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Abstract: A complex Pythagorean fuzzy set (CPFS) is an extension of a Pythagorean fuzzy set that is
used to handle the vagueness with the degrees whose ranges are enlarged from real to complex subset
with unit disc. In this research study, we propose the innovative concept of complex Pythagorean
fuzzy graphs (CPFGs). Further, we present the concepts of regular and edge regular graphs in a
complex Pythagorean fuzzy environment. Moreover, we develop a complex Pythagorean fuzzy
graph based multi-attribute decision making an approach to handling the situations in which the
graphic structure of attributes is obscure. A numerical example concerning information technology
improvement project selection is utilized to illustrate the availability of the developed approach.

Keywords: complex Pythagorean fuzzy graph; edge regular complex Pythagorean fuzzy graph;
decision making

1. Introduction

The concept of Pythagorean fuzzy sets [1–3] is a relatively peculiar mathematical framework
in the fuzzy family with a larger ability to deal with imprecision and obscurity in decision-making.
The Pythagorean fuzzy model relaxes the condition µ + ν ≤ 1 with µ2 + ν2 ≤ 1 and has higher
potentiality than intuitionistic fuzzy sets (IFSs) [4] to manage the complex obscurity in practical
decision making problems. Ramot et al. [5] put forward the concept of a complex fuzzy set (CFS)
by extending the range of membership function from real to complex number with the unit disc.
Yazdanbakhsh and Dick [6] provided a systematic review of CFSs. After the inception of CFS by
Ramot et al., several researchers [6–8] divert their attention to CFSs. Later, Alkouri and Salleh [9,10]
generalized the concept of CFS to complex intuitionistic fuzzy sets (CIFSs) by representing the degree
of complex valued non-membership functions and proposed the concepts of complex intuitionistic
fuzzy relation and a distance measure under a CIFS environment. Rani and Garg [11] investigated
some series of distance measures between the two CIFSs, presented the complex intuitionistic fuzzy
power aggregation operators [12], generalized complex intuitionistic fuzzy aggregation operators [13]
and provided their applications in the process of decision-making. Kumar and Bajaj [14] introduced
some distance and entropy measures in complex intuitionistic fuzzy soft circumstances. PFS can only
handle the vagueness and uncertainty that exist in the data but is unable to show the partial ignorance
of the information and its fluctuations at a specific phase of time during their execution. Moreover,
in real life, vagueness and uncertainty presenting in the data occur concurrently with changes to the
phase (periodicity) of the data. Thus, to consider this information, the existing theories are insufficient
and hence, some information loss during the process. To overthrow it , Ullah et al. [15] introduced
the notion of CPFSs and extended some distance measures to accommodate complex Pythagorean
fuzzy values.
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A graph is a model of relations and is a convenient tool for depicting information comprising
a relationship between objects. In networking, due to the development of system complexity, a variety
of uncertain information is frequently encountered. To handle this vague or uncertain information,
Rosenfeld [16] put forward the notion of fuzzy graphs. Mordeson and Peng [17] defined the
operations on graphs within fuzzy contexts. Yu and Xu [18] developed the graph based multi-attribute
decision-making model, to solve MADM problems with the interrelated attributes. With the more
obscure information in the networks, several generalizations of fuzzy graphs [19,20] have been put
forward by many researchers. Naz et al. [21] emanated the concept of Pythagorean fuzzy graphs
(PFGs). Later, Akram et al. [22–24] proposed certain novel concepts of graphs under a Pythagorean
fuzzy environment. Akram et al. [25] simplify the expressions of an interval-valued Pythagorean fuzzy
set by providing a new idea of a simplified interval-valued Pythagorean fuzzy set and originally put
forward the notion of simplified interval-valued Pythagorean fuzzy graph along its applications in
decision making. In the existing theories of fuzzy graph and its generalization, the vagueness present
in the data and its relations are managed with the aid of membership and non-membership degrees
which are the subset of real numbers and may give up some effective information. An alternative
to these, CFS handles the uncertainties with the degrees whose ranges are extended from the real
subset to the complex subset with unit disc and hence handle the two-dimensional information
in a single set. To utilize this benefit, Thirunavukarasu et al. [26] put forward the concept of
complex fuzzy graphs. Yaqoob et al. [27] introduced the concept of complex intuitionistic fuzzy
graph with its application in cellular network provider companies. Further, Yaqoob and Akram [28]
extended the concept of complex fuzzy graphs to complex neutrosophic graphs. As CPFS is a more
generalized version of the existing theories such as FSs, IFSs, CFSs and CIFSs. Thus, motivated by this,
in this paper, within complex Pythagorean fuzzy contexts, we introduce the innovative concept of
complex Pythagorean fuzzy graphs (CPFGs) in which pairs of the membership degrees represent the
two-dimensional information. We develop operations on two CPFGs and investigate their desirable
properties. We define the concepts of regular and edge regular graphs with appropriate illustration and
examine some of their crucial properties with complex Pythagorean fuzzy information. Aggregation
operators have great importance in many fields of information processing such as decision making,
medical diagnosis, pattern recognition, data mining machine retrieval and machine learning, and so
forth. Aggregation operators are commonly used to convert all the inputted individual information
into a single value. So, we also develop systematic operations and aggregation operators to aggregate
complex Pythagorean fuzzy information. Finally, we develop a CPFG based MADM approach to
handle situations in which the attributes graphic structure is uncertain.

The paper is structured as follows: Section 2 proposes a new generalization of Pythagorean fuzzy
graphs—called CPFG—and investigates its properties in detail. Section 3 discusses the edge regularity
of a graph in complex Pythagorean fuzzy circumstances. In Section 4, we discuss the aggregation
operators of CPFSs and provide the application of CPFSs and CPFGs in MADM and finally we draw
conclusions and elaborate on future work in Section 5.

Definition 1 ([15]). Let Y be the universe of discourse. A complex Pythagorean fuzzy set C defined on Y is an
object of the form

C = {(r, µC (r)eiαC (r), νC (r)eiβC (r)) : r ∈ Y},

where i =
√
−1, µC (r), νC (r) ∈ [0, 1], αC (r), βC (r) ∈ [0, 2π], 0 ≤ µ2

C (r) + ν2
C (r) ≤ 1 and 0 ≤ α2

C (r) +
β2

C (r) ≤ 2π.

Definition 2 ([15]). Let C = {(r, µC (r)eiαC (r), νC (r)eiβC (r)) : r ∈ Y}, C1 =

{(r, µC1
(r)eiαC1

(r), νC1
(r)eiβC1

(r)) : r ∈ Y}, and C2 = {(r, µC2(r)e
iαC2 (r), νC2(r)e

iβC2 (r)) : r ∈ Y}
be the three CPFSs in Y, then

(i) C1 ⊆ C2 if and only if µC1
(r) ≤ µC2(r), νC1

(r) ≥ νC2(r) for amplitude terms and αC1
(r) ≤ αC2(r),

βC1
(r) ≥ βC2(r) for phase terms, for all r ∈ Y;
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(ii) C1 = C2 if and only if µC1
(r) = µC2(r), νC1

(r) = νC2(r) for amplitude terms and αC1
(r) = αC2(r),

βC1
(r) = βC2(r) for phase terms, for all r ∈ Y;

(iii) C = {(r, νC (r)eiβC (r), µC (r)eiαC (r)) : r ∈ Y}.

For simplicity, the pair (µeiα, νeiβ) is called the complex Pythagorean fuzzy number (CPFN),
where µ, ν ∈ [0, 1] such that µ2 + ν2 ≤ 1 and α, β ∈ [0, 2π] such that 0 ≤ α2 + β2 ≤ 2π.

Example 1. Suppose a fixed set Y contains only one element r, µC (r) = 0.4, αC (r) = 1.2π, νC (r) =

0.7, βC (r) = 1.6π. Then C = {(r, 0.4ei2π(0.6), 0.7ei2π(0.8))} is a CPFN and denoted by C =

(0.4ei2π(0.6), 0.7ei2π(0.8)) for simplicity.

2. Graphs in Complex Pythagorean Fuzzy Environment

In this section, the innovative concepts of complex Pythagorean fuzzy relation and CPFG are
introduced and some related properties are investigated.

Definition 3. Let C1 = {(r, µC1
(r)eiαC1

(r), νC1
(r)eiβC1

(r)) : r ∈ Y}, and C2 =

{(r, µC2(r)e
iαC2 (r), νC2(r)e

iβC2 (r)) : r ∈ Y} be two CPFSs in Y, then

(i) C1 ∪ C2 =
{(

r, (µC1
(r) ∨ µC2(r))e

i(αC1
(r)∨αC2 (r)), (νC1

(r) ∧ νC2(r))e
i(βC1

(r)∧βC2 (r))
)

: r ∈ Y
}

;

(ii) C1 ∩ C2 =
{(

r, (µC1
(r) ∧ µC2(r))e

i(αC1
(r)∧αC2 (r)), (νC1

(r) ∨ νC2(r))e
i(βC1

(r)∨βC2 (r))
)

: r ∈ Y
}

.

Definition 4. A CPFS D in Y×Y is said to be a complex Pythagorean fuzzy relation in Y, characterized by

D = {〈rs, µD (rs)eiαD (rs), νD (rs)eiβD (rs)〉 | rs ∈ Y×Y},

where µD : Y×Y → [0, 1] and νD : Y×Y → [0, 1] depict the membership and non-membership function of
D , respectively, such that 0 ≤ µ2

D (rs) + ν2
D (rs) ≤ 1 and 0 ≤ α2

D (rs) + β2
D (rs) ≤ 2π for all rs ∈ Y×Y.

Definition 5. A complex Pythagorean fuzzy graph on a non-empty set Y is a pair G = (C , D), where C is a
complex Pythagorean fuzzy set on Y and D is a complex Pythagorean fuzzy relation on Y such that:

µD (rs)eiαD (rs) ≤ (µC (r) ∧ µC (s))ei(αC (r)∧αC (s)),

νD (rs)eiβD (rs) ≤ (νC (r) ∨ νC (s))ei(βC (r)∨βC (s))

0 ≤ µ2
D (rs) + ν2

D (rs) ≤ 1 and 0 ≤ α2
D (rs) + β2

D (rs) ≤ 2π for all r, s ∈ Y. We call C and D the complex
Pythagorean fuzzy vertex set and the complex Pythagorean fuzzy edge set of G , respectively.

Example 2. Consider a graph G = (C, D), where C = {s1, s2, s3, s4, s5} is the vertex set and D =
{s1s2, s2s3, s3s4, s1s5, s2s5, s3s5, s4s5} is the edge set of G. Let G = (C , D) be a CPFG on C, as given in
Figure 1, defined by:

C =

〈(
s1

0.5ei2π(0.7)
,

s2

0.8ei2π(0.8)
,

s3

0.7ei2π(0.9)
,

s4

0.4ei2π(0.6)
,

s5

0.8ei2π(0.9)

)
,(

s1

0.6ei2π(0.4)
,

s2

0.3ei2π(0.6)
,

s3

0.4ei2π(0.3)
,

s4

0.3ei2π(0.5)
,

s5

0.5ei2π(0.3)

)〉
,

D =

〈(
s1s2

0.5ei2π(0.6)
,

s2s3

0.6ei2π(0.4)
,

s3s4

0.4ei2π(0.3)
,

s1s5

0.4ei2π(0.6)
,

s2s5

0.7ei2π(0.3)
,

s3s5

0.6ei2π(0.8)
,

s4s5

0.3ei2π(0.5)

)
,(

s1s2

0.6ei2π(0.5)
,

s2s3

0.2ei2π(0.5)
,

s3s4

0.2ei2π(0.4)
,

s1s5

0.6ei2π(0.2)
,

s2s5

0.4ei2π(0.5)
,

s3s5

0.4ei2π(0.3)
,

s4s5

0.4ei2π(0.4)

)〉
.
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(i) C1 ∪ C2 =
{(

r, (µC1(r) ∨ µC2(r))e
i(αC1

(r)∨αC2
(r)), (νC1(r) ∧ νC2(r))e

i(βC1
(r)∧βC2

(r))
)

: r ∈ Y
}

;83

(ii) C1 ∩ C2 =
{(

r, (µC1(r) ∧ µC2(r))e
i(αC1

(r)∧αC2
(r)), (νC1(r) ∨ νC2(r))e

i(βC1
(r)∨βC2

(r))
)

: r ∈ Y
}

.84

Definition 2.2. A CPFS D in Y × Y is said to be a complex Pythagorean fuzzy relation in Y , characterized
by

D = {〈rs, µD(rs)eiαD (rs), νD(rs)eiβD (rs)〉 | rs ∈ Y × Y },
where µD : Y × Y → [0, 1] and νD : Y × Y → [0, 1] depict the membership and non-membership function of D ,85

respectively, such that 0 ≤ µ2
D
(rs) + ν2

D
(rs) ≤ 1 and 0 ≤ α2

D
(rs) + β2

D
(rs) ≤ 2π for all rs ∈ Y × Y.86

Definition 2.3. A complex Pythagorean fuzzy graph on a non-empty set Y is a pair G = (C ,D), where C is87

a complex Pythagorean fuzzy set on Y and D is a complex Pythagorean fuzzy relation on Y such that:88

µD(rs)eiαD (rs) ≤ (µC (r) ∧ µC (s))ei(αC (r)∧αC (s)),

νD(rs)eiβD(rs) ≤ (νC (r) ∨ νC (s))ei(βC (r)∨βC (s))

0 ≤ µ2
D
(rs) + ν2

D
(rs) ≤ 1 and 0 ≤ α2

D
(rs) + β2

D
(rs) ≤ 2π for all r, s ∈ Y. We call C and D the complex89

Pythagorean fuzzy vertex set and the complex Pythagorean fuzzy edge set of G , respectively.90

Example 2.1. Consider a graph G = (C,D), where C = {s1, s2, s3, s4, s5} is the vertex set and D =91

{s1s2, s2s3, s3s4, s1s5, s2s5, s3s5, s4s5} is the edge set of G. Let G = (C ,D) be a CPFG on C, as given in92

Fig. 1, defined by:93

C =
〈( s1

0.5ei2π(0.7)
,

s2

0.8ei2π(0.8)
,

s3

0.7ei2π(0.9)
,

s4

0.4ei2π(0.6)
,

s5

0.8ei2π(0.9)

)

,

(

s1

0.6ei2π(0.4)
,

s2

0.3ei2π(0.6)
,

s3

0.4ei2π(0.3)
,

s4

0.3ei2π(0.5)
,

s5

0.5ei2π(0.3)

)〉

,

D =
〈( s1s2

0.5ei2π(0.6)
,

s2s3

0.6ei2π(0.4)
,

s3s4

0.4ei2π(0.3)
,

s1s5

0.4ei2π(0.6)
,

s2s5

0.7ei2π(0.3)
,

s3s5

0.6ei2π(0.8)
,

s4s5

0.3ei2π(0.5)

)

,

( s1s2

0.6ei2π(0.5)
,

s2s3

0.2ei2π(0.5)
,

s3s4

0.2ei2π(0.4)
,

s1s5

0.6ei2π(0.2)
,

s2s5

0.4ei2π(0.5)
,

s3s5

0.4ei2π(0.3)
,

s4s5

0.4ei2π(0.4)

)〉

.

94

b

b

b
(0
.5
e
i2
π(
0.
6) ,

0.
6e
i2
π(
0.
5) )

b
(0
.6
e
i2
π
(0
.8
) ,
0.
4e

i2
π
(0
.3
) )

b (0.6ei2π(0.4), 0.2ei2π(0.5)) b
(0.4e i2π(0.3)

, 0.2e i2π(0.4))

(0
.7
e
i2
π
(0
.3), 0

.4
e
i2
π
(0
.5))

(0.4e i2π(0.6)
, 0.6e i2π(0.2)) (0.

