

+ 16 m1 n1 m2 n2 − 16 m1 n1 m2 + 8 m1 n1 n2
2 − 8 m1 n1n2 + 4 m1 n1

− 16 m1 m2
2 − 16 m1 m2 n2 + 16 m1 m2 − 8 m1 n2

2 + 8 m1 n2 − 4 m1 + 8 n2
1 m2

2
+ 8 n2

1 m2 n2 − 8 n2
1 m2 + 4 n2

1 n2
2 − 4 n2

1 n2 + 2 n2
1 − 8 n1 m2

2 − 8 n1 m2 n2

+ 8 n1 m2 − 4 n1 n2
2 + 4 n1 n2 − 2 n1 + 4 m2

2 + 4 m2 n2 − 4 m2 + 2 n2
2 − 2 n2

+ 1,

N1 = N2 =
(
4 m2

1 + 4 m1 n1 − 4 m1 + 2 n2
1 − 2 n1 + 1

)(
4 m2

2 + 4 m2 n2 − 4 m2 + 2 n2
2 − 2 n2 + 1

)
=

[
(2 m1 + n1 − 1)2 + n2

1

][
(2m2 + n2 − 1)2 + n2

2

]
,

N1 = N2 = p1p2

⇒ p1 = (2m1 + n1 − 1)2 + n2
1 ,

p2 = (2m2 + n2 − 1)2 + n2
2. �

Recall from Section 2:
N = p1p2 =

(
a2 + b2

)(
c2 + d2

)
(4)

N = (ac)2 + (bc)2 + (ad)2 + (bd)2 (5)

N = (ad + bc)2 + (bd− ac)2 = (ad− bc)2 + (bd + ac)2 (6)

Let a = 2m1 + n1 − 1, b = n1, c = 2m2 + n2 − 1 , d = n2 and consider the parities given in Table 2.

Math. Comput. Appl. 2019, 24, 62 10 of 13

Table 2. Parity considerations for factorisation.

b d a c ad+bc ac−bd ad−bc ac+bd ∆o ∆e g ∆o
g

∆e
g

o o e e e o e o 2bd 2bc 2b d c
e e o o e o e o 2bd 2bc 2b d c
o e e o o e e 2bc 2bd 2b c d
e o o e o e o e 2bc 2bd 2b c d

(o = odd, e = even)

From Equation (1) p2 = c + d, observe from the table the parities, recalling (b = n1, d = n2),
parity(b) = parity(d),

c =
∆e
g

, d =
∆o
g

, p2 =

(
∆e
g

)2

+

(
∆o
g

)2

parity(b) , parity(d),

c =
∆o
g

, d =
∆e
g

, p2 =

(
∆o
g

)2

+

(
∆e
g

)2

∴ p2 =

(
∆o
g

)2

+

(
∆e
g

)2

�

p2 =

(
∆o
g

)2

+

(
∆e
g

)2

,

p1 =
N
p2

,

N = p1p2

= o2
1 + e2

1 = o2
2 + e2

2,

∆o = o1 − o2,

∆e = e1 − e2,

g = gcd(∆o, ∆e).

7. Application of Proposed Method for RSA Factorisation

Historically, an RSA algorithm was experimentally tested using brute force attacks by trying all
possible secret keys (public and private keys). When RSA employed shorter keys for encryption and
decryption, they became easier to identify using brute force attacks [15]. Larger keys could escape
from brute force attacks since they are exponentially more difficult to crack and hence, the key length
is an indicator of how a brute force attack is practically feasible. Therefore, the strength of an RSA
cryptosystem is measured theoretically by determining how many steps it would take for a brute force
attack to crack the keys. However, with greater computations involved with larger keys, and as the
encryption and decryption algorithm takes much larger time, there is a limitation on the key length
used for practical applications. Hence, different factoring algorithms and faster cryptosystems have
been researched [29–31]. Different implementations of the modular exponentiation have resulted in the
timing variations of the attacks used for performing an RSA attack. In other words, for an encrypted
message or cipher text C, it is the ability to find d by determining the time taken to compute Cd(mod N).

