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Abstract: This paper presents a 2D hybrid steady-state magnetic field model, capable of accurately
modeling the electromagnetic behavior in a linear induction motor, including primary slotting, finite
yoke length, and longitudinal end-effects by primary motion. This model integrates a complex
harmonic modeling technique with a discretized magnetic equivalent circuit model. The Fourier
model is applied to regions with homogeneous material properties, e.g., air regions and the track of
the motor, while the magnetic equivalent circuit (MEC) approach is used for the regions containing
non-homogeneous material properties, e.g., the primary of the linear induction motor (LIM). By only
meshing the domains containing highly-permeable materials, the computational effort is reduced in
comparison with the finite element method (FEM). The model is applied to a double-layer single-sided
LIM, and the resulting thrust and normal forces show an excellent agreement with respect to finite
element analysis and measurement data.

Keywords: linear induction motors; complex harmonic modeling; hybrid analytical modeling;
2D steady-state models

1. Introduction

Linear induction motors (LIM) are widely used in long-stroke linear motion systems because
of their inexpensive and robust construction. To obtain an optimal design, comprehensive methods
able to predict the magnetic field distribution inside the electromagnetic structures play a crucial role.
To allow extensive exploration of the design space, numerical methods such as the finite element
method (FEM) are not preferable, as these models are computationally expensive.

In the literature, semi-analytical or hybrid methods are discussed, intending to reduce the
needed computational efforts, while ensuring comparable accuracy to the numerical methods.
However, all modeling techniques require certain assumptions, which limit their flexibility.
In [1], an equivalent-circuit model of the LIM was proposed, determining the motor output thrust and
vertical forces, while accounting for the longitudinal end-effects as a result of primary movement with
respect to the secondary. In [2], an equivalent-circuit model for a high-speed industrial transportation
LIM was presented, where the dynamic longitudinal and the transverse end-effects were accounted for
by correction factors. In [3], an optimized end-effect equivalent-circuit model for LIM was presented,
allowing modeling of partially-filled end-slots. However, equivalent circuit models are not suitable for
design purposes, as their components need to be determined from measurements or magnetic field
modeling [4].

In [5–7], magnetic field models for rotating and linear induction motors, using a two-dimensional
field description by Fourier series, were presented. Although these models allow obtaining the
magnetic field distribution inside the air gap, they do not include the magnetic field distribution
inside the primary yoke or slots. In [5], the magnetic field distribution into a solid rotor was predicted,
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while considering the stator slots and tooth-tips and assuming an infinite permeability inside the stator
yoke. In [6], the current carrying primary coils were replaced with infinitely-thin current sheets, and
the primary slotting was accounted for by the use of Carter’s coefficient. In [7], correction factors for
the longitudinal end-effect and also for the primary core losses were presented. A semi-analytical
model for LIM, based on harmonic modeling, was presented in [8]. The field inside the primary
slotting was calculated, assuming an infinitely-permeable core, but the longitudinal end-effects of the
motor and the magnetic field distribution in the primary yoke were neglected.

In [9,10], the primary core of a synchronous permanent magnet motor was successfully included
in the field analysis. In [11], these models were extended to include saturation of the highly-permeable
materials. Hybrid models combine the benefits of the magnetic equivalent circuit (MEC) method [12]
and harmonic modeling [13]. However, these models have only been derived for magnetostatic fields,
thus neglecting eddy-current effects.

As an alternative to the aforementioned magnetostatic hybrid techniques, this study presents
a steady-state hybrid semi-analytical model, which combines an MEC-based description of the domains
containing highly-permeable materials, e.g., the primary of the LIM, with complex Fourier modeling
applied to the conductive medium of the secondary plate and surrounding air regions. This model
allows modeling of the full primary core of the LIM, including longitudinal end-effects and the
electromagnetic field in the primary yoke and slotting, while also accounting for the primary velocity.
Including the velocity terms to the field solution allows time-stepping to be avoided, thus saving time,
when compared to FEA.

The electromagnetic problem that is investigated in this paper is a linear induction motor (LIM)
topology with a moving primary and an infinitely-long flat secondary (Figure 1). The primary contains
a rewound laminated core from a Tecnotion TL-15 linear synchronous permanent magnet motor with
double-layer three-phase distributed winding [14]. This topology is used to validate the model with
static measurements.
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B+A+ B−A− C+C− B+A+ B−A− C+C−

B+A+ B−A− C+C−

y

x

Slotted primary

Rear end Front end

Flat secondary

Figure 1. Analyzed linear induction motor (LIM) topology.