3e
i2π

(0
.5) , 0

.4e
i2π

(0
.4) )

s2(0
.8e

i2π
(0.8

) , 0.3
e
i2π

(0.6
) ) s

3 (0.7e i2π(0.9)
, 0.4e i2π(0.3))

s1(0.5e
i2π(0.7), 0.6ei2π(0

.4))

s5(0.8e
i2π(0.9), 0.5ei2π(0.3))

s4(0.4e
i2π(0.6), 0.3ei2π(0.5))

Figure 1: Complex Pythagorean fuzzy graph.

To compare the CPFGs with PFGs, we convert the vertex set and the edge set of CPFG in Fig. 1, from95

complex Pythagorean fuzzy numbers to the Pythagorean fuzzy numbers by considering the phase terms of each96

complex Pythagorean fuzzy value as zero, as shown in Fig. 2.97
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To compare the CPFGs with PFGs, we convert the vertex set and the edge set of CPFG in Figure 1,
from complex Pythagorean fuzzy numbers to the Pythagorean fuzzy numbers by considering the
phase terms of each complex Pythagorean fuzzy value as zero, as shown in Figure 2.

b

b

b

(0
.5
, 0
.6
)

b

(0
.6
, 0
.4
)

b
(0.6, 0.2)

b

(0.4, 0.2)

(0
.7
, 0
.4)

(0.4, 0.6)
(0.
3,
0.4

)

s2(0
.8, 0

.3)
s
3 (0.7, 0.4)

s1(0.5, 0.6)

s5(0.8, 0.5)

s4(0.4, 0.3)

Figure 2: Pythagorean fuzzy graph.

The proposed extended fuzzy graph, named as CPFG is more rational to reality in the process of decision-98

making. In PFG, the information consists of a real-valued membership and non-membership degrees and just99

considered amplitude term which causes loss of information. Further, a CPFG is an extension of the existing100

theories such as fuzzy graphs, complex fuzzy graphs [22], intuitionistic fuzzy graphs [?], and PFGs [15] by101

considering more or more information related to the vertices and relations, and to deal with the two-dimensional102

information in a single set.103

Definition 2.4. Let C = {(r, µC (r)eiαC (r), νC (r)eiβC (r))|r ∈ C} and D = {(rs, µD(rs)eiαD (rs), νD(rs)eiβD (rs))|rs ∈
D} be the vertex and the edge set of a CPFG G , then the order of a CPFG G is denoted by O(G ) and is defined
as:

O(G ) =

(

∑

ri∈C

µC (ri)e
i

∑

ri∈C

αC (ri)

,
∑

ri∈C

νC (ri)e
i

∑

ri∈C

βC (ri)
)

.

The size of a CPFG G is denoted by S(G ) and is defined as:

S(G ) =





∑

rirj∈D

µD(rirj)e
i

∑

rirj∈D

αD(rirj)

,
∑

rirj∈D

νD(rirj)e
i

∑

rirj∈D

βD(rirj)



 .

Example 2.2. The order and size of the CPFG given in Fig. 1 is O(G ) = (3.2ei2π(3.9), 2.1i2π(2.1)) and S(G ) =104

(3.5ei2π(3.5), 2.8i2π(2.8)), respectively.105

Definition 2.5. The complement of a CPFG G = (C ,D) on an underlying graph G = (C,D) is a CPFG106

G = (C ,D) defined by107

1. µC (r)eiαC (r) = µC (r)eiαC (r) and νC (r)eiβC (r) = νC (r)eiβC (r).108

2. µD(rs)eiαD (rs) =







(µC (r) ∧ µC (s)) ei(αC (r)∧αC (s)) if µD(rs)eiαD (rs) = 0,

(µC (r) ∧ µC (s)) ei(αC (r)∧αC (s)) − µD(rs)eiαD (rs) if 0 < µD(rs)eiαD (rs) ≤ 1.
109

110

111

νD(rs)eiβD (rs) =







(νC (r) ∨ νC (s))ei(βC (r)∨βC (s)) if νD(rs)eiβD (rs) = 0,

(νC (r) ∨ νC (s))ei(βC (r)∨βC (s)) − νD(rs)eiβD(rs) if 0 < νD(rs)eiβD (rs) ≤ 1.
112

Example 2.3. Consider a CPFG G = (C ,D) on C = {s1, s2, s3, s4}, as in Fig. 3, defined by:113

C =
〈(

s1

0.7ei2π(0.8)
,

s2

0.8ei2π(0.7)
,

s3

0.6ei2π(0.6)
,

s4

0.9ei2π(0.7)

)

,
(

s1

0.4ei2π(0.6)
,

s2

0.3ei2π(0.5)
,

s3

0.5ei2π(0.3)
,

s4

0.2ei2π(0.4)

)〉

,

D =
〈( s1s4

0.2ei2π(0.4)
,

s2s4

0.8ei2π(0.7)
,

s3s4

0.3ei2π(0.2)

)

,
( s1s4

0.3ei2π(0.5)
,

s2s4

0.3ei2π(0.5)
,

s3s4

0.4ei2π(0.3)

)〉

.

4

Figure 2. Pythagorean fuzzy graph.

The proposed extended fuzzy graph—named CPFG—is more rational to reality in the process of
decision-making. In PFG, the information consists of a real-valued membership and non-membership
degrees and just considers the amplitude term, which causes loss of information. Further, a CPFG is
an extension of the existing theories such as fuzzy graphs, complex fuzzy graphs [26] and PFGs [21]
by considering more or more information related to the vertices and relations and to deal with the
two-dimensional information in a single set.

Definition 6. Let C = {(r, µC (r)eiαC (r), νC (r)eiβC (r))|r ∈ C} and D =

{(rs, µD (rs)eiαD (rs), νD (rs)eiβD (rs))|rs ∈ D} be the vertex and the edge set of a CPFG G , then the
order of a CPFG G is denoted by O(G ) and is defined as:

O(G ) =

(
∑

ri∈C
µC (ri)e

i ∑
ri∈C

αC (ri)

, ∑
ri∈C

νC (ri)e
i ∑

ri∈C
βC (ri)

)
.
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The size of a CPFG G is denoted by S(G ) and is defined as:

S(G ) =

 ∑
rirj∈D

µD (rirj)e
i ∑

rirj∈D
αD (rirj)

, ∑
rirj∈D

νD (rirj)e
i ∑

rirj∈D
βD (rirj)

 .

Example 3. The order and size of the CPFG given in Figure 1 is O(G ) = (3.2ei2π(3.9), 2.1i2π(2.1)) and
S(G ) = (3.5ei2π(3.5), 2.8i2π(2.8)), respectively.

Definition 7. The complement of a CPFG G = (C , D) on an underlying graph G = (C, D) is a CPFG
G = (C , D) defined by

1. µC (r)eiαC (r) = µC (r)eiαC (r) and νC (r)eiβC (r) = νC (r)eiβC (r).

2. µD (rs)eiαD (rs) =


(µC (r) ∧ µC (s)) ei(αC (r)∧αC (s)) if µD (rs)eiαD (rs) = 0,

(µC (r) ∧ µC (s)) ei(αC (r)∧αC (s)) − µD (rs)eiαD (rs) if 0 < µD (rs)eiαD (rs) ≤ 1.

νD (rs)eiβD (rs) =


(νC (r) ∨ νC (s))ei(βC (r)∨βC (s)) if νD (rs)eiβD (rs) = 0,

(νC (r) ∨ νC (s))ei(βC (r)∨βC (s)) − νD (rs)eiβD (rs) if 0 < νD (rs)eiβD (rs) ≤ 1.
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Figure 3: Complex Pythagorean fuzzy graph.
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Utilizing Def. 2.5, complement of a CPFG can be obtained, as given in Fig. 4, and defined by:115
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It is easy to see from Fig. 4 that G = (C ,D) is a CPFG.117

Theorem 2.1. The complement of a complement of CPFG is a CPFG itself i.e., G = G .118

Proof. Suppose that G is a CPFG. Then by utilizing the Def. 2.5, we have

µC (r)eiαC (r) = µC (r)eiαC (r) = µC (r)eiαC (r) and νC (r)eiβC (r) = νC (r)eiβC (r) = νC (r)eiβC (r) for all r ∈ C.

If µD(rs)eiαD (rs) = νD(rs)eiβD (rs) = 0, then119

µD(rs)eiαD(rs) = µC (r) ∧ µC (s)ei(αC (r)∧αC (s)) = (µC (r) ∧ µC (s))ei(αC (r)∧αC (s)) = µD(rs)eiαD (rs),

5

Figure 3. Complex Pythagorean fuzzy graph.
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Utilizing Definition 7, complement of a CPFG can be obtained, as given in Figure 4, and defined by:

C =

〈(
s1

0.7ei2π(0.8)
,

s2

0.8ei2π(0.7)
,

s3

0.6ei2π(0.6)
,

s4

0.9ei2π(0.7)

)
,
(

s1

0.4ei2π(0.6)
,

s2

0.3ei2π(0.5)
,

s3

0.5ei2π(0.3)
,

s4

0.2ei2π(0.4)

)〉
,

D =

〈(
s1s4

0.5ei2π(0.3)
,

s3s4

0.3ei2π(0.4)
,

s1s2

0.7ei2π(0.7)
,

s2s3

0.6ei2π(0.6)
,

s3s1

0.6ei2π(0.6)

)
,(

s1s4

0.1ei2π(0.1)
,

s3s4

0.1ei2π(0.1)
,

s1s2

0.4ei2π(0.6)
,

s2s3

0.5ei2π(0.5)
,

s3s1

0.5ei2π(0.6)

)〉
.

It is easy to see from Figure 4 that G = (C , D) is a CPFG.
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Figure 4. Complement of a complex Pythagorean fuzzy graph.

Theorem 1. The complement of a complement of CPFG is a CPFG itself, that is, G = G .

Proof. Suppose that G is a CPFG. Then, by utilizing Definition 7, we have

µC (r)eiαC (r) = µC (r)eiαC (r) = µC (r)eiαC (r) and νC (r)eiβC (r) = νC (r)eiβC (r) = νC (r)eiβC (r) f or all r ∈ C.

If µD (rs)eiαD (rs) = νD (rs)eiβD (rs) = 0, then

µD (rs)eiαD (rs) = (µC (r) ∧ µC (s))ei(αC (r)∧αC (s)) = (µC (r) ∧ µC (s))ei(αC (r)∧αC (s)) = µD (rs)eiαD (rs),

νD (rs)eiβD (rs) = (νC (r) ∨ νC (s))ei(βC (r)∨βC (s)) = (νC (r) ∨ νC (s))ei(βC (r)∨βC (s)) = νD (rs)eiβD (rs).

If 0 < µD (rs)eiαD (rs), νD (rs)eiβD (rs) ≤ 1, then

µD (rs)eiαD (rs) = (µC (r) ∧ µC (s))ei(αC (r)∧αC (s)) − µD (rs)eiαD (rs)

= (µC (r) ∧ µC (s))ei(αC (r)∧αC (s)) − ((µC (r) ∧ µC (s))ei(αC (r)∧αC (s)) − µD (rs)eiαD (rs))

= µD (rs)eiαD (rs),
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νD (rs)eiβD (rs) = (νC (r) ∨ νC (s))ei(βC (r)∨βC (s)) − νD (rs)eiβD (rs)

= (νC (r) ∨ νC (s))ei(βC (r)∨βC (s)) − ((νC (r) ∨ νC (s))ei(βC (r)∨βC (s)) − νD (rs)eiβD (rs))

= νD (rs)eiβD (rs)

for all r, s ∈ C. Hence G = G .

Definition 8. The union G1 ∪ G2 = (C1 ∪ C2, D1 ∪D2) of two CPFGs G1 = (C1, D1) and G2 = (C2, D2) of
the graphs G1 = (C1, D1) and G2 = (C2, D2), respectively, is defined as follows:

(i) (µC1
∪ µC2)(r)e

i(αC1
∪αC2 )(r) =


µC1

(r)eiαC1
(r) if r ∈ C1 − C2,

µC2(r)e
iαC2 (r) if r ∈ C2 − C1,

(µC1
(r) ∨ µC2(r))e

i(αC1
(r)∨αC2 (r)) if r ∈ C1 ∩ C2,

(ii) (νC1
∪ νC2)(r)e

i(βC1
∪ βC2 )(r) =


νC1

(r)eiβC1
(r) if r ∈ C1 − C2,

νC2(r)e
iβC2 (r) if r ∈ C2 − C1,

(νC1
(r) ∧ νC2(r))e

i(βC1
(r)∧βC2 (r)) if r ∈ C1 ∩ C2,

(iii) (µD1
∪ µD2)(rs)ei(αD1

∪αD2 )(rs) =


µD1

(rs)eiαD1
(rs) if rs ∈ D1 − D2,

µD2(rs)eiαD2 (rs) if rs ∈ D2 − D1,
(µD1

(rs) ∨ µD2(rs))ei(αD1
(rs)∨αD2 (rs)) if rs ∈ D1 ∩ D2,

(iv) (νD1
∪ νD2)(rs)ei(βD1

∪ βD2 )(rs) =


νD1

(rs)eiβD1
(rs) if rs ∈ D1 − D2,

νD2(rs)eiβD2 (rs) if rs ∈ D2 − D1,
(νD1

(rs) ∧ νD2(rs))ei(βD1
(rs)∧βD2 (rs)) if rs ∈ D1 ∩ D2.

Theorem 2. The union G1 ∪ G2 of G1 and G2 is a CPFG of G1 ∪ G2 if and only if G1 and G2 are CPFGs of G1

and G2, respectively, where C1 ∩ C2 = ∅.

Definition 9. The ring-sum G1⊕G2 = (C1⊕C2, D1⊕D2) of two CPFGs G1 = (C1, D1) and G2 = (C2, D2)

of the graphs G1 and G2, respectively, is defined as follows:

(µC1
⊕ µC2)(r)e

i(αC1
⊕αC2 )(r) = (µC1

∪ µC2)(r)e
i(αC1

∪αC2 )(r),

( νC1
⊕ νC2)(r)e

i( βC1
⊕ βC2 )(r) = ( νC1

∪ νC2)(r)e
i( βC1

∪ βC2 )(r) if r ∈ C1 ∪ C2,

(µD1
⊕ µD2)(rs)ei(αD1

⊕αD2 )(rs) =


µD1

(rs)eiαD1
(rs) if rs ∈ D1 − D2,

µD2(rs)eiαD2 (rs) if rs ∈ D2 − D1,
0 if rs ∈ D1 ∩ D2.

( νD1
⊕ νD2)(rs)ei( βD1

⊕ βD2 )(rs) =


νD1

(rs)eiβD1
(rs) if rs ∈ D1 − D2,

νD2(rs)eiβD2 (rs) if rs ∈ D2 − D1,
0 if rs ∈ D1 ∩ D2.

Proposition 1. If G1 = (C1, D1) and G2 = (C2, D2) are the CPFGs, then G1 ⊕ G2 is the CPFG.

Definition 10. Let G1 and G2 be two CPFGs of G1 and G2, respectively. The join G1 + G2 = (C1 + C2, D1 +

D2) of G1 and G2, is defined as:

(i)

{
(µC1

+ µC2)(r)e
i(αC1

+αC2 )(r) = (µC1
∪ µC2)(r)e

i(αC1
∪αC2 )(r)

( νC1
+ νC2)(r)e

i( βC1
+ βC2 )(r) = ( νC1

∪ νC2)(r)e
i( βC1

∪ βC2 )(r) for all r ∈ C1 ∪ C2,

(ii)

{
(µD1

+ µD2)(rs)ei(αD1
+αD2 )(rs) = (µD1

∪ µD2)(rs)ei(αD1
∪αD2 )(rs)

( νD1
+ νD2)(rs)ei( βD1

+ βD2 )(rs) = ( νD1
∪ νD2)(rs)ei( βD1

∪ βD2 )(rs) if rs ∈ D1 ∪ D2,
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(iii)

{
(µD1

+ µD2)(rs)ei(αD1
+αD2 )(rs) = µC1

(r) ∧ µC2(s)e
iαC1

(r)∧αC2 (s)

( νD1
+ νD2)(rs)ei( βD1

+ βD2 )(rs) = νC1
(r) ∨ νC2(s)e

iβC1
(r)∨ βC2 (s) if rs ∈ D

′
,

where D
′

is the set of all edges joining the vertices of C1 and C2, C1 ∩ C2 = ∅.