Another method is to perform factorisation attacks mathematically by factoring the modulus N,
which forms the underlying structure of an RSA function [15]. While there are several factorisation
approaches, the common goal is to factor the semi-prime, N = p1p2. The encryption algorithm selects
the secret keys p1 and p2 to calculate the public key N = p1p2. The decryption algorithm then factors N
to obtain the keys p1 and p2. Hence, new factorisation algorithms have been mathematically derived in

Math. Comput. Appl. 2019, 24, 62 11 of 13

generating public and private keys of an RSA algorithm, however, they take a long period of time
for the factorisation of N when the keys p1 and p2 are very large. The first RSA number successfully
generated in 1991 was RSA-100 and subsequently up to RSA-500. They were labeled according to
their key size, namely number of decimal digits occupied when implemented in the computer. While
factorisation of RSA-617 was successful before RSA-576, many of the bigger numbers have still not
been factored. Hence, the factoring challenge was introduced to give an insight into which key length
is safe and for how long so that applications could choose the key length for their RSA encryption
algorithm ensuring security until it is proven to be safe. This forms the motivation for researchers to
mathematically prove RSA factorisation time limits that help in the understanding of the cryptanalytic
strength of commonly adopted cryptosystems in practice. Hence, in this paper, we focus on proposing
a new factorisation method that is efficient in terms of the speed of factorisation. We demonstrate the
application of our proposed factorisation method for RSA-768 as shown in Table 3.

Table 3. Rivest–Shamir–Adleman (RSA) factorisation (e.g. RSA-768) using the proposed method.

Factorisation Steps Outputs

RSA-768

1230186684530117755130494958384962720772853569595334792197322
45215172640050726365751874520219978646938995647494277406384592
51925573263034537315482685079170261221429134616704292143116022
21240479274737794080665351419597459856902143413

even1
2735225095563949167293855908848935409374528369229805467041
0060729734544070401412058040852474743188457278097453971742

odd1
2195543331819794144828433959581900181342070277902685609307
6047024562771910171296992175792528202395940970592960030457

odd2
2479017068050077608077361224537723494331515327568217784290
3274514172846200244317562713076025683541068043396354533177

even2
24811975378066081010612898468833970017619648217686958124
001556260617310771432375603204603028940940647642080934383422

∆o = odd1 − odd2
283473736230283463248927264955823312989445049665532174982722748
9610074290073020570537283497481145127072803394502720

∆e = even1 − even2
254027557757341066232566061965538407612563547461109654640850446911
7233298969036454836249445802247809636016519588320

g = gcd(∆o, ∆e) 627928153105939350555378446039188539852332233574215955680
∆o
g 4514429474584457604059260685088937606791715198364890782254

∆e
g 4045487632634994038632464260708513408124495115537369857049

p2 =
(

∆o
g

)2
+

(
∆e
g

)2 3674604366679959042824463379962795263227915816434308764267603228381
5739666511279233373417143396810270092798736308917

p1 = N
p2

3347807169895689878604416984821269081770479498371376856891243138898
2883793878002287614711652531743087737814467999489

In general, the computational complexity of a factorisation algorithm can be measured by
the number of operations it performs [32]. Factorisation algorithms are also interesting from the
computational complexity viewpoint. Since the existing algorithms are not able to solve the factoring
problem in polynomial time, encryption keys are developed as they cannot be factored in a reasonable
amount of computer time [33]. Overall, our proposed factorisation method provides a faster alternative
to the commonly used modulus exponentiation methods and Euler’s method, by exploiting the
relationship between the four squares. The implementation of our method requires a constant
amount of clock cycles for completing such simple arithmetic operations and hence requires a
reduced computational complexity. The mathematical proof of our new factorisation method and its
demonstration for generating RSA-768 have been established. Many of the bigger prime numbers are
yet to be factored and are expected to remain unfactored for quite some time. However, such beliefs
can be challenged when new factorisation techniques and new technologies are introduced. Since
encryption schemes are being used today to protect financial and other confidential data, ways and
means of developing a single quantum computer to factor very large primes quickly and in parallel are

Math. Comput. Appl. 2019, 24, 62 12 of 13

under consideration. Shor’s quantum algorithm developed in 1994 depends on a computer with a
large number of quantum bits to calculate the prime factors of a large number. A large prime number,
with even 232 digits, could take more than two years to factor using hundreds of computers working
in parallel. Hence, a major breakthrough in technologies such as quantum computers along with the
innovation of Shor’s algorithm and other work, including ours, could make this problem domain an
interesting space for academic researchers and industry practitioners to explore further.