In this paper, a generalized description of the modeling methodology is presented in Section 2.
Afterwards, the introduced model is applied to a double-layer single-sided LIM and validated with
respect to a 2D steady-state FEA simulation and measurement data for the same topology, and the
results are discussed in Section 3. Finally, the conclusions are presented in Section 4.

2. Modeling Methodology

To apply the hybrid modeling technique to an electromagnetic problem like the LIM, the topology
was represented in the 2D Cartesian coordinate system and is divided into orthogonal regions,
as depicted in Figure 2. The complex harmonic modeling was applied to Regions I, III, IV, V, and VI,
as these regions contained only homogeneous, isotropic, and linear materials. As the primary of the
LIM (Region II) contained different materials along the x-direction and y-direction, it was modeled
using the mesh-based MEC formulation. Using the complex harmonic formulation required periodicity
in the longitudinal direction. As the secondary of the LIM was considered infinitely long, and the
finite length of the primary was included in the analysis to account for the longitudinal end-effects,
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while the periodicity in x-direction was ensured by adding air at the front and rear end of the primary
yoke, defining the periodical length τper for the whole problem.

Region I: Air

Region III: Airgap

Region IV: Conductive secondary plate

Region V: Secondary back-iron plate

Region VI: Air

Region II: Primary

Periodic length τper

Dirichlet boundary Continuous boundary Periodical boundary

y = −∞

y

x

y =∞

B+A+ B−A− C+C−

B+A+ B−A− C+C− B+A+ B−A− C+C−

B+A+ B−A− C+C−
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wtws

hbi

hAl
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τ1

Figure 2. LIM topology: division into regions, dimensions, and considered boundary conditions.

The currents flowing into the three-phase distributed winding were as follows:

IphA(t) = Ipej2π f t, (1)

IphB(t) = Ipe−j 2π
3 ej2π f t, (2)

IphC(t) = Ipej 2π
3 ej2π f t, (3)

where f is the synchronous frequency, Ip is the peak current, and t is the instance of time.

2.1. Complex Harmonic Modeling

The complex harmonic modeling technique is based on the analytical solution of the magnetic
vector potential Az, which was explained in detail in [15]. To derive the steady-state solution for the
magnetic vector potential, time variation has to be included to account for the induced currents in the
conductive regions. Their relation to the vector potential is expressed by the diffusion equation:

∂2 Az

∂x2 +
∂2 Az

∂y2 = µ0µrσ
∂Az

∂t
, (4)

where σ is the conductivity of the considered region, µ0 is the relative permeability of the free space,
and µr is the relative permeability of the material in that region. The general form of the solution to
the magnetic vector potential is obtained in complex form:

Az(x, y, t) =
∞

∑
n=−∞

(ane
√

λ2
ny + bne−

√
λ2

ny)ejωnxej(2π f t+ωnvt), (5)

where:

λ2
n = ω2

n + jµ0µrσ(2π f + ωnv), (6)

ωn =
2nπ

τper
. (7)

In (5), ωn is the spatial frequency for the nth space harmonic, v is the considered steady-state
velocity of the primary with respect to the secondary, and an and bn are the unknown coefficients for
each harmonic, obtained from the applied boundary conditions explained in the following section.

The resulting flux density distributions for the tangential and normal direction were obtained
as follows:
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Bx(x, y, t) =
∂Az(x, y, t)

∂y
=

∞

∑
n=−∞

[
λn(aneλny − bne−λny)

]
ejωnxej(2π f t+ωnvt), (8)

By(x, y, t) = −∂Az(x, y, t)
∂x

= −j
∞

∑
n=−∞

[
ωn(aneλny + bne−λny)

]
ejωnxej(2π f t+ωnvt). (9)

2.2. MEC

The primary of the LIM contained non-homogeneous material properties along the x- and
y-direction, and for that reason, it was modeled using the MEC formulation. The region was discretized
into L layers along the y-direction, each containing K rectangular elements along the x-direction,
forming a mesh of M = L× K elements, as illustrated in Figure 3.

1 2 K

M

SteelPeriodic boundary
Continuous boundary

Air
Phase A Phase B Phase C

Periodic length τper

y

x

Figure 3. Discretization of the magnetic equivalent circuit (MEC) region.