Theorem 3. The join G1 + G2 of G1 and G2 is a CPFG of G1 + G2 if and only if G1 and G2 are CPFGs of G1

and G2, respectively, where C1 ∩ C2 = ∅.

Definition 11. The degree of a vertex r ∈ C in a CPFG G is denoted by dG (r), and is defined as
dG (r) = (dµeiα(r), dνeiβ(r)), where

dµeiα(r) = ∑
r,s 6=r∈C

µD (rs)ei ∑r,s 6=r∈C αD (rs),

dνeiβ(r) = ∑
r,s 6=r∈C

νD (rs)ei ∑r,s 6=r∈C βD (rs).

Definition 12. The total degree of a vertex r ∈ C in a CPFG G is denoted by tdG (r), and is defined as
tdG (r) = (tdµeiα(r), tdνeiβ(r)), where

tdµeiα(r) = ∑
r,s 6=r∈C

µD (rs)ei ∑r,s 6=r∈C µD (rs) + µC (r)eiαC (r),

tdνeiβ(r) = ∑
r,s 6=r∈C

νD (rs)ei ∑r,s 6=r∈C νD (rs) + νC (r)eiβC (r).

Definition 13. Let G1 and G2 be two CPFGs. For any vertex r ∈ C1 ∪ C2, there are three cases to consider.
Case 1: Either r ∈ C1−C2 or r ∈ C2−C1. Then, no edge incident at r lies in D1 ∩D2. Thus, for r ∈ C1−C2,

(dµeiα)G1∪G2(r) = ∑
rs∈D1

µD1
(rs)e

i ∑
rs∈D1

αD1
(rs)

= (dµeiα)G1
(r),

(dνeiβ)G1∪G2(r) = ∑
rs∈D1

νD1
(rs)e

i ∑
rs∈D1

βD1
(rs)

= (dνeiβ)G1
(r),

(tdµeiα)G1∪G2(r) = (tdµeiα)G1
(r), (tdνeiβ)G1∪G2(r) = (tdνeiβ)G1

(r).

For r ∈ C2 − C1,

(dµeiα)G1∪G2(r) = ∑
rs∈D2

µD2(rs)e
i ∑

rs∈D2
αD2 (rs)

= (dµeiα)G2(r),

(dνeiβ)G1∪G2(r) = ∑
rs∈D2

νD2(rs)e
i ∑

rs∈D2
βD2 (rs)

= (dνeiβ)G2(r).

(tdµeiα)G1∪G2(r) = (tdµeiα)G2(r), (tdνeiβ)G1∪G2(r) = (tdνeiβ)G2(r).

Case 2: r ∈ C1 ∩C2 but no edge incident at r lies in D1 ∩D2. Then, any edge incident at r is either in D1−D2

or in D2 − D1.

(dµeiα)G1∪G2(r) = ∑
rs∈D1∪D2

(µD1
∪ µD2)(rs)e

i ∑
rs∈D1∪D2

(αD1
∪αD2 )(rs)

= ∑
rs∈D1

µD1
(rs)e

i ∑
rs∈D1

αD1
(rs)

+ ∑
rs∈D2

µD2(rs)e
i ∑

rs∈D2
αD2 (rs)

= (dµeiα)G1
(r) + (dµeiα)G2(r).
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Similarly, (dνeiβ)G1∪G2(r) = (dνeiβ)G1
(r) + (dνeiβ)G2(r),

(tdµeiα)G1∪G2(r) = ∑
rs∈D1∪D2

(µD1
∪ µD2)(rs)e

i ∑
rs∈D1∪D2

(αD1
∪αD2 )(rs)

+ (µC1
(r) ∨ µC2(r))e

i(αC1
(r)∨αC2 (r))

= (dµeiα)G1
(r) + (dµeiα)G2(r) + (µC1

(r) ∨ µC2(r))e
i(αC1

(r)∨αC2 (r))

= (tdµeiα)G1
(r) + (tdµeiα)G2(r)− (µC1

(r) ∧ µC2(r))e
i(αC1

(r)∧αC2 (r)).

Similarly, (tdνeiβ)G1∪G2(r) = (tdνeiβ)G1
(r) + (tdνeiβ)G2(r)− (νC1

(r) ∨ νC2(r))e
i(βC1

(r)∨βC2 (r)).
Case 3: r ∈ C1 ∩ C2 and some edges incident at r are in D1 ∩ D2.

(dµeiα)G1∪G2(r) = ∑
rs∈D1∪D2

(µD1
∪ µD2)(rs)

= ∑
rs∈D1−D2

µD1
(rs)e

i ∑
rs∈D1−D2

αD1
(rs)

+ ∑
rs∈D2−D1

µD2(rs)e
i ∑

rs∈D2−D1
αD2 (rs)

+ ∑
rs∈D1∩D2

µD1
(rs) ∨ µD2(rs)e

i ∑
rs∈D1∩D2

αD1
(rs)∨µD2 (rs)

=

(
∑

rs∈D1−D2

µD1
(rs)e

i ∑
rs∈D1−D2

αD1
(rs)

+ ∑
rs∈D2−D1

µD2(rs)e
i ∑

rs∈D2−D1
αD2 (rs)

+ ∑
rs∈D1∩D2

µD1
(rs) ∨ µD2(rs)e

i ∑
rs∈D1∩D2

αD1
(rs)∨αD2 (rs)

+ ∑
rs∈D1∩D2

µD1
(rs) ∧ µD2(rs)e

i ∑
rs∈D1∩D2

αD1
(rs)∧µD2 (rs)

)

− ∑
rs∈D1∩D2

µD1
(rs) ∧ µD2(rs)e

i ∑
rs∈D1∩D2

αD1
(rs)∧αD2 (rs)

= ∑
rs∈D1

µD1
(rs)e

i ∑
rs∈D1

αD1
(rs)

+ ∑
rs∈D2

µD2(rs)e
i ∑

rs∈D2
αD2 (rs)

− ∑
rs∈D1∩D2

µD1
(rs) ∧ µD2(rs)e

i ∑
rs∈D1∩D2

αD1
(rs)∧αD2 (rs)

= (dµeiα)G1
(r) + (dµeiα)G2(r)− ∑

rs∈D1∩D2

µD1
(rs) ∧ µD2(rs)e

i ∑
rs∈D1∩D2

αD1
(rs)∧αD2 (rs)

.

Similarly, (dνeiβ )G1∪G2 (r) = (dνeiβ )G1 (r)+ (dνeiβ )G2 (r)− ∑
rs∈D1∩D2

(νD1 (rs)∨ νD2 (rs))e
i ∑

rs∈D1∩D2

(βD1 (rs)∨βD2 (rs))
.

In addition,

(tdµeiα )G1∪G2 (r) = (tdµeiα )G1 (r) + (tdµeiα )G2 (r)− ∑
rs∈D1∩D2

(µD1 (rs) ∧ µD2 (rs))e
i ∑

rs∈D1∩D2

(αD1 (rs)∧αD2 (rs))

−(µC1 (r) ∧ µC2 (r))e
i(αC1 (r)∧αC2 (r)),

(tdνeiβ )G1∪G2 (r) = (tdνeiβ )G1 (r) + (tdνeiβ )G2 (r)− ∑
rs∈D1∩D2

(νD1 (rs) ∨ νD2 (rs))e
i ∑

rs∈D1∩D2

(βD1 (rs)∨βD2 (rs))

−(νC1 (r) ∨ νC2 (r))e
i(βC1 (r)∨βC2 (r)).

Example 5. Consider two CPFGs G1 = (C1, D1) and G2 = (C2, D2) on C1 = {s1, s2, s4} and C2 =

{s1, s2, s3, s4}, respectively, as in Figure 5.
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s4

G2

(0.4ei2π(0.7), 0.8ei2π(0.4))

b

b

(0.
2e

i2π
(0.

3) , 0.
5e

i2π
(0.

4) )

(0.7ei2π(0.5), 0.6ei2π(0.6))

(0.3ei2π(0.8), 0.7ei2π(0.4))

s2

(0
.2
e
i2
π
(0

.4
) ,
0.
6e

i2
π
(0

.5
) )

s4

b

(0
.2
e
i2
π
(0
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e
i2
π
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) )

s 1
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Figure 5. CPFGs.

Further, their union G1 ∪ G2 is given in Figure 6.
b

b b

b
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i2π

(0.
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.3e
i2π

(0.
4) )

(0.
3e

i2π
(0.

3) , 0.
5e

i2π
(0.

4) )

(0
.7
e
i2
π
(0
.8
) , 0
.2
e
i2
π
(0
.5
) )

(0
.6
e
i2
π
(0
.7
) , 0
.5
e
i2
π
(0
.5
) )

s 1

s2

s 3

(0.3e i2π(0.5)
, 0.7e i2π(0.3)

)

(0.2e i2π(0.6)
, 0.5e i2π(0.3)

)
s4

(0.7ei2π(0.7), 0.6i2π(0.4))

(0
.2
e
i2
π
(0

.4
) ,
0.
6e

i2
π
(0

.5
) )

Figure 6. Union of two CPFGs.

Since s3 ∈ C2 \ C1, thus,

(dµeiα)G1∪G2(s3) = (dµeiα)G2(s3) = 0.7ei2π(0.9),

(dνeiβ)G1∪G2(s3) = (dνeiβ)G2(s3) = 1.0ei2π(0.7).

Therefore, dG1∪G2(s3) = dG2(s3) = (0.7ei2π(0.9), 1.0ei2π(0.7)).

(tdµeiα)G1∪G2(s3) = (tdµeiα)G2(s3) = 1.4ei2π(1.7),

(tdνeiβ)G1∪G2(s3) = (tdνeiβ)G2(s3) = 1.2ei2π(1.2).

Therefore, tdG1∪G2(s3) = tdG2(s3) = (1.4ei2π(1.7), 1.2ei2π(1.2)).
Since s4 ∈ C1 ∩ C2 but no edge incident at s4 lies in D1 ∩ D2,

(dµeiα)G1∪G2(s4) = (dµeiα)G1
(s4) + (dµeiα)G2(s4) = 0.8ei2π(1.4),

(dνeiβ)G1∪G2(s4) = (dνeiβ)G1
(s4) + (dνeiβ)G2(s4) = 1.4ei2π(1.2).
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Therefore, dG1∪G2(s4) = dG1
(s4) + dG2(s4) = (0.8ei2π(1.4), 1.4ei2π(1.2)),

(tdµeiα )G1∪G2 (s4) = (tdµeiα )G1 (s4) + (tdµeiα )G2 (s4)− (µC1 (s4) ∧ µC2 (s4))e
i(αC1 (s4)∧αC2 (s4)) = 1.3ei2π(2.3),

(tdνeiβ )G1∪G2 (s4) = (tdνeiβ )G1 (s4) + (tdνeiβ )G2 (s4)− (νC1 (s4) ∨ νC2 (s4))e
i(βC1 (s4)∨ βC2 (s4)) = 1.8ei2π(1.4).

Therefore, tdG1∪G2(s4) = (1.3ei2π(2.3), 1.8ei2π(1.4)).
Since s2 ∈ C1 ∩ C2 and s1s2 ∈ D1 ∩ D2, thus,

(dµeiα )G1∪G2 (s2) = (dµeiα )G1 (s2) + (dµeiα )G2 (s2)− (µD1 (s1s2) ∧ µD2 (s1s2))ei(αD1 (s1s2)∧αD2 (s1s2)) = 0.8ei2π(1.2),

(dνeiβ )G1∪G2 (s2) = (dνeiβ )G1 (s2) + (dνeiβ )G2 (s2)− (νD1 (s1s2) ∨ νD2 (s1s2))ei(βD1 (s1s2)∨βD2 (s1s2)) = 1.8ei2π(1.2).

Therefore, dG1∪G2(s2) = (0.8ei2π(1.2), 1.8ei2π(1.2)) :

(tdµeiα)G1∪G2(s2) = (tdµeiα)G1
(s2) + (tdµeiα)G2(s2)− (µD1

(s1s2) ∧ µD2(s1s2))e
i(αD1

(s1s2)∧αD2 (s1s2))

−(µC1
(s2) ∧ µC2(s2))e

i(αC1
(s2)∧αC2 (s2)) = 1.5ei2π(1.9),

(tdνeiβ)G1∪G2(s2) = (tdνeiβ)G1
(s2) + (tdνeiβ)G2(s2)− (νD1

(s1s2) ∨ νD2(s1s2))e
i(βD1

(s1s2)∨βD2 (s1s2))

− (νC1
(s2) ∨ νC2(s2))e

i(βC1
(s2)∨ βC2 (s2)) = 2.4ei2π(1.6).

Therefore, tdG1∪G2(s2) = (1.5ei2π(1.9), 2.4ei2π(1.6)).

Definition 14. Let G1 and G2 be two CPFGs. For any vertex r ∈ C1 ⊕ C2, there are two cases to consider.
Case 1: If either r ∈ C1 − C2 or r ∈ C2 − C1.
Case 2: If r ∈ C1 ∩ C2. Then, any edge incident at r is either in D1 − D2 or in D2 − D1.

In both cases:

(dµeiα)G1⊕G2(r) = (dµeiα)G1∪G2(r), (dνeiβ)G1⊕G2(r) = (dνeiβ)G1∪G2(r),

(tdµeiα)G1⊕G2(r) = (tdµeiα)G1∪G2(r), (tdνeiβ)G1⊕G2(r) = (tdνeiβ)G1∪G2(r).

Definition 15. Let G1 and G2 be two CPFGs. For any vertex r ∈ C1 + C2,

(dµeiα )G1+G2 (r) = ∑
rs∈D1∪D2

(µD1 ∪ µD2 )(rs)e
i ∑

rs∈D1∪D2

(αD1∪αD2 )(rs)
+ ∑

rs∈D′
µC1 (r) ∧ µC2 (s)e

i ∑
rs∈D′

αC1 (r)∧αC2 (s)
,

(dνeiβ )G1+G2 (r) = ∑
rs∈D1∪D2

( νD1 ∪ νD2 )(rs)e
i ∑

rs∈D1∪D2

( βD1∪ βD2 )(rs)
+ ∑

rs∈D′
νC1 (r) ∨ νC2 (s)e

i ∑
rs∈D′

βC1 (r)∨ βC2 (s)
.

(tdµeiα )G1+G2 (r) = ∑
rs∈D1∪D2

(µD1 ∪ µD2 )(rs)e
i ∑

rs∈D1∪D2

(αD1∪αD2 )(rs)
+ ∑

rs∈D′
µC1 (r) ∧ µC2 (s)e

i ∑
rs∈D′

αC1 (r)∧αC2 (s)

+µC1 (r) ∨ µC2 (s)e
iαC1 (r)∨αC2 (s),

(tdνeiβ )G1+G2 (r) = ∑
rs∈D1∪D2

( νD1 ∪ νD2 )(rs)e
i ∑

rs∈D1∪D2

( βD1∪ βD2 )(rs)
+ ∑

rs∈D′
νC1 (r) ∨ νC2 (s)e

i ∑
rs∈D′

βC1 (r)∨ βC2 (s)

+ νC1 (r) ∧ νC2 (s)e
iβC1 (r)∧ βC2 (s).
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Definition 16. A CPFG G = (C , D) on G is called a regular CPFG if the degree of its each vertex is same.
If each vertex has degree (r1, r2), that is, dG (ri) = (dµeiα(r), dνeiβ(r)) = (r1, r2) for all ri ∈ C, where

dµeiα(r) = ∑
r,s 6=r∈C

µD (rs)ei ∑r,s 6=r∈C αD (rs) = r1,

dνeiβ(r) = ∑
r,s 6=r∈C

νD (rs)ei ∑r,s 6=r∈C βD (rs) = r2.