8. Conclusions and Future Work

In this paper, we proposed a new method for semi-prime factorisation which forms a cornerstone
for security in RSA cryptosystems. By exploiting the relationship between a set of four squares,
we provide a relatively simple, fast and scalable factorisation method that is computationally more
efficient than the existing, commonly used modulus exponentiation methods and Euler’s method.
The mathematical proofs behind the development of our simple and reliable algorithm for semi-prime
factorisation were presented. In addition, the application of our method to factorise large semi-primes
for generating RSA-768 was established.

Our work in this paper forms the backbone in creating new research opportunities. With new
technologies such as IoT, blockchain and quantum computers evolving, future work would
involve exploring our factorisation method in various cryptographic protocols within such new
computing paradigms.

Author Contributions: Conceptualization, A.O. and S.V.; methodology, A.O.; validation, A.O.; resources, S.V.;
data curation, A.O.; writing—original draft preparation, A.O.; writing—review and editing, S.V.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goldston, D.A.; Graham, S.; Pintz, J.; Yildirim, C.Y. Small gaps between primes or almost primes. Trans. Am.
Math. Soc. 2009, 361, 5285–5330. [CrossRef]

2. Kaddoura, I.; Abdul-Nabi, S. On formula to compute primes and the nth prime. Appl. Math. Sci. 2012,
6, 3751–3757.

3. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems.
Commun. Acm 1978, 21, 120–126. [CrossRef]

4. Rescorla, E. SSL and TLS: Designing and Building Secure Systems; Addison-Wesley: Reading, UK, 2001.
5. Sun, H.M.; Wu, M.E.; Ting, W.C.; Hinek, M.J. Dual RSA and its Security Analysis. IEEE Trans. Inf. Theory

2007, 53, 2922–2933.
6. Schneier, B. Applied Cryptography, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1996.
7. Clark, J.; van Oorschot, P.C. SoK: SSL and HTTPS: Revisiting past challenges and evaluating certificate trust

model enhancements. In Proceedings of the 2013 IEEE Symposium on Security and Privacy (SP), Berkeley,
CA, USA, 19–22 May 2013; pp. 511–525.

8. Aboud, S.J. An efficient method for attack RSA scheme. In Proceedings of the ICADIWT 2nd International
Conference, London, UK, 4–6 August 2009; pp. 587–591.

9. Suárez-Albela, M.; Fraga-Lamas, P.; Fernández-Caramés, T.M. A Practical Evaluation on RSA and ECC-Based
Cipher Suites for IoT High-Security Energy-Efficient Fog and Mist Computing Devices. Sensors 2018, 18, 3868.
[CrossRef] [PubMed]

10. Sen, S.; Koo, J.; Bagchi, S. TRIFECTA: Security, Energy Efficiency, and Communication Capacity Comparison
for Wireless IoT Devices. IEEE Internet Comput. 2018, 22, 74–81. [CrossRef]

11. Da Silva, J.C.L. Factoring Semi primes and Possible Implications. In Proceedings of the 26th IEEE Convention
in Israel, Eliat, Israel, 17–20 November 2010; pp. 182–183.

12. Yamagishi, S. Diophantine equations in semiprimes. arXiv 2017, arXiv:1709.03605.
13. Weisstein, E.W. Semiprime; Wolfram Research, Inc.: Champaign, IL, USA, 2003.

http://dx.doi.org/10.1090/S0002-9947-09-04788-6
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.3390/s18113868
http://www.ncbi.nlm.nih.gov/pubmed/30423831
http://dx.doi.org/10.1109/MIC.2018.011581520

Math. Comput. Appl. 2019, 24, 62 13 of 13

14. Kaddoura, I.; Abdul-Nabi, S.; Al-Akhrass, K. New Formulas for Semi-Primes. Testing, Counting and
Identification of the nth and next Semi-Primes. arXiv 2016, arXiv:1608.05405.