Each MEC-element encompassed one potential node, ψ(l, k), as is shown in Figure 4, and time
dependency was accounted for by adapting the following expression:

ψ(l, k, t) = ψ(l, k)ej2π f t, (10)

where ψ(l, k) is the complex value for each potential node, which is obtained after solving the set of
linear equations, formed from the applied boundary conditions.
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Figure 4. Single MEC element.
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The reluctances for each MEC-element were defined by its dimensions and material properties:

Rxp(l, k) = Rxn(l, k) =
lx(l, k)

2µ0µr(l, k)Szy(l, k)
, (11)

Ryp(l, k) = Ryn(l, k) =
ly(l, k)

2µ0µr(l, k)Sxz(l, k)
, (12)

where lx(l, k) and ly(l, k) are the lengths of each MEC-element in the x- and y-direction (Figure 4),
xl,k

l and xl,k
r are the left and right coordinates of the MEC element, while Szx(l, k) and Syz(l, k) are the

cross-sectional areas parallel to the zx- and yz-planes, respectively. The values, assigned to µr, depend
on each element’s location in the xy-plane, and as a consequence, the material each element encloses.

The magnetic equivalence of Kirchoff’s current law was applied to each MEC-element.
All magnetic flux entering one potential node (ψ(l, k, t)) should be equal to the magnetic flux leaving
this node:

ϕxn(l, k, t) + ϕyn(l, k, t) = ϕxp(l, k, t) + ϕyp(l, k, t), (13)

where:

ϕxp(l, k, t) =
ψ(l, kp, t)− ψ(l, k, t)
Rxp(l, k) +Rxn(l, kp)

+
Fxp(l, k, t) +Fxn(l, kp, t)
Rxp(l, k) +Rxn(l, kp)

, (14)

ϕxn(l, k, t) =
ψ(l, k, t)− ψ(l, kn, t)
Rxn(l, k) +Rxp(l, kn)

+
Fxn(l, k, t) +Fxp(l, kn, t)
Rxn(l, k) +Rxp(l, kn)

, (15)

ϕyp(l, k, t) =
ψ(lp, k, t)− ψ(l, k, t)
Ryp(l, k) +Ryn(lp, k)

, (16)

ϕyn(l, k, t) =
ψ(l, k, t)− ψ(ln, k, t)
Ryn(l, k) +Ryp(ln, k)

, (17)

where kp, kn, lp, and ln represent the indices of neighboring potential nodes.
To allow coupling with the complex harmonic regions, periodicity in the x-direction is fulfilled by

linking the last element of each layer with the first element from the same layer.
The MMFsource terms, present in the primary of the LIM, included only coil excitations

represented by MMF-sources:

Fx(l, k, t) = ζ
Nt Iph(t)

2Kc
, (18)

where Iph is the complex phase current according to (1)–(3), Nt is the number of turns for a single coil,
Kc is the number of MEC elements in the x-direction for a single coil, and ζ represents the scaling factor
to account for the distribution of the MMF sources along the y-direction. In Figure 5, the magnitude
variation of the MMF-sources in the top and bottom layer coils is depicted. The magnitude was
maximal in the yoke elements, as the formed magnetic path through the air gap enclosed the whole
area of the coil, while in the slot elements, the magnitude of the MMF-sources was proportional to
the enclosed coil area. In case coils were present in both layers, superposition of both MMF-sources
was applied.
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Figure 5. MMF-source distribution inside a single slot for (a) the top winding layer and (b) the bottom
winding layer.

2.3. Boundary Conditions

To obtain the unknown coefficients for both harmonic and MEC regions, a set of linear equations,
accounting the boundary conditions between every two adjacent regions, was solved. The presence
of air above the primary and beneath the secondary of the investigated topology allowed the top
and bottom boundaries of LIM to be extended to infinity, and thus, the Dirichlet boundary condition,
forcing all field components to vanish, applied. To ensure continuity between every two neighboring
Fourier regions i and j (e.g., Regions III and IV), the tangential components of the magnetic field
strength and the normal components of the flux density, obtained by (8) and (9) for both regions, were
equated. Analogically, the continuous boundary condition applied also on the border between each
Fourier and MEC region (e.g., Regions I and II). While the obtained expressions for the magnetic fields
in the harmonic regions were defined for the full periodical section of the analyzed problem, each
expression for the MEC region was associated with a single mesh-element. A detailed explanation
of the boundary conditions for both normal and tangential field components was given in [15],
considering trigonometric harmonic solutions.

The main differences introduced by the complex harmonic solution, presented in this paper, were
in the expressions of the coupled normal and tangential field components between each adjacent
Fourier and MEC region.