G is called regular of degree (r1, r2) or (r1, r2)-regular.

Example 6. Consider a CPFG G = (C , D) on C = {s1, s2, s3, s4}, as in Figure 7, defined by:

C =

〈(
s1

0.8ei2π(0.7)
,

s2

0.7ei2π(0.8)
,

s3

0.6ei2π(0.9)
,

s4

0.6ei2π(0.7)

)
,
(

s1

0.5ei2π(0.4)
,

s2

0.2ei2π(0.3)
,

s3

0.4ei2π(0.5)
,

s4

0.3ei2π(0.5)

)〉
,

D =

〈(
s1s3

0.6ei2π(0.7)
,

s2s4

0.6ei2π(0.7)
,

s1s4

0.4ei2π(0.6)
,

s2s3

0.4ei2π(0.6)

)
,
(

s1s3

0.2ei2π(0.3)
,

s2s4

0.2ei2π(0.3)
,

s1s4

0.1ei2π(0.5)
,

s2s3

0.1ei2π(0.5)

)〉
.

b

(0
.6
e
i2
π
(0
.7
) , 0
.2
e
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π
(0
.3
) )

(0.6e i2π(0.7)
, 0.2e i2π(0.3))

(0.7ei2π(0.8), 0.2ei2π(0.3))

s1

(0.8ei2π(0.7), 0.5ei2π(0.4))
(0
.4
e
i2
π
(0
.6
),0
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e
i2
π
(0
.5
))

(0
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e
i2
π
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.1
e
i2
π
(0
.5
))

b

b

b

s2

s3

s4

(0.6ei2π(0.7), 0.3ei2π(0.5))

(0.6ei2π(0.9), 0.4ei2π(0.5))

Figure 7: (1.0ei2π(1.3), 0.3ei2π(0.8))-regular complex Pythagorean fuzzy graph.

183

The degrees of its vertices s1, s2, s3 and s4 are determined as:184

dG (s1) = {(µD(s1s3)+µD(s1s4))e
i(αD(s1s3)+αD(s1s4)), (νD(s1s3)+νD(s1s4))e

i(βD(s1s3)+βD(s1s4))} = (1.0ei2π(1.3) , 0.3ei2π(0.8)),185

dG (s2) = {(µD(s2s3)+µD(s2s4))e
i(αD(s2s3)+αD(s2s4)), (νD(s2s3)+νD(s2s4))e

i(βD(s2s3)+βD(s2s4))} = (1.0ei2π(1.3) , 0.3ei2π(0.8)),186

dG (s3) = {(µD(s3s1)+µD(s3s2))e
i(αD(s3s1)+αD(s3s2)), (νD(s3s1)+νD(s3s2))e

i(βD(s3s1)+βD(s3s2))} = (1.0ei2π(1.3) , 0.3ei2π(0.8)),187

dG (s4) = {(µD(s4s1)+µD(s4s2))e
i(αD(s4s1)+αD(s4s2)), (νD(s4s1)+νD(s4s2))e

i(βD(s4s1)+βD(s4s2))} = (1.0ei2π(1.3) , 0.3ei2π(0.8)).188

Clearly, dG (s1) = dG (s2) = dG (s3) = dG (s4) = (1.0ei2π(1.3), 0.3ei2π(0.8)). Therefore, G is (1.0ei2π(1.3), 0.3ei2π(0.8))-189

regular CPFG.190

Definition 2.14. A CPFG G on G is called partially regular, if the graph G is regular.191

Definition 2.15. A CPFG G on G is called full regular, if G is both partially regular and regular.192

Definition 2.16. The total degree of a vertex r ∈ C in a CPFG G is denoted by tdG (r), and is defined as193

tdG (r) = (tdµe
iα(r), tdνe

iβ(r)), where194

tdµe
iα(r) =

∑

r,s6=r∈C

µD(rs)ei
∑

r,s 6=r∈C
µD(rs) + µC (r)eiαC (r),

tdνe
iβ(r) =

∑

r,s6=r∈C

νD(rs)ei
∑

r,s 6=r∈C
νD(rs) + νC (r)eiβC (r).

Definition 2.17. A CPFG G = (C ,D) on G is called a totally regular, if its each vertex has the same total195

degree. If each vertex has total degree (T1,T2), i.e., tdG (ri) = (tdµeiα(r), tdνeiβ (r)) = (T1,T2) for all ri ∈ C,196

where197

tdµeiα(r) =
∑

r,s6=r∈C

µD(rs)ei
∑

r,s 6=r∈C αD(rs) + µC (r)eiαC (r) = T1,

tdνeiβ (r) =
∑

r,s6=r∈C

νD(rs)ei
∑

r,s 6=r∈C
βD(rs) + νC (r)eiβC (r) = T2.

G is called totally regular of degree (T1,T2) or (T1,T2)-regular.198

Example 2.6. Consider a CPFG G = (C ,D) on C = {s1, s2, s3, s4}, as in Fig. 8, defined by:199

C =
〈(

s1

0.7ei2π(0.8)
,

s2

0.7ei2π(0.8)
,

s3

0.7ei2π(0.8)
,

s4

0.7ei2π(0.8)

)

,
(

s1

0.6ei2π(0.4)
,

s2

0.6ei2π(0.4)
,

s3

0.6ei2π(0.4)
,

s4

0.6ei2π(0.4)

)〉

,

D =
〈( s1s2

0.4ei2π(0.8)
,

s2s3

0.6ei2π(0.4)
,

s3s4

0.4ei2π(0.8)
,

s1s4

0.6ei2π(0.4)

)

,
( s1s2

0.5ei2π(0.3)
,

s2s3

0.5ei2π(0.2)
,

s3s4

0.5ei2π(0.3)
,

s1s4

0.5ei2π(0.2)

)〉

.

11

Figure 7. (1.0ei2π(1.3), 0.3ei2π(0.8))-regular complex Pythagorean fuzzy graph.

The degrees of its vertices s1, s2, s3 and s4 are determined as:
dG (s1) = {(µD (s1s3) + µD (s1s4))ei(αD (s1s3)+αD (s1s4)), (νD (s1s3) + νD (s1s4))ei(βD (s1s3)+βD (s1s4))} =

(1.0ei2π(1.3), 0.3ei2π(0.8)), dG (s2) = {(µD (s2s3) + µD (s2s4))ei(αD (s2s3)+αD (s2s4)), (νD (s2s3) +

νD (s2s4))ei(βD (s2s3)+βD (s2s4))} = (1.0ei2π(1.3), 0.3ei2π(0.8)), dG (s3) = {(µD (s3s1) +

µD (s3s2))ei(αD (s3s1)+αD (s3s2)), (νD (s3s1) + νD (s3s2))ei(βD (s3s1)+βD (s3s2))} = (1.0ei2π(1.3), 0.3ei2π(0.8)),
dG (s4) = {(µD (s4s1) + µD (s4s2))ei(αD (s4s1)+αD (s4s2)), (νD (s4s1) + νD (s4s2))ei(βD (s4s1)+βD (s4s2))} =

(1.0ei2π(1.3), 0.3ei2π(0.8)). Clearly, dG (s1) = dG (s2) = dG (s3) = dG (s4) = (1.0ei2π(1.3), 0.3ei2π(0.8)).
Therefore, G is (1.0ei2π(1.3), 0.3ei2π(0.8))-regular CPFG.

Definition 17. A CPFG G on G is called partially regular, if the graph G is regular.

Definition 18. A CPFG G on G is called full regular, if G is both partially regular and regular.
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Definition 19. A CPFG G = (C , D) on G is called a totally regular, if its each vertex has the same total degree.
If each vertex has total degree (T1, T2), that is, tdG (ri) = (tdµeiα(r), tdνeiβ(r)) = (T1, T2) for all ri ∈ C, where

tdµeiα(r) = ∑
r,s 6=r∈C

µD (rs)ei ∑r,s 6=r∈C αD (rs) + µC (r)eiαC (r) = T1,

tdνeiβ(r) = ∑
r,s 6=r∈C

νD (rs)ei ∑r,s 6=r∈C βD (rs) + νC (r)eiβC (r) = T2.

G is called totally regular of degree (T1, T2) or (T1, T2)-regular.

Example 7. Consider a CPFG G = (C , D) on C = {s1, s2, s3, s4}, as in Figure 8, defined by:

C =

〈(
s1

0.7ei2π(0.8)
,

s2

0.7ei2π(0.8)
,

s3

0.7ei2π(0.8)
,

s4

0.7ei2π(0.8)

)
,
(

s1

0.6ei2π(0.4)
,

s2

0.6ei2π(0.4)
,

s3

0.6ei2π(0.4)
,

s4

0.6ei2π(0.4)

)〉
,

D =

〈(
s1s2

0.4ei2π(0.8)
,

s2s3

0.6ei2π(0.4)
,

s3s4

0.4ei2π(0.8)
,

s1s4

0.6ei2π(0.4)

)
,
(

s1s2

0.5ei2π(0.3)
,

s2s3

0.5ei2π(0.2)
,

s3s4

0.5ei2π(0.3)
,

s1s4

0.5ei2π(0.2)

)〉
.

b

b

b

b

(0.7e i2π(0.8)
, 0.6e i2π(0.4)

)

(0.4e i2π(0.8), 0.5e i2π(0.3))

(0.4e i2π(0.8), 0.5e i2π(0.3))

(0.7e i2π(0.8)
, 0.6e i2π(0.4)

)

(0.7ei2π(0.8), 0.6ei2π(0.4))

(0.7ei2π(0.8), 0.6ei2π(0.4))
s1

s
2

s3

(0.6ei2π(0.4), 0.5ei2π(0.2))

(0.6ei2π(0.4), 0.5ei2π(0.2))

s
4

Figure 8: (1.7ei2π(2.0), 1.6ei2π(0.9))-totally regular complex Pythagorean fuzzy graph.

200

The total degrees of its vertices s1, s2, s3 and s4 are determined as:201

tdG (s1) = {(µD(s1s2) + µD(s1s4) + µC (s1))e
i(αD (s1s2)+αD(s1s4)+αC (s1)),

(νD(s1s2) + νD(s1s4) + νC (s1))e
i(βD(s1s2)+βD(s1s4)+βC (s1))}

= (1.7ei2π(2.0), 1.6ei2π(0.9)),
202

tdG (s2) = {(µD(s2s1) + µD(s2s3) + µC (s2))e
i(αD (s2s1)+αD(s2s3))+αC (s2)),

(νD(s2s1) + νD(s2s3) + νC (s2))e
i(βD(s2s1)+βD(s2s3)+βC (s2))}

= (1.7ei2π(2.0), 1.6ei2π(0.9)),
203

tdG (s3) = {(µD(s3s2) + µD(s3s4) + µC (s3))e
i(αD (s3s2)+αD(s3s4)+αC (s3)),

(νD(s3s2) + νD(s3s4) + νC (s3))e
i(βD(s3s2)+βD(s3s4)+βC (s3))}

= (1.7ei2π(2.0), 1.6ei2π(0.9)),
204

tdG (s4) = {(µD(s4s1) + µD(s4s3) + µC (s4))e
i(αD (s4s1)+αD(s4s3)+αC (s4)),

(νD(s4s1) + νD(s4s3) + νC (s4))e
i(βD(s4s1)+βD(s4s3)+βC (s4))}

= (1.7ei2π(2.0), 1.6ei2π(0.9)).

Clearly, tdG (s1) = tdG (s2) = tdG (s3) = tdG (s4) = (1.7ei2π(2.0), 1.6ei2π(0.9)). Therefore, G is (1.7ei2π(2.0), 1.6ei2π(0.9))-205

totally regular CPFG.206

Theorem 2.4. Let G = (C ,D) be a (r1, r2)-regular CPFG. Then S(G ) = (
nr1
2

,
nr2
2

), where |C| = n.207

Proof. Assume that G is a CPFG with size

S(G ) =





∑

rirj∈D

µD(rirj)e
i

∑

rirj∈D

αD(rirj)

,
∑

rirj∈D

νD(rirj)e
i

∑

rirj∈D

βD(rirj)



 .

Since G is (r1, r2)-regular, i.e., dG (ri) = (dµeiα(r), dνeiβ (r)) = (r1, r2) for all ri ∈ C, where208

dµeiα(r) =
∑

r,s6=r∈C

µD(rs)ei
∑

r,s 6=r∈C αD(rs) = r1,

dνeiβ (r) =
∑

r,s6=r∈C

νD(rs)ei
∑

r,s 6=r∈C βD(rs) = r2.

12

Figure 8. (1.7ei2π(2.0), 1.6ei2π(0.9))-totally regular complex Pythagorean fuzzy graph.

The total degrees of its vertices s1, s2, s3 and s4 are determined as:

tdG (s1) = {(µD (s1s2) + µD (s1s4) + µC (s1))ei(αD (s1s2)+αD (s1s4)+αC (s1)),

(νD (s1s2) + νD (s1s4) + νC (s1))ei(βD (s1s2)+βD (s1s4)+βC (s1))}
= (1.7ei2π(2.0), 1.6ei2π(0.9)),

tdG (s2) = {(µD (s2s1) + µD (s2s3) + µC (s2))ei(αD (s2s1)+αD (s2s3))+αC (s2)),

(νD (s2s1) + νD (s2s3) + νC (s2))ei(βD (s2s1)+βD (s2s3)+βC (s2))}
= (1.7ei2π(2.0), 1.6ei2π(0.9)),

tdG (s3) = {(µD (s3s2) + µD (s3s4) + µC (s3))ei(αD (s3s2)+αD (s3s4)+αC (s3)),

(νD (s3s2) + νD (s3s4) + νC (s3))ei(βD (s3s2)+βD (s3s4)+βC (s3))}
= (1.7ei2π(2.0), 1.6ei2π(0.9)),



Math. Comput. Appl. 2019, 24, 73 14 of 33

tdG (s4) = {(µD (s4s1) + µD (s4s3) + µC (s4))ei(αD (s4s1)+αD (s4s3)+αC (s4)),

(νD (s4s1) + νD (s4s3) + νC (s4))ei(βD (s4s1)+βD (s4s3)+βC (s4))}
= (1.7ei2π(2.0), 1.6ei2π(0.9)).

Clearly, tdG (s1) = tdG (s2) = tdG (s3) = tdG (s4) = (1.7ei2π(2.0), 1.6ei2π(0.9)). Therefore, G is
(1.7ei2π(2.0), 1.6ei2π(0.9))-totally regular CPFG.

Theorem 4. Let G = (C , D) be a (r1, r2)-regular CPFG. Then S(G ) = (
nr1

2
,

nr2

2
), where |C| = n.

Proof. Assume that G is a CPFG with size

S(G ) =

 ∑
rirj∈D

µD (rirj)e
i ∑

rirj∈D
αD (rirj)

, ∑
rirj∈D

νD (rirj)e
i ∑

rirj∈D
βD (rirj)

 .

Since G is (r1, r2)-regular, that is, dG (ri) = (dµeiα(r), dνeiβ(r)) = (r1, r2) for all ri ∈ C, where

dµeiα(r) = ∑
r,s 6=r∈C

µD (rs)ei ∑r,s 6=r∈C αD (rs) = r1,

dνeiβ(r) = ∑
r,s 6=r∈C

νD (rs)ei ∑r,s 6=r∈C βD (rs) = r2.