15. Ambedkar, B.R.; Bedi, S.S. A New Factorization Method to Factorize RSA Public Key Encryption. Int. J.
Comput. Sci. Issues (IJCSI) 2011, 8, 242–247.

16. Yan, S.Y. Factoring Based Cryptography. In Cyber cryptography: Applicable Cryptography for Cyberspace Security;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 217–286. [CrossRef]

17. Overmars, A.; Ntogramatzidis, L.; Venkatraman, S. A new approach to generate all Pythagorean triples.
AIMS Math. 2019, 4, 242–253. [CrossRef]

18. Overmars, A.; Venkatraman, S. Pythagorean-Platonic lattice method for finding all co-prime right angle
triangles. Int. J. Comput. Inf. Eng. 2017, 11, 1192–1195.

19. Overmars, A.; Ntogramatzidis, L. A new parameterisation of Pythagorean triples in terms of odd and even
series. arXiv 2015, arXiv:1504.03163.

20. Bell, E.T. The Prince of Amateurs: Fermat; Simon and Schuster: New York, NY, USA, 1986; pp. 56–72.
21. Hiary, G.A. A Deterministic Algorithm for Integer Factorization. Math. Comput. 2016, 85, 2065–2069.

[CrossRef]
22. Malapert, A.; Provillard, J. Puzzle—Solving the n-Fractions Puzzle as a Constraint Programming Problem.

INFORMS Trans. Educ. 2018, 19, 48–55. [CrossRef]
23. Knill, O. Some experiments in number theory. arXiv 2016, arXiv:1606.05971.
24. Pollard, J. Monte Carlo methods for index computation (mod p). Math. Comput. 1978, 32, 918–924.
25. Kostopoulos, G. An Original Numerical Factorization Algorithm. J. Inf. Assur. Cyber Secur. 2016, 2016, 775081.

[CrossRef]
26. Pollard, J. Theorems on factorization and primality testing. Proc. Camb. Philos. Soc. 1974, 76, 521–528.

[CrossRef]
27. McKee, J. Turning Euler’s factoring method into a factoring algorithm. Bull. Lond. Math. Soc. 1996,

28, 351–355. [CrossRef]
28. Scripcariu, L.; Frunza, M.D. A New Character Encryption Algorithm. In Proceedings of the ICMCS 2005,

Montreal, QC, Canada, 14 August 2005; pp. 83–86.
29. Wiener, M. Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 1990, 160, 553–558.

[CrossRef]
30. McKee, J.; Pinch, R. Old and new deterministic factoring algorithms. Algorithmic Number Theory 2005,

217–224. [CrossRef]
31. Overmars, A.; Venkatraman, S. A new method of golden ratio computation for faster cryptosystems. In

Proceedings of the IEEE Cybersecurity and Cyber forensics Conference, London, UK, 21–23 November 2017.
32. Karatsuba, A. The complexity of computations. Proc. Steklov Inst. Math. 1995, 211, 169–183.
33. Traversa, F.L.; di Ventra, M. Polynomial-time solution of prime factorization and NP-complete problems with

digital memcomputing machines. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 023107. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-319-72536-9_5
http://dx.doi.org/10.3934/math.2019.2.242
http://dx.doi.org/10.1090/mcom3037
http://dx.doi.org/10.1287/ited.2017.0193
http://dx.doi.org/10.5171/2016.775081
http://dx.doi.org/10.1017/S0305004100049252
http://dx.doi.org/10.1112/blms/28.4.351
http://dx.doi.org/10.1109/18.54902
http://dx.doi.org/10.1007/3-540-61581-4_57
http://dx.doi.org/10.1063/1.4975761
http://www.ncbi.nlm.nih.gov/pubmed/28249395
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theory and Proposed Method
	Euler’s Factorisation Method
	Proposed Semi-Prime Factorisation Using Sum of Squares
	Proposed Method Using Gaussian and Pythagorean Primes
	Verification with Ordering Ambiguity
	Application of Proposed Method for RSA Factorisation
	Conclusions and Future Work
	References