Adapting (13), the coupled flux in the normal direction at the bottom and top of the MEC region
took the form of:

ϕxn(1, k, t) + ϕHM
yn (1, k, t) = ϕxp(1, k, t) + ϕyp(1, k, t), (19)

ϕxn(L, k, t) + ϕyn(L, k, t) = ϕxp(L, k, t) + ϕHM
yp (L, k, t), (20)

where for the bottom layer of the MEC:

ϕHM
yn (1, k, t) = Ls

xr(1,k)−vt∫
xl(1,k)−vt

BHM
y (x, yBC)dx,

= Ls

∞

∑
n=−∞

(aneλnyBC + bne−λnyBC )(ejωnxl(1,k) − ejωnxr(1,k))ej2π f t, (21)
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for 1 ≤ k ≤ K, where yBC is the y-coordinate between the regions, to which the boundary condition
applies, and Ls is the depth of the domain. For the top layer of MEC, ϕHM

yp (L, k, t) was derived
analogically.

Substituting the derived equation for Bx from the adjacent Fourier region (8), the boundary
condition for the tangential field strength used the the constitute relation B = µ0µr H and took the
form of:

1
µ0µHM

r
BHM

x (x, yBC, t) =
K

∑
k=1

1
µ0µMEC

r (l, k)
BMEC

x (x, yBC, t), (22)

where µHM
r represents the homogeneous relative permeability within the Fourier region,

while µMEC
r (l, k) is the relative permeability per element of the MEC-region. The magnetic flux density,

calculated for the top or bottom layer of the MEC-region, was considered to be constant within a single
element [9]. To allow coupling with the neighboring Fourier regions, the right-hand side of (22) was
modified as:

BMEC
x (x, yBC, t) =

∞

∑
n=−∞

2
τper

K

∑
k=1

xr(1,k)−vt∫
xl(1,k)−vt

BMEC
x (l, k, t)e−jωnxdx, (23)

where:

BMEC
x (l, k, t) =

K

∑
k=1

ϕxn(l, k, t) + ϕxp(l, k, t)
2Szy(l, k)

(24)

is the average tangential flux density per element and l = L or l = 1 for the top or bottom
layer, respectively.

2.4. Force Calculation

The output thrust and normal forces acting on the primary were derived from the Maxwell stress
tensor evaluated inside the air gap [16]. Taking into account the derived equations for Bx and By for
Region III, the analytical force equations took the form of:

Fx = − Ls

µ0

τper∫
0

[
Bxn(x, y, t)B∗yn(x, y, t)

]
dx

= −
jLsτper

2µ0

∞

∑
n=−∞

[
λnωn(aneλny − bne−λny)(a∗neλ∗ny + b∗ne−λ∗ny)

] (25)

and:

Fy = − Ls

2µ0

τper∫
0

[
Bxn(x, y, t)B∗xn(x, y, t)− Byn(x, y, t)B∗yn(x, y, t)

]
dx

= −
Lsτper

4µ0

∞

∑
n=−∞

[
λnλ∗n(aneλny − bne−λny)(a∗neλ∗ny − b∗ne−λ∗ny)

−ω2
n(aneλny + bne−λny)(a∗neλ∗ny + b∗ne−λ∗ny)

]
,

(26)

where * is the complex conjugate.



Math. Comput. Appl. 2019, 24, 74 8 of 13

2.5. Joule Losses’ Calculation

The conduction losses inside the secondary can be calculated, using the Poynting vector, applied in
the air gap (Region III) [17]:

Pjoule,sec = −
Ls

2
<

τper∫
0

Ez(x, y, t)H∗x (x, y, t) dx

= −
Lsτper

j2µ0

∞

∑
n=−∞

[
(λ∗nω + λ∗nωnv)(aneλny + bne−λny)(a∗neλ∗ny + b∗ne−λ∗ny)

]
,

(27)

where the following expressions were used:

Ez(x, y, t) = −∂Az(x, y, t)
∂t

, (28)

H∗x (x, y, t) =
1

µ0
B∗x(x, y, t). (29)

3. Results and Model Validation

To validate the presented 2D complex hybrid steady-state model, 2D finite element analysis (FEA)
was performed on the same topology. Table 1 contains the dimensions and design parameters used
for both simulations. For the complex hybrid model, N = 100 harmonics and K = 576 elements
in L = 53 layers were used, in order to generate a dense enough mesh, able to model the magnetic
field in the primary of the motor and in the surrounding air accurately. The periodic length τper for
both the complex hybrid model and FEA was selected to be even times the fundamental pitch of one
periodical section of the primary τ1 (in this case, τper = 12× τ1). The conductivity of the aluminum
plate was reduced accordingly, to take into consideration the transverse end-effects of the investigated
motor [18].

Considering velocity v = 0 m/s, peak current Ip = 10 A, and synchronous frequency f = 100 Hz