Therefore,

dG (ri) =

(
∑

r,s 6=r∈C
µD (rs)ei ∑r,s 6=r∈C αD (rs), ∑

r,s 6=r∈C
νD (rs)ei ∑r,s 6=r∈C βD (rs)

)

∑
ri∈C

dG (ri) =

(
∑

ri∈C
∑

r,s 6=r∈C
µD (rs)ei ∑r,s 6=r∈C αD (rs), ∑

ri∈C
∑

r,s 6=r∈C
νD (rs)ei ∑r,s 6=r∈C βD (rs)

)

Since each edge is considered twice, so(
∑

ri∈C
dµeiα(r), ∑

ri∈C
dνeiβ(r)

)
= 2

(
∑

r,s 6=r∈C
µD (rs)ei ∑r,s 6=r∈C αD (rs), ∑

r,s 6=r∈C
νD (rs)ei ∑r,s 6=r∈C βD (rs)

)
(nr1, nr2) = 2S(G )(nr1

2
,

nr2

2

)
= S(G ).

Theorem 5. Let G = (C , D) be a (T1, T2)-totally regular CPFG. Then 2S(G ) + O(G ) = (nT1, nT2),
where |C| = n.

Proof. Assume that G is a CPFG. Since G is (T1, T2)-totally regular, that is, tdG (ri) =

(tdµeiα(r), tdνeiβ(r)) = (T1, T2) for all ri ∈ C, where

tdµeiα(r) = ∑
r,s 6=r∈C

µD (rs)ei ∑r,s 6=r∈C αD (rs) + µC (r)eiαC (r) = T1,

tdνeiβ(r) = ∑
r,s 6=r∈C

νD (rs)ei ∑r,s 6=r∈C βD (rs) + νC (r)eiβC (r) = T2.



Math. Comput. Appl. 2019, 24, 73 15 of 33

Therefore,

tdG (ri) =

(
∑

r,s 6=r∈C
µD (rs)ei ∑r,s 6=r∈C αD (rs) + µC (r)eiαC (r),

∑
r,s 6=r∈C

νD (rs)ei ∑r,s 6=r∈C βD (rs) + νC (r)eiβC (r)

)

∑
ri∈C

tdG (ri) =

(
∑

ri∈C
∑

r,s 6=r∈C
µD (rs)ei ∑r,s 6=r∈C αD (rs) + ∑

ri∈C
µC (r)eiαC (r),

∑
ri∈C

∑
r,s 6=r∈C

νD (rs)ei ∑r,s 6=r∈C βD (rs) + ∑
ri∈C

νC (r)eiβC (r)

)

Since each edge is considered twice

∑
ri∈C

tdG (ri) =

(
2 ∑

r,s 6=r∈C
µD (rs)ei ∑r,s 6=r∈C αD (rs) + ∑

ri∈C
µC (r)eiαC (r),

2 ∑
r,s 6=r∈C

νD (rs)ei ∑r,s 6=r∈C βD (rs) + ∑
ri∈C

νC (r)eiβC (r)

)
(

∑
ri∈C

tdµeiα(ri), ∑
ri∈C

tdνeiβ(ri)

)
= 2

(
∑

r,s 6=r∈C
µD (rs)ei ∑r,s 6=r∈C αD (rs), ∑

r,s 6=r∈C
νD (rs)ei ∑r,s 6=r∈C βD (rs)

)

+

(
∑

ri∈C
µC (ri)e

i ∑
ri∈C

αC (ri)

, ∑
ri∈C

νC (ri)e
i ∑

ri∈C
βC (ri)

)

(nT1, nT2) = 2

 ∑
rirj∈D

µD (rirj)e
i ∑

rirj∈D
αD (rirj)

, ∑
rirj∈D

νD (rirj)e
i ∑

rirj∈D
βD (rirj)


+

(
∑

ri∈C
µC (ri)e

i ∑
ri∈C

αC (ri)

, ∑
ri∈C

νC (ri)e
i ∑

ri∈C
βC (ri)

)
(nT1, nT2) = 2S(G ) + O(G ).

Corollary 1. Let G = (C , D) be a (r1, r2)-regular and (T1, T2)-totally regular CPFG. Then O(G ) =

n{(T1, T2)− (r1, r2)}.

Proof. Assume that G is a (r1, r2)-regular CPFG. Then the size of G is

S(G ) = (
nr1

2
,

nr2

2
).

As G is a (T1, T2)-totally regular CPFG. Then from Theorem 5, we must have

2S(G ) + O(G ) = (nT1, nT2)

O(G ) = (nT1, nT2)− 2S(G )

= (nT1, nT2)− (nr1, nr2)

= n{(T1, T2)− (r1, r2)}
= n{(T1 − r1) + (T2 − r2)}.

Hence O(G ) = n{(T1, T2)− (r1, r2)}.
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3. Edge Regularity of a Graph in Complex Pythagorean Fuzzy Circumstances

In this section, we propose the concepts of edge regular and totally edge regular complex
Pythagorean fuzzy graphs and discuss their properties in detail. Further, these results are elaborated
with examples.

Definition 20. Let G = (C , D) be a CPFG. The degree of an edge rirj ∈ D is defined as dG (rirj) =

(dµeiα(rirj), dνeiβ(rirj)), where

dµeiα(rirj) = dµeiα(ri) + dµeiα(rj)− 2µD (rirj)e
2iαD (rirj)

= ∑
rirk∈D

k 6=j

µD (rirk)e

i ∑
rirk∈D

k 6=j

αD (rirk)

+ ∑
rjrk∈D

k 6=i

µD (rjrk)e

i ∑
rjrk∈D

k 6=i

αD (rjrk)

,

dνeiβ(rirj) = dνeiβ(ri) + dνeiβ(rj)− 2νD (rirj)e
2iβD (rirj)

= ∑
rirk∈D

k 6=j

νD (rirk)e

i ∑
rirk∈D

k 6=j

βD (rirk)

+ ∑
rjrk∈D

k 6=i

νD (rjrk)e

i ∑
rjrk∈D

k 6=i

βD (rjrk)

.

Definition 21. The minimum and the maximum edge degree of a CPFG G is δD(G ) = (δµ(G ), δν(G )) and
∆D(G ) = (∆µ(G ), ∆ν(G )), respectively, where

δµ(G ) = min{dµeiα(rirj) | rirj ∈ D}, δν(G ) = max{dνeiβ(rirj) | rirj ∈ D},
∆µ(G ) = max{dµeiα(rirj) | rirj ∈ D}, ∆ν(G ) = min{dνeiβ(rirj) | rirj ∈ D}.

Definition 22. A CPFG G on G is called an edge regular, if its each edge has the same degree. If each edge has
degree (s1, s2), i.e., dG (rirj) = (s1, s2) for all rirj ∈ D, where

dµeiα(rirj) = ∑
rirk∈D

k 6=j

µD (rirk)e

i ∑
rirk∈D

k 6=j

αD (rirk)

+ ∑
rjrk∈D

k 6=i

µD (rjrk)e

i ∑
rjrk∈D

k 6=i

αD (rjrk)

= s1,

dνeiβ(rirj) = ∑
rirk∈D

k 6=j

νD (rirk)e

i ∑
rirk∈D

k 6=j

βD (rirk)

+ ∑
rjrk∈D

k 6=i

νD (rjrk)e

i ∑
rjrk∈D

k 6=i

βD (rjrk)

= s2.

G is called edge regular of degree (s1, s2) or (s1, s2)-edge regular.

Example 8. Consider a CPFG G = (C , D) on C = {s1, s2, s3, s4}, as in Figure 9, defined by:

C =

〈(
s1

0.6ei2π(0.7)
,

s2

0.4ei2π(0.5)
,

s3

0.4ei2π(0.6)
,

s4

0.7ei2π(0.8)

)
,
(

s1

0.7ei2π(0.6)
,

s2

0.8ei2π(0.8)
,

s3

0.9ei2π(0.4)
,

s4

0.5ei2π(0.5)

)〉
,

D =

〈(
s1s2

0.2ei2π(0.3)
,

s2s3

0.1ei2π(0.2)
,

s3s4

0.3ei2π(0.4)
,

s1s4

0.4ei2π(0.5)
s1s3

0.4ei2π(0.5)
,

s2s4

0.1ei2π(0.2)

)
,(

s1s2

0.7ei2π(0.7)
,

s2s3

0.9ei2π(0.6)
,

s3s4

0.8ei2π(0.5)
,

s1s4

0.6ei2π(0.6)
,

s1s3

0.9ei2π(0.4)
,

s2s4

0.6ei2π(0.8)

)〉
.
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b

b

b

b

(0.7ei2π(0.8), 0.5ei2π(0.5))

(0.3ei2π(0.4), 0.8ei2π(0.5))

(0.2ei2π(0.3), 0.7ei2π(0.7))

(0.4e i2π(0.5), 0.8e i2π(0.8))

(0.
4e
i2π

(0.
6) , 0.

9e
i2π

(0.
4) )

(0.
6e
i2π

(0.
7) , 0.

7e
i2π

(0.
6) )

s1 s2

s3

(0.1ei2π(0.2), 0.9ei2π(0.6))(0.4ei2π(0.5), 0.6ei2π(0.6))

s4

(0.4e i2π(0.5), 0.9e i2π(0.4))

(0
.1
e
i2
π
(0
.2
) , 0
.6
e
i2
π
(0
.8
) )

Figure 9: (1.0ei2π(1.4), 3.0ei2π(2.4))-edge regular CPFG.

Consider237

n
∑

i=1

dµeiα(riri+1) = dµeiα(r1r2) + dµeiα (r2r3) + . . .+ dµeiα(rnr1),where rn+1 = r1

= dµeiα(r1) + dµeiα(r2)− 2µD(r1r2)e
iαD (r1r2) + dµeiα(r2) + dµeiα(r3)− 2µD(r2r3)e

iαD (r2r3)

+ . . .+ dµeiα (rn) + dµeiα (r1)− 2µD(rnr1)e
αD(rnr1)

= 2dµeiα(r1) + 2dµeiα(r2) + . . .+ 2dµeiα(rn)

−2
(

µD(r1r2)
iαD (r1r2) + µD(r2u3)e

iαD(r2u3) + . . .+ µD(rnr1)e
iαD(rnr1)

)

= 2
∑

ri∈C

dµeiα (ri)− 2

n
∑

i=1

µD(riri+1)e
i

n
∑

i=1

αD(riri+1)

=
∑

ri∈C

dµeiα(ri) +
∑

ri∈C

dµeiα(ri)− 2

n
∑

i=1

µD(riri+1)e
i

n
∑

i=1

αD(riri+1)

=
∑

ri∈C

dµeiα(ri) + 2
n
∑

i=1

µD(riri+1)e
i

n
∑

i=1

αD(riri+1) − 2
n
∑

i=1

µD(riri+1)e
i

n
∑

i=1

αD(riri+1)

=
∑

ri∈C

dµeiα(ri).

Similarly,
n
∑

i=1

dνeiβ (riri+1) =
∑

ri∈C

dνeiβ (ri). Hence
∑

ri∈C

dG (ri) =
∑

rirj∈D

dG (rirj).238

Theorem 3.2. Let G = (C ,D) be a CPFG on a regular graph G. Then239

∑

rirj∈D

dG (rirj) =





∑

rirj∈D

dG(rirj)µD(rirj)e
iαD(rirj),

∑

rirj∈D

dG(rirj)νD(rirj)e
iβD(rirj)



 ,

where dG(rirj) = dG(ri) + dG(rj)− 2 for all rirj ∈ D.240

Proposition 3.1. Let G = (C ,D) be a CPFG on a l-regular graph G. Then241

∑

rirj∈D

dG (rirj) =

(

(l − 1)
∑

ri∈C

dµeiα (ri), (l − 1)
∑

ri∈C

dνeiβ (ri)

)

.

16

Figure 9. (1.0ei2π(1.4), 3.0ei2π(2.4))-edge regular CPFG.

Clearly, dG (s1s2) = dG (s2s3) = dG (s3s4) = dG (s4s1) = dG (s1s3) = dG (s2s4) =

(1.0ei2π(1.4), 3.0ei2π(2.4)). So, G is (1.0ei2π(1.4), 3.0ei2π(2.4))-edge regular CPFG.

Theorem 6. Let G = (C , D) be a CPFG on a cycle graph G. Then

∑
ri∈C

dG (ri) = ∑
rirj∈D

dG (rirj)

Proof. Let G = (C , D) be a CPFG and let G be a cycle r1r2r3 . . . rnr1. Then

n

∑
i=1

dG (riri+1) =

(
n

∑
i=1

dµeiα(riri+1),
n

∑
i=1

dνeiβ(riri+1)

)
.

Consider

n

∑
i=1

dµeiα (riri+1) = dµeiα (r1r2) + dµeiα (r2r3) + . . . + dµeiα (rnr1), where rn+1 = r1

= dµeiα (r1) + dµeiα (r2)− 2µD (r1r2)e2iαD (r1r2) + dµeiα (r2) + dµeiα (r3)− 2µD (r2r3)e2iαD (r2r3)

+ . . . + dµeiα (rn) + dµeiα (r1)− 2µD (rnr1)e2αD (rnr1)

= 2dµe2iα (r1) + 2dµe2iα (r2) + . . . + 2dµe2iα (rn)

−2
(

µD (r1r2)
2iαD (r1r2) + µD (r2u3)e2iαD (r2u3) + . . . + µD (rnr1)e2iαD (rnr1)

)
= 2 ∑

ri∈C
dµeiα (ri)− 2

n

∑
i=1

µD (riri+1)e
2i

n
∑

i=1
αD (riri+1)

= ∑
ri∈C

dµeiα (ri) + ∑
ri∈C

dµeiα (ri)− 2
n

∑
i=1

µD (riri+1)e
2i

n
∑

i=1
αD (riri+1)

= ∑
ri∈C

dµeiα (ri) + 2
n

∑
i=1

µD (riri+1)e
2i

n
∑

i=1
αD (riri+1) − 2

n

∑
i=1

µD (riri+1)e
2i

n
∑

i=1
αD (riri+1)

= ∑
ri∈C

dµeiα (ri).

Similarly,
n
∑

i=1
dνeiβ(riri+1) = ∑

ri∈C
dνeiβ(ri). Hence ∑

ri∈C
dG (ri) = ∑

rirj∈D
dG (rirj).
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Theorem 7. Let G = (C , D) be a CPFG on a regular graph G. Then

∑
rirj∈D

dG (rirj) =

 ∑
rirj∈D

dG(rirj)µD (rirj)e
iαD (rirj), ∑

rirj∈D
dG(rirj)νD (rirj)e

iβD (rirj)

 ,

where dG(rirj) = dG(ri) + dG(rj)− 2 for all rirj ∈ D.

Proposition 2. Let G = (C , D) be a CPFG on a l-regular graph G. Then

∑
rirj∈D

dG (rirj) =

(
(l − 1) ∑

ri∈C
dµeiα(ri), (l − 1) ∑

ri∈C
dνeiβ(ri)

)
.

Proof. Suppose that G is a CPFG on a l-regular graph G. Utilizing Theorem 7, we get

∑
rirj∈D

dG (rirj) =

 ∑
rirj∈D

dG(rirj)µD(rirj)e
iαD (rirj), ∑

rirj∈D
dG(rirj)νD(rirj)e

iβD (rirj)


=

 ∑
rirj∈D

(dG(ri) + dG(rj)− 2)µD(rirj)e
iαD (rirj), ∑

rirj∈D
(dG(ri) + dG(rj)− 2)νD(rirj)e

iβD (rirj)

 .

Since G is a l-regular graph, dG(ri) = l, for all ri ∈ C, so

∑
rirj∈D

dG (rirj) =

2(l − 1) ∑
rirj∈D

µD (rirj)e
i ∑

rirj∈D
αD (rirj)

, 2(l − 1) ∑
rirj∈D

νD (rirj)e
i ∑

rirj∈D
βD (rirj)

 ,

=

(
(l − 1) ∑

ri∈C
dµeiα(ri), (l − 1) ∑

ri∈C
dνeiβ(ri)

)
.

Theorem 8. Let G = (C , D) be a CPFG on a graph G. If (µD eiαD , νD eiβD ) is a constant function, then G is
an edge regular CPFG if and only if G is an edge regular.

Proof. Suppose that (µD eiαD , νD eiβD ) is a constant function, µD (rirj)e
iαD (rirj) = c1ei2π(c

′
1) and

νD (rirj)e
iβD (rirj) = c2ei2π(c

′
2) for all rirj ∈ D, where c1ei2π(c

′
1) and c2ei2π(c

′
2) are constants. Assume

that G is an edge regular CPFG. We show that G is an edge regular. On the contrary, suppose that G is
an edge irregular, i.e., dG(rirj) 6= dG(rlrm) for at least on pair of rirj, rlrm ∈ D.

From the definition of edge degree of a CPFG,

dG (rirj) = (dµeiα(rirj), dνeiβ(rirj)),
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where

dµeiα(rirj) = ∑
rirk∈D

k 6=j

µD (rirk)e

i ∑
rirk∈D

k 6=j

αD (rirk)

+ ∑
rjrk∈D

k 6=i

µD (rjrk)e

i ∑
rjrk∈D

k 6=i

αD (rjrk)

= ∑
rirk∈D

k 6=j

c1e

i2π( ∑
rirk∈D

k 6=j

c
′
1)

+ ∑
rjrk∈D

k 6=i

c1e

i2π( ∑
rjrk∈D

k 6=i

c
′
1)

= c1ei2π(c
′
1)(dG(ri)− 1) + c1ei2π(c

′
1)(dG(rj)− 1)

= c1ei2π(c
′
1)(dG(ri) + dG(rj)− 2)

= c1ei2π(c
′
1)dG(rirj) for all rirj ∈ D.

Analogously, we can show that dνeiβ(rirj) = c2ei2π(c
′
2)dG(rirj) for all rirj ∈ D. Therefore

dG (rirj) = (c1ei2π(c
′
1)dG(rirj), c2ei2π(c

′
2)dG(rirj)), dG (rlrm) = (c1ei2π(c

′
1)dG(rlrm), c2ei2π(c

′
2)dG(rlrm)).

Since dG(rirj) 6= dG(rlrm), so dG (rirj) 6= dG (rlrm). Thus G is an edge irregular, a contradiction. Hence
G is an edge regular.

Conversely, let G be an edge regular. To show that G is an edge regular CPFG. Consider
G is an edge irregular CPFG. i.e., dG (rirj) 6= dG (rprq) for at least one pair of rirj, rprq ∈ D,
(dµeiα(rirj), dνeiβ(rirj)) 6= (dµeiα(rprq), dνeiβ(rprq)). Now dµeiα(rirj) 6= dµeiα(rprq) implies

∑
rirk∈D

k 6=j

µD (rirk)e

i ∑
rirk∈D

k 6=j

αD (rirk)

+ ∑
rjrk∈D

k 6=i

µD (rjrk)e

i ∑
rjrk∈D

k 6=i

αD (rjrk)

6= ∑
rprs∈D

s 6=q

µD (rprs)e

i ∑
rprs∈D

s 6=q

βD (rprs)

+ ∑
rsrq∈D

s 6=p

µD (rsrq)e

i ∑
rsrq∈D

s 6=p

βD (rsrq)

, since µD eiαD is a constant, so dG(rirj) 6= dG(rprq), a contradiction.

Therefore G is an edge regular CPFG.

Theorem 9. Let G = (C , D) be a regular CPFG. Then G is an edge regular CPFG if and only if
(µD eiαD , νD eiβD ) is a constant function.

Proof. Let G be a (r1, r2)-regular CPFG i.e., dG (ri) = (r1, r2) for all ri ∈ C. Suppose that

(µD eiαD , νD eiβD ) is a constant function. Then µD (rirj)e
iαD (rirj) = c1ei2π(c

′
1) and νD (rirj)e

βD (rirj) =

c2ei2π(c
′
2) for all rirj ∈ D, where c1ei2π(c

′
1) and c2ei2π(c

′
2) are constants. By definition of edge degree of

a CPFG,
dG (rirj) = (dµeiα(rirj), dνeiβ(rirj)),

where

dµeiα(rirj) = dµeiα(ri) + dµeiα(rj)− 2µD (rirj)e
2iαD (rirj)

= r1 + r1 − 2c1ei2π(c
′
1)

= 2(r1 − c1ei2π(c
′
1)) for all rirj ∈ D.

Similarly, dνeiβ(rirj) = 2(r2 − c2ei2π(c
′
2)) for all rirj ∈ D. Hence G is an edge regular CPFG.
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Conversely, assume that G is an edge regular CPFG, i.e., dG (rirj) = (s1, s2) for all rirj ∈ D.
We show that (µD eiαD , νD eiβD ) is a constant function. Since dG (rirj) = (dµeiα(rirj), dνeiβ(rirj)), where

dµeiα(rirj) = dµeiα(ri) + dµeiα(rj)− 2µD (rirj)e
2iαD (rirj)

s1 = r1 + r1 − 2µD (rirj)e
2iαD (rirj)

µD (rirj)e
2iαD (rirj) =

(2r1 − s1)

2
for all rirj ∈ D.

Similarly, νD (rirj)e
2iβD (rirj) = (2r2−s2)

2 for all rirj ∈ D. Hence (µD eiαD , νD eiβD ) is a
constant function.

Definition 23. The total degree of an edge rirj ∈ D in a CPFG G = (C , D) is defined as tdG (rirj) =

(tdµeiα(rirj), tdνeiβ(rirj)), where

tdµeiα(rirj) = dµeiα(ri) + dµeiα(rj)− µD (rirj)e
iαD (rirj)

= ∑
rirk∈D

k 6=j

µD (rirk)e

i ∑
rirk∈D

k 6=j

αD (rirk)

+ ∑
rjrk∈D

k 6=i

µD (rjrk)e

i ∑
rjrk∈D

k 6=i

αD (rjrk)

+ µD (rirj)e
iαD (rirj),

tdνeiβ(rirj) = dνeiβ(ri) + dνeiβ(rj)− νD (rirj)e
iβD (rirj)

= ∑
rirk∈D

k 6=j

νD (rirk)e

i ∑
rirk∈D

k 6=j

βD (rirk)

+ ∑
rjrk∈D

k 6=i

νD (rjrk)e

i ∑
rjrk∈D

k 6=i

βD (rjrk)

+ νD (rirj)e
iβD (rirj).

Definition 24. A CPFG G on G is called a totally edge regular, if its each edge has the same total degree. If each
edge has total degree (S1, S2), i.e., dG (rirj) = (S1, S2) for all rirj ∈ D, where

tdµeiα(rirj) = ∑
rirk∈D

k 6=j

µD (rirk)e

i ∑
rirk∈D

k 6=j

αD (rirk)

+ ∑
rjrk∈D

k 6=i

µD (rjrk)e

i ∑
rjrk∈D

k 6=i

αD (rjrk)

+ µD (rirj)e
iαD (rirj) = S1,

tdνeiβ(rirj) = ∑
rirk∈D

k 6=j

νD (rirk)e

i ∑
rirk∈D

k 6=j

βD (rirk)

+ ∑
rjrk∈D

k 6=i

νD (rjrk)e

i ∑
rjrk∈D

k 6=i

βD (rjrk)

+ νD (rirj)e
iβD (rirj) = S2.

G is called totally edge regular of degree (S1, S2) or (S1, S2)-totally edge regular.

Example 9. Consider a CPFG G = (C , D) on C = {s1, s2, s3, s4}, as in Figure 10, defined by:

C =

〈(
s1

0.8ei2π(0.7)
,

s2

0.7ei2π(0.8)
,

s3

0.6ei2π(0.9)
,

s4

0.6ei2π(0.7)

)
,
(

s1

0.5ei2π(0.6)
,

s2

0.2ei2π(0.3)
,

s3

0.4ei2π(0.5)
,

s4

0.3ei2π(0.5)

)〉
,

D =

〈(
s1s2

0.4ei2π(0.6)
,

s2s3

0.4ei2π(0.6)
,

s3s4

0.4ei2π(0.6)
,

s4s1

0.4ei2π(0.6)

)
,
(

s1s2

0.1ei2π(0.5)
,

s2s3

0.1ei2π(0.5)
,

s3s4

0.1ei2π(0.5)
,

s4s1

0.1ei2π(0.5)

)〉
.
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G is called totally edge regular of degree (S1,S2) or (S1,S2)-totally edge regular.273

Example 3.2. Consider a CPFG G = (C ,D) on C = {s1, s2, s3, s4}, as in Fig. 10, defined by:274

C =
〈( s1

0.8ei2π(0.7)
,

s2

0.7ei2π(0.8)
,

s3

0.6ei2π(0.9)
,

s4

0.6ei2π(0.7)

)

,
( s1

0.5ei2π(0.6)
,

s2

0.2ei2π(0.3)
,

s3

0.4ei2π(0.5)
,

s4

0.3ei2π(0.5)

)〉

,

D =
〈( s1s2

0.4ei2π(0.6)
,

s2s3

0.4ei2π(0.6)
,

s3s4

0.4ei2π(0.6)
,

s4s1

0.4ei2π(0.6)

)

,
( s1s2

0.1ei2π(0.5)
,

s2s3

0.1ei2π(0.5)
,

s3s4

0.1ei2π(0.5)
,

s4s1

0.1ei2π(0.5)

)〉

.

b

b

b

b

(0.6e i2π(0.7)
, 0.3e i2π(0.5)

)

(0.4e i2π(0.6), 0.1e i2π(0.5))

(0.4e i2π(0.6), 0.1e i2π(0.5))

(0.7e i2π(0.8)
, 0.2e i2π(0.3)

)

(0.6ei2π(0.9), 0.4ei2π(0.5))

(0.8ei2π(0.7), 0.5ei2π(0.6))
s1

s
2

s3

(0.4ei2π(0.6), 0.1ei2π(0.5))

(0.4ei2π(0.6), 0.1ei2π(0.5))

s
4

Figure 10: (1.2ei2π(1.8), 0.3ei2π(1.5))-totally edge regular complex Pythagorean fuzzy graph.

275

Clearly, tdG (s1s2) = tdG (s2s3) = tdG (s3s4) = tdG (s4s1) = (1.2ei2π(1.8), 0.3ei2π(1.5)). So, G is (1.2ei2π(1.8), 0.3ei2π(1.5))-276

totally regular CPFG.277

Theorem 3.5. Let G = (C ,D) be a CPFG on a regular graph G. Then278

∑

rirj∈D

tdG (rirj) =





∑

rirj∈D

dG(rirj)µD(rirj)e
iαD(rirj) +

∑

rirj∈D

µD(rirj)e
i

∑

rirj∈D

αD(rirj)

,

∑

rirj∈D

dG(rirj)νD(rirj)e
iβD(rirj) +

∑

rirj∈D

νD(rirj)e
i

∑

rirj∈D

βD(rirj)



 .

Theorem 3.6. Let G = (C ,D) be a CPFG. Then (µDeiαD , νDeiβD ) is a constant function if and only if the279

statements given below are equivalent:280

(i) G is an edge regular CPFG;281

(ii) G is a totally edge regular CPFG.282

Proof. Assume that (µDeiαD , νDeiβD ) is a constant function. Then µD(rirj)e
iαD(rirj) = c1e

i2π(c
′

1) and νD(rirj)e
iβD(rirj) =283

c2e
i2π(c

′

2) for every rirj ∈ D, where c1e
i2π(c

′

1) and c2e
i2π(c

′

2) are constants.284

(i) ⇒ (ii). Suppose that G is (s1, s2)-edge regular CPFG. Then dG (rirj) = (s1, s2) for all rirj ∈ D.285

Consider286

(

dµeiα(rirj) + µD(rirj)e
iαD(rirj), dνeiβ (rirj) + νD(rirj)e

iβD(rirj)
)

= (s1 + c1e
i2π(c

′

1), s2 + c2e
i2π(c

′

2)) for all rirj ∈ D.

Therefore, CPFG G is a totally edge regular.287

(ii) ⇒ (i). Let G be a (S1,S2)-totally edge regular CPFG. Then tdG (rirj) = (dµeiα(rirj)+µD(rirj)e
iαD(rirj),288

19

Figure 10. (1.2ei2π(1.8), 0.3ei2π(1.5))-totally edge regular complex Pythagorean fuzzy graph.

Clearly, tdG (s1s2) = tdG (s2s3) = tdG (s3s4) = tdG (s4s1) = (1.2ei2π(1.8), 0.3ei2π(1.5)). So, G is
(1.2ei2π(1.8), 0.3ei2π(1.5))-totally regular CPFG.

Theorem 10. Let G = (C , D) be a CPFG on a regular graph G. Then

∑
rirj∈D

tdG (rirj) =

 ∑
rirj∈D

dG(rirj)µD (rirj)e
iαD (rirj) + ∑

rirj∈D
µD (rirj)e

i ∑
rirj∈D

αD (rirj)

,

∑
rirj∈D

dG(rirj)νD (rirj)e
iβD (rirj) + ∑

rirj∈D
νD (rirj)e

i ∑
rirj∈D

βD (rirj)
 .

Theorem 11. Let G = (C , D) be a CPFG. Then (µD eiαD , νD eiβD ) is a constant function if and only if the
statements given below are equivalent:

(i) G is an edge regular CPFG;
(ii) G is a totally edge regular CPFG.

Proof. Assume that (µD eiαD , νD eiβD ) is a constant function. Then µD (rirj)e
iαD (rirj) = c1ei2π(c

′
1) and

νD (rirj)e
iβD (rirj) = c2ei2π(c

′
2) for every rirj ∈ D, where c1ei2π(c

′
1) and c2ei2π(c

′
2) are constants.

(i)⇒ (ii). Suppose that G is (s1, s2)-edge regular CPFG. Then dG (rirj) = (s1, s2) for all rirj ∈ D.
Consider (

dµeiα(rirj) + µD (rirj)e
iαD (rirj), dνeiβ(rirj) + νD (rirj)e

iβD (rirj)
)

= (s1 + c1ei2π(c
′
1), s2 + c2ei2π(c

′
2)) for all rirj ∈ D.

Therefore, CPFG G is a totally edge regular.
(ii) ⇒ (i). Let G be a (S1, S2)-totally edge regular CPFG. Then tdG (rirj) = (dµeiα(rirj) +

µD (rirj)e
iαD (rirj), dνeiβ(rirj) + νD (rirj))e

iβD (rirj)) = (S1, S2) for all rirj ∈ D.
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Now,

dG (rirj) = (dµeiα(rirj), dνeiβ(rirj))

=
(
S1 − µD (rirj)e

iαD (rirj), S2 − νD (rirj)e
iβD (rirj)

)
= (S1 − c1ei2π(c

′
1), S2 − c2ei2π(c

′
2)).

Therefore, G is a (S1 − c1ei2π(c
′
1), S2 − c2ei2π(c

′
2))-edge regular CPFG.

Conversely, assume that (i) and (ii) are equivalent. We show that (µD eiαD , νD eiβD ) is a constant
function. Assume that (µD eiαD , νD eiβD ) is not a constant function. Then µD (rirj)e

iαD (rirj) 6=
µD (rprq)eiαD (rprq) and νD (rirj)e

iβD (rirj) 6= νD (rprq)eiβD (rprq) for at least one pair of rirj, rprq ∈ D.
Suppose that G is a (s1, s2)-edge regular CPFG. Then dG (rirj) = dG (rprq) = (s1, s2). Hence

tdG (rirj) =
(

dµeiα(rirj) + µD (rirj)e
iαD (rirj), dνeiβ(rirj) + νD (rirj)e

iβD (rirj)
)

=
(

s1 + µD (rirj)e
iαD (rirj), s2 + νD (rirj)e

iβD (rirj)
)

.

tdG (rprq) =
(

dµeiα(rprq) + µD (rprq)eiαD (rprq), dνeiβ(rprq) + νD (rprq)eiβD (rprq)
)

=
(

s1 + µD (rprq)eiαD (rprq), s2 + νD (rprq)eiβD (rprq)
)

.

As µD (rirj)e
iαD (rirj) 6= µD (rprq)eiαD (rprq) and νD (rirj)e

iβD (rirj) 6= νD (rprq)eiβD (rprq), so
tdG (rirj) 6= tdG (rprq). Hence G is a totally edge irregular, a contradiction. Therefore, (µD eiαD , νD eiβD )

is a constant function. Similarly, (µD eiαD , νD eiβD ) is a constant function, if G is a totally edge
regular CPFG.

Theorem 12. If a CPFG G is edge regular as well as totally edge regular, then (µD eiαD , νD eiβD ) is a
constant function.

Proof. Obvious.

Theorem 13. Let G = (C , D) be a CPFG on a l-regular graph G. Then (µD eiαD , νD eiβD ) is a constant
function if and only if G is both regular and totally edge regular CPFG.

Proof. Let G be a CPFG on a l-regular graph G. Assume that (µD eiαD , νD eiβD ) is a constant function,

µD (rirj)e
iαD (rirj) = c1ei2π(c

′
1) and νD (rirj)e

iβD (rirj) = c2ei2π(c
′
2) for all rirj ∈ D, where c1ei2π(c

′
1) and

c2ei2π(c
′
2) are constants.

Utilizing definition of vertex degree, we have

dG (ri) = (dµeiα(ri), dνeiβ(ri))

=

 ∑
rirj∈D

µD (rirj)e
i ∑

rirj∈D
αD (rirj)

, ∑
rirj∈D

νD (rirj)e
i ∑

rirj∈D
βD (rirj)


=

 ∑
rirj∈D

c1e
i2π( ∑

rirj∈D
c
′
1)

, ∑
rirj∈D

c2e
i2π( ∑

rirj∈D
c
′
2)


= (lc1ei2π(c
′
1), lc2ei2π(c

′
2)) for all ri ∈ C.

Therefore, G is regular CPFG.
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Now, tdG (rirj) = (tdµeiα(rirj), tdνeiβ(rirj)), where

tdµeiα(rirj) = ∑
rirk∈D

k 6=j

µD (rirk)e

i ∑
rirk∈D

k 6=j

αD (rirk)

+ ∑
rjrk∈D

k 6=i

µD (rjrk)e

i ∑
rjrk∈D

k 6=i

αD (rjrk)

+ µD (rirj)e
iαD (rirj)

= ∑
rirk∈D

k 6=j

c1ei2π(c
′
1) + ∑

rjrk∈D
k 6=i

c1ei2π(c
′
1) + c1ei2π(c

′
1)

= c1ei2π(c
′
1)(l − 1) + c1ei2π(c

′
1)(l − 1) + c1ei2π(c

′
1)

= c1ei2π(c
′
1)(2l − 1) for all rirj ∈ D.

Similarly, tdνeiβ(rirj) = c2ei2π(c
′
2)(2l − 1) for all rirj ∈ D. Therefore G is a totally edge

regular CPFG.
Conversely, assume that G is regular as well as totally edge regular CPFG. We show that

(µD eiαD , νD eiβD ) is a constant function. Since CPFG G is regular, dG (ri) = (r1, r2) for all ri ∈ C.
Also, G is a totally edge regular, tdG (rirj) = (S1, S2) for all rirj ∈ D. According to the definition of
total degree of an edge, we have tdG (rirj) = (tdµeiα(rirj), tdνeiβ(rirj)), where

tdµeiα(rirj) = dµeiα(ri) + dµeiα(rj)− µD (rirj)e
iαD (rirj)

S1 = r1 + r1 − µD (rirj)e
iαD (rirj)

µD (rirj) = 2r1 −S1 for all rirj ∈ D.

Similarly, νD (rirj) = 2r2 −S2 for all rirj ∈ D. Hence (µD eiαD , νD eiβD ) is a constant function.

Definition 25. A CPFG G on G is said to be partially edge regular, if G is an edge regular.

Definition 26. A CPFG G on G is said to be full edge regular, if G is edge regular as well as partially
edge regular.

Theorem 14. Let G = (C , D) be a CPFG on G such that (µD eiαD , νD eiβD ) is a constant function. If G is
full regular CPFG, then G is full edge regular CPFG.

Proof. Suppose that (µD eiαD , νD eiβD ) is a constant function. µD (rirj)e
iαD (rirj) = c1ei2π(c

′
1) and

νD (rirj)e
iβD (rirj) = c2ei2π(c

′
2) for all rirj ∈ D, where c1ei2π(c

′
1) and c2ei2π(c

′
2) are constants. Let G

be a full regular CPFG, then dG(ri) = l and dG (ri) = (r1, r2) for all ri ∈ C, where l, r1 and r2 are
constants. Therefore dG(rirj) = dG(ri) + dG(rj)− 2 = 2l − 2 = constant. Hence the graph G is an
edge regular.

Now, dG (rirj) = (dµeiα(rirj), dνeiβ(rirj)) for all rirj ∈ D, where

dµeiα(rirj) = dµeiα(ri) + dµeiα(rj)− 2µD (rirj)e
2iαD (rirj)

= r1 + r1 − 2c1ei2π(c
′
1)

= 2r1 − 2c1ei2π(c
′
1) = constant.

Similarly, dνeiβ(rirj) = 2r2 − 2c2ei2π(c
′
2) =constant, for all rirj ∈ D. Hence G is an edge regular

CPFG. Thus G is full edge regular CPFG.
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Theorem 15. Let G = (C , D) be a S
′
-partially edge regular and S -totally edge regular CPFG. Then S(G ) =

mS
1+S ′ , where m = |D|.

Proof. The size of CPFG G is

S(G ) =

 ∑
rirj∈D

µD (rirj)e
i ∑

rirj∈D
αD (rirj)

, ∑
rirj∈D

νD (rirj)e
i ∑

rirj∈D
βD (rirj)

 .

Since G is S
′
-partially edge regular and S -totally edge regular CPFG, i.e., dG(rirj) = S

′
and

tdG (rirj) = S , respectively. Therefore,

∑
rirj∈D

tdG (rirj) =

 ∑
rirj∈D

dG(rirj)µD (rirj)eiαD (rirj) + ∑
rirj∈D

µD (rirj)e
i ∑

ri rj∈D
αD (rirj)

,

∑
rirj∈D

dG(rirj)νD (rirj)eiβD (rirj) + ∑
rirj∈D

νD (rirj)e
i ∑

ri rj∈D
βD (rirj)


=

 ∑
rirj∈D

dG(rirj)µD (rirj)eiαD (rirj), ∑
rirj∈D

dG(rirj)νD (rirj)eiβD (rirj)

+ S(G )

mS = S
′
S(G ) + S(G )

S(G ) =
mS

1 +S ′ .

4. An Approach to Decision Making with Complex Pythagorean Fuzzy Information

In this section, a decision-making approach is developed based on the proposed CPFGs. Further,
the developed approach is demonstrated with a suitable illustration.

Definition 27. Let $j = (µje
iαj , νje

iβ j) (j = 1, 2, . . . , n) be a collection of CPFNs, the complex Pythagorean
fuzzy weighted averaging (CPFWA) operator is a mapping CPFWA: (C )n → C , where

CPFWA($1, $2, . . . , $n) =
n

∑
j=1

wj$j

w = (w1, w2, . . . , wn)T is the weight vector of $j (j = 1, 2, . . . , n), with wj ∈ [0, 1], and
n
∑

j=1
wj = 1.

With the operations of CPFNs, by induction on n, we get CPFWA operator as:

CPFWA($1, $2, . . . , $n) =


√√√√1−

n

∏
j=1

(
1− (µj)2

)wj
e

i2π

√
1−

n
∏
j=1

(
1−( αj

2π )
2
)wj

,
n

∏
j=1

(νj)
wj ei2π ∏n

j=1(
βj
2π )

wj

 .

Definition 28. Let $j = (µje
iαj , νje

iβ j) (j = 1, 2, . . . , n) be a collection of CPFNs, the complex Pythagorean
fuzzy weighted geometric (CPFWG) operator is a mapping CPFWG: (C )n → C , where

CPFWG($1, $2, . . . , $n) =
n

∏
j=1

($j)
wj

w = (w1, w2, . . . , wn)T is the weight vector of $j (j = 1, 2, . . . , n), satisfying wj ∈ [0, 1] and
n
∑

j=1
wj = 1.
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With the operations of CPFNs, by induction on n, we get CPFWG operator as:

CPFWG($1, $2, . . . , $n) =

 n

∏
j=1

(µj)
wj ei2π ∏n

j=1(
βj
2π )

wj
,

√√√√1−
n

∏
j=1

(
1− (νj)2

)wj
e

i2π

√
1−

n
∏
j=1

(
1−( αj

2π )
2
)wj
 .

Definition 29. Let $j = (µje
iαj , νje

iβ j) (j = 1, 2, . . . , n) be a collection of CPFNs and w = (w1, w2, . . . , wn)T

be the weight vector of $j (j = 1, 2, . . . , n), satisfying wj ∈ [0, 1] and
n
∑

j=1
wj = 1, the complex Pythagorean

fuzzy ordered weighted averaging (CPFOWA) operator is a mapping CPFOWA: (C )n → C , where

CPFOWA($1, $2, . . . , $n) =
n

∑
j=1

wj$σ(j)

With the operations of CPFNs, by induction on n, we get CPFOWA operator as:

CPFWA($1, $2, . . . , $n) =


√√√√1−

n

∏
j=1

(
1− (µσ(j))

2
)wj

e
i2π

√
1−

n
∏
j=1

(
1−(

ασ(j)
2π )2

)wj

,
n

∏
j=1

(νσ(j))
wj ei2π ∏n

j=1(
βσ(j)

2π )
wj

 .

Definition 30. Let $j = (µje
iαj , νje

iβ j) (j = 1, 2, . . . , n) be a collection of CPFNs and w = (w1, w2, . . . , wn)T

be the weight vector of $j (j = 1, 2, . . . , n), satisfying wj ∈ [0, 1] and
n
∑

j=1
wj = 1, then the complex Pythagorean

fuzzy ordered weighted geometric (CPFOWG) operator is a mapping CPFOWG: (C )n → C , where

CPFOWG($1, $2, . . . , $n) =
n

∑
j=1

($σ(j))
wj .

With the operations of CPFNs, by induction on n, we get CPFOWG operator as:

CPFWG($1, $2, . . . , $n) =

 n

∏
j=1

(µσ(j))
wj ei2π ∏n

j=1(
βσ(j)

2π )
wj

,

√√√√1−
n

∏
j=1

(
1− (νσ(j))

2
)wj

e
i2π

√
1−

n
∏
j=1

(
1−(

ασ(j)
2π )2

)wj
 .

Particularly, if w = (1/n, 1/n, . . . , 1/n)T , then the CPFOWA and CPFOWG operators reduce to
the CPFWA and CPFWG operators, respectively.

A score function for the CPFN is defined as follows:

Definition 31. Let $ = (µeiα, νeiβ) be a CPFN. Then

s($) = (µ2 − ν2) +
1

4π2 (α
2 − β2)

is the score of $, where s is the score function of $, s($) ∈ [−2, 2].

Definition 32. Let $ = (µeiα, νeiβ) be a CPFN. Then

h($) = (µ2 + ν2) +
1

4π2 (α
2 + β2)

is the accuracy of $, where h is the accuracy function of $, h($) ∈ [0, 2].

For any two CPFNs $1 and $2,
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1. if s($1) > s($2), then $1 � $2;
2. if s($1) = s($2), then

• if h($1) > h($2), then $1 � $2;
• if h($1) = h($2), then $1 ∼ $2.

4.1. Decision-Making Approach

Consider a MADM problem containing a discrete set of m alternatives A =

{A1, A2, . . . , Am}. Let Z = {r1, r2, . . . , rn} be a set of attributes characterized by a CPFS
{r, (µC (r)eiαC (r), νC (r)eiβC (r)) | r ∈ Y}. Also each attribute classified with a vertex and links
between attributes with relations (edges) in CPFG.

In a CPFG G = (C , D), for an alternative, assume that if an attribute ri ∈ Z is most important,
we choose ri = 1, otherwise ri = 0. Then the importance of each attribute ri can be calculated by using

Ii = (µC (ri)eiαC (ri), νC (ri)eiβC (ri))xi + x̄Ni i = 1, 2, . . . , n. (1)

where Ni is the set of the attributes ri’s neighbors and

x̄Ni = ∑
j∈Ni

(
µD (rirj)e

iαD (rirj), νD (rirje
iβD (rirj)

)
ξ(rirj)rj,

ξ(rirj) ∈ [0, 1] is the influence coefficient between relevant attributes.
In the CPFG based MADM problems, if there are prioritization relations among the attributes, we

will solve this problem by using the prioritized aggregation operators [29] together with the necessary
complex Pythagorean fuzzy graphic structure.

For a CPFG, suppose that we have a collection of attributes (vertices) partitioned into t distinct
categories C1, C2, . . . , Ct such that Ci = {ri1, ri2, . . . , rini}, where rij (j = 1, 2, ..., ni) are the attributes in
the category Ci and suppose C1 > C2 > ... > Ct is a prioritization relationship among these categories.
In the category Ci, the attributes have a higher priority than those in Cj if i < j. Then the universal
set of attributes is Z =

⋃t
i=1 Ci and the total number of attributes is n = ∑t

i=1 ni. The prioritized
hierarchy structure of Z is shown in Figure 11. We put forward an approach to handle the CPFG based
MADM problems according to the prioritized complex Pythagorean fuzzy aggregation operators
well-organized with the degrees of attributes.

Compute the degrees of all attributes d(ri) (i = 1, 2, . . . , n) which can be normalized by

d̄(ri) =

(
d(µC (ri))

∑m
j=1 d(µC (rj))

,
d(νC (ri))

∑m
j=1 d(νC (rj))

)
, i = 1, 2, . . . , n (2)
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The weights are associated with attributes dependent upon the satisfaction of the higher priority
attribute by designing the prioritization between attributes. Then for each category Ci, firstly we define

li =

{
(1, 0), (1, 0), i = 0
ϕ(d̄(ri1), d̄(ri2), . . . , d̄(rini )), i = 1, 2, . . . , t

(3)

where ϕ is an alternative function such as the maximum or minimum function, for calculating li based
on which we determine the weight of each category:

wi =
i

∏
k=1

ll−1, i = 1, 2, . . . , t (4)

Using the complex Pythagorean fuzzy weighted combination (CPFWC) operator, the overall
importance of the alternative can be calculated as:

I(ri) = CPFWC(I1, I2, . . . , Im) = ∨t
i=1(∨

ni
j=1(wi ∧ I(r)ij )) (5)

And finally to select an optimal alternative, determine the score functions s(I(ri)) = (µ2
C − ν2

C ) +
1

4π2 (α
2
C − β2

C )(i = 1, 2, . . . , m), and rank all the alternatives Ai(i = 1, 2, . . . , m) in accordance with
s(I(ri))(i = 1, 2, . . . m).

The approach involves the following steps:

Step 1. For a MADM problem, consider a discrete set of alternatives A = {A1, A2, . . . , Am}, a set of
uncertain attributes Z = {r1, r2, . . . , rn} and the construction of a CPFG the vertices of which
indicate the attributes considered and edges indicate complex Pythagorean fuzzy relations of
attributes.

Step 2. We determine the degrees of all attributes in a CPFG and normalize them on the basis of
Equation (2).

Step 3. Among the attributes, we nominate the prioritization relationships. Then the collection of
attributes is partitioned into t distinct categories C1, C2, . . . , Ct such that Ci = {ri1, ri2, . . . , rini},
where rij (j = 1, 2, ..., ni) are the attributes in the category Ci.

Step 4. On the basis of Equation (3), we compute the values of li for each priority category Ci.
Step 5. On the basis of Equation (4), we cumpute the weight wi of each category according to

li, i = 1, 2, . . . , t.
Step 6. On the basis of Equation (1), we determine the importance of each attribute ri.
Step 7. By using the CPFWC operator (Equation (5)), we determine the overall importance of the

alternatives and select the optimal alternative(s) in accordance with s(I(ri))(i = 1, 2, . . . m).

4.2. Illustrative Example

In this subsection, a numerical example is utilized to illustrate the validity of the developed
MADM approach.

Midwest American Manufacturing Corp. (MAMC)’s information management steering committee
wants to prioritize for development and implementation a set of nine information technology
improvement projects (alternatives) Ai(i = 1, 2, . . . , 9):

A1 : Quality Management Information;
A2 : Customer Order Tracking;
A3 : Fleet Management;
A4 : Electronic Mail;
A5 : Employee Skills Tracking;
A6 : Inventory Control;
A7 : Design Change Management;
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A8 : Materials Purchasing Management;
A9 : Budget Analysis.

which have been given by area managers. The committee is distressed that the projects (alternatives)
are prioritized from maximum to minimum potential input to the firm’s strategic goal of achieving
ambitious advantage in the industry. To determine the possible input of each project, a set
of seven factors (attributes) ri(i = 1, 2, . . . , 7) are considered: Under the complex Pythagorean
fuzzy circumstances, an expert is invited to evaluate these alternatives with complex Pythagorean
fuzzy elements. Therefore, the complex Pythagorean fuzzy decision matrix is given in Table 1.
The hierarchical structure of the given decision making problem is depicted in Figure 12.

Selection of the best

Smartphone accessories supplier

Goal

Fleet Electronic
Skills Tracking

Materials Purchasing
Management

Customer
Order Tracking Control

Design Change
Management

Quality Management
Information

Budget
Analysis

A9

Management Mail

Employee Inventory
A3 A4 A5

r1 r2 r6r4r3 r5 r7

A8A2 A6 A7A1

Figure 12: The optimal project selection hierarchical structure.
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Assume that a graph G = (C, D), with seven factors (attributes) C = {r1, r2, r3, r4, r5, r6, r7} and
a set of their relations (edges) D = {r1r2, r1r4, r7r6, r7r5, r7r4, r7r3, r7r2, r7r1}. Let G = (C , D) be a CPFG
of a graph G, as in Figure 13.
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Table 1. The evaluation information on the projects in a complex Pythagorean fuzzy environment.

r1 r2 r3 r4

A1 (0.3ei2π(0.2), 0.4ei2π(0.6)) (0.5ei2π(0.3), 0.4ei2π(0.8))
(

0.7ei2π(0.5), 0.2ei2π(0.4)
)

(0.9ei2π(0.4), 0.2ei2π(0.3))

A2 (0.6ei2π(0.3), 0.5ei2π(0.8)) (0.8ei2π(0.4), 0.3ei2π(0.5)) (0.7ei2π(0.3), 0.2ei2π(0.6)) (0.5ei2π(0.2), 0.3ei2π(0.9))

A3 (0.6ei2π(0.4), 0.7ei2π(0.5)) (0.7ei2π(0.2), 0.3ei2π(0.6)) (0.6ei2π(0.3), 0.4ei2π(0.5)) (0.7ei2π(0.5), 0.3ei2π(0.6))

A4 (0.5ei2π(0.4), 0.4ei2π(0.7)) (0.8ei2π(0.5), 0.3ei2π(0.5)) (0.6ei2π(0.6), 0.2ei2π(0.5)) (0.9ei2π(0.2), 0.3ei2π(0.4))

A5 (0.7ei2π(0.1), 0.7ei2π(0.9)) (0.5ei2π(0.3), 0.8ei2π(0.8)) (0.7ei2π(0.6), 0.6ei2π(0.5)) (0.7ei2π(0.4), 0.4ei2π(0.5))

A6 (0.5ei2π(0.6), 0.7ei2π(0.5)) (0.2ei2π(0.9), 0.9ei2π(0.2)) (0.6ei2π(0.5), 0.8ei2π(0.7)) (0.8ei2π(0.7), 0.3ei2π(0.6))

A7 (0.8ei2π(0.8), 0.6ei2π(0.6)) (0.7ei2π(0.4), 0.5ei2π(0.8)) (0.6ei2π(0.4), 0.4ei2π(0.8)) (0.5ei2π(0.4), 0.8ei2π(0.7))

A8 (0.4ei2π(0.3), 0.7ei2π(0.8)) (0.1ei2π(0.7), 0.8ei2π(0.5)) (0.8ei2π(0.3), 0.4ei2π(0.9)) (0.6ei2π(0.7), 0.5ei2π(0.5))

A9 (0.9ei2π(0.2), 0.3ei2π(0.9)) (0.8ei2π(0.3), 0.1ei2π(0.9)) (0.2ei2π(0.7), 0.9ei2π(0.5)) (0.5ei2π(0.4), 0.7ei2π(0.8))

r5 r6 r7

A1 (0.6ei2π(0.5), 0.3ei2π(0.8)) (0.7ei2π(0.2), 0.3ei2π(0.4)) (0.8ei2π(0.4), 0.1ei2π(0.3))

A2 (0.2ei2π(0.3), 0.9ei2π(0.8)) (0.7ei2π(0.3), 0.4ei2π(0.8)) (0.5ei2π(0.4), 0.6ei2π(0.7))

A3 (0.7ei2π(0.5), 0.5ei2π(0.6)) (0.6ei2π(0.7), 0.2ei5π(0.5)) (0.4ei2π(0.2), 0.9ei2π(0.9))

A4 (0.3ei2π(0.7), 0.8ei2π(0.6)) (0.7ei2π(0.4), 0.1ei2π(0.9)) (0.6ei2π(0.4), 0.7ei2π(0.5))

A5 (0.6ei2π(0.3), 0.6ei2π(0.4)) (0.3ei2π(0.5), 0.9ei2π(0.8)) (0.7ei2π(0.9), 0.4ei2π(0.4))

A6 (0.6ei2π(0.5), 0.3ei2π(0.8)) (0.7ei2π(0.9), 0.4ei2π(0.4)) (0.8ei2π(0.7), 0.1ei2π(0.4))

A7 (0.3ei2π(0.1), 0.8ei2π(0.8)) (0.8ei2π(0.3), 0.4ei2π(0.8)) (0.5ei2π(0.3), 0.6ei2π(0.8))

A8 (0.2ei2π(0.8), 0.5ei2π(0.6)) (0.6ei2π(0.2), 0.5ei2π(0.7)) (0.9ei2π(0.7), 0.3ei2π(0.6))

A9 (0.7ei2π(0.9), 0.5ei2π(0.4)) (0.7ei2π(0.4), 0.6ei2π(0.5)) (0.5ei2π(0.7), 0.8ei2π(0.5))

Step 1. In graph of Figure 13, the degree of each attribute is determined as:

d(r1) = (0.7ei2π(0.4), 1.5ei2π(2.2)), d(r2) = (0.5ei2π(0.3), 1.1ei2π(1.7)),

d(r3) = (0.5ei2π(0.3), 0.4ei2π(0.7)), d(r4) = (0.9ei2π(0.4), 0.8ei2π(1.3)),

d(r5) = (0.3ei2π(0.1), 0.4ei2π(0.9)), d(r6) = (0.4ei2π(0.2), 0.6ei2π(0.9)),

d(r7) = (2.3ei2π(1.1), 2.8ei2π(4.7)).

Utilizing Equation (2), normalize the above degrees as:

d̄(r1) = (0.1250ei2π(0.1429), 0.1974ei2π(0.1774)), d̄(r2) = (0.0893ei2π(0.1071), 0.1447ei2π(0.1371)),

d̄(r3) = (0.0893ei2π(0.1071), 0.0526ei2π(0.0565)), d̄(r4) = (0.1607ei2π(0.1429), 0.1053ei2π(0.1048)),

d̄(r5) = (0.0536ei2π(0.0357), 0.0526ei2π(0.0726)), d̄(r6) = (0.0714ei2π(0.0714), 0.0789ei2π(0.0726)),

d̄(r7) = (0.4107ei2π(0.3929), 0.3684ei2π(0.3790)).

Step 2. Suppose that there exist prioritization complex Pythagorean fuzzy relations C1 =

{r1, r4}, C2 = {r3}, C3 = {r2, r7}, C4 = {r5, r6}, Ci > Cj if i < j (i, j = 1, 2, 3, 4). So,
n1 = 2, n2 = 1, n3 = 2, n4 = 2.
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Step 3. If ϕ is a minimum function, then utilizing Equation (3), we obtain

l0 =
(

1ei2π(1), 0ei2π(0)
)

l1 =
(

0.1250ei2π(0.1429), 0.1974ei2π(0.1774)
)

l2 =
(

0.0893ei2π(0.1071), 0.0526ei2π(0.0565)
)

l3 =
(

0.0893ei2π(0.1071), 0.3684ei2π(0.3790)
)

l4 =
(

0.0536ei2π(0.0357), 0.0789ei2π(0.0726)
)

Step 4. On the basis of Equation (4), we calculate the weight of each category as:

w1 = l0 =
(

1ei2π(1), 0ei2π(0)
)

w2 = l0 ⊗ l1 =
(

0.1250ei2π(0.1429), 0.1974ei2π(0.1774)
)

w3 = l0 ⊗ l1 ⊗ l2 =
(

0.0112ei2π(0.0153), 0.2040ei2π(0.1859)
)

w4 = l0 ⊗ l1 ⊗ l2 ⊗ l3 =
(

0.0010ei2π(0.0016), 0.4144ei2π(0.4162)
)

Step 5. If there is an alternative A1, in which just attribute ‘r7’ is most important, then x7 = 1 and
xi = 0 (i = 1, 2, . . . , 6). Also take ξ(rirj) = 0.5 for i, j = 1, 2, . . . , 7 and i 6= j, then on the basis
of Equation (1), the importance of all attributes are:

I(A)
1 = (µC (r1)eiαC (r1), νC (r1)eiβC (r1))x1 + x̄N1

=
(

µD (r1r7)eiαD (r1r7), νD (r1r7)eiβD (r1r7)
)

ξ(r1r7)x7

=
(

0.1421ei2π(0.0708), 0.7071ei2π(0.8367)
)

,

I(A)
2 = (µC (r2)eiαC (r2), νC (r2)eiβC (r2))x2 + x̄N2

=
(

µD (r2r7)eiαD (r2r7), νD (r2r7)eiβD (r2r7)
)

ξ(r2r7)x7

=
(

0.2146ei2π(0.1421), 0.7746ei2π(0.8944)
)

,

I(A)
3 = (µC (r3)eiαC (r3), νC (r3)eiβC (r3))x3 + x̄N3

=
(

µD (r3r7)eiαD (r3r7), νD (r3r7)eiβD (r3r7)
)

ξ(r3r7)x7

=
(

0.3660ei2π(0.2146), 0.6325ei2π(0.8367)
)

,

I(A)
4 = (µC (r4)eiαC (r4), νC (r4)eiβC (r4))x4 + x̄N4

=
(

µD (r4r7)eiαD (r4r7), νD (r4r7)eiβD (r4r7)
)

ξ(r4r7)x7

=
(

0.4472ei2π(0.1421)0.5477ei2π(0.8367)
)

,

I(A)
5 = (µC (r5)eiαC (r5), νC (r5)eiβC (r5))x5 + x̄N5

=
(

µD (r5r7)eiαD (r5r7), νD (r5r7)eiβD (r5r7)
)

ξ(r5r7)x7

=
(

0.2146ei2π(0.0708), 0.6325ei2π(0.9487)
)

,
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I(A)
6 = (µC (r6)eiαC (r6), νC (r6)eiβC (r6))x6 + x̄N6

=
(

µD (r6r7)eiαD (r6r7), νD (r6r7)eiβD (r6r7)
)

ξ(r6r7)x7

=
(

0.2889ei2π(0.1421)0.7746ei2π(0.9487)
)

,

I(A)
7 = (µC (r7)eiαC (r7), νC (r7)eiβC (r7))x7 + x̄N7

=
(

0.8ei2π(0.4), 0.1ei2π(0.3)
)

.

Step 6. On the basis of Equation (5), we determine the overall importance of the alternative A1 as:

I(A1) = ∨7
i=1(∨ni

j=1(wi ∧ I(A)
ij )) =

(
0.4472ei2π(0.1429), 0.2040ei2π(0.3000)

)
s(I(A1)) = 0.1566.

Furthermore, we determine the score functions of overall importance of the other alternatives
Ai(i = 2, 3, . . . , 9):

s(I(A2)) = 0.0397, s(I(A3)) = 0.0412, s(I(A4)) = 0.0433, s(I(A5)) = 0.0341, s(I(A6)) = 0.0307,

s(I(A7)) = 0.0300, s(I(A8)) = 0.0302, s(I(A9)) = 0.0309.

We rank the alternatives according to the score function of the overall importance of the
alternatives Ai(i = 1, 2, . . . , 9), as:

A1 � A4 � A3 � A2 � A5 � A9 � A6 � A8 � A7

4.3. Comparative Analysis

Ashraf et al. [30] proposed the graph based decision making model, to accommodate single-valued
neutrosophic values. We have utilized this approach to the above illustrative example and compared
the decision results with the proposed approach of this paper for CPFGs. The results corresponding to
these approaches are summarized in Table 2.

Table 2. Comparative analysis.

Methods Score of Alternatives Ranking of Alternatives

Ashraf et al. [30] 0.7415 0.5810 0.5894 0.6115 0.5212 0.4390 0.2690 0.2781 0.4799 A1 � A4 � A3 � A2 � A5 � A9 � A6 � A8 � A7
Our developed method 0.1566 0.0397 0.0412 0.0433 0.0341 0.0307 0.0300 0.0302 0.0309 A1 � A4 � A3 � A2 � A9 � A5 � A6 � A7 � A8

From this comparative study, the results obtained by the existing approach coincide with the
proposed one which validates the proposed approach. Hence, the proposed approach can be suitably
utilized to solve the MCDM problems. The novelty of this decision making approach is that we have
developed an MADM model with the interrelated attributes and described numerous relationships
among the attributes by utilizing the corresponding graphical structures with complex Pythagorean
fuzzy information.

5. Conclusions

CPFS as a generalized formation represents some general complex scenario. Our research paper
enriches the area of fuzzy graph theory in several directions. Firstly, under the Pythagorean fuzzy
circumstances, a novel concept of CPFGs has been proposed by combining PFGs and CFGs. CPFG,
an extended structure of a fuzzy graph is more practical and flexible as compared to the classical,
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fuzzy, complex fuzzy and Pythagorean fuzzy models as it deals the vagueness with the membership
and non-membership degrees whose ranges are generalized from real to the complex subset with a
unit disc. Secondly, the novel concepts of regular and edge regular graphs have been defined with
appropriate illustration and some of their crucial properties are examined within complex Pythagorean
fuzzy contexts. Thirdly, some aggregation techniques have been investigated for CPFNs and, further,
the complex Pythagorean fuzzy graphic structure has been utilized to depict the interrelated attributes
in MADM and developed the multi-attribute decision making approach based on CPFG. Meanwhile,
we interpret the relationships among the attributes and then derive a solution utilizing the MADM
model based on the CPFGs. Taking into account the interval-valued vagueness, we shall extend the
proposed research work to the complex interval-valued Pythagorean fuzzy setting and provide its
applications further.
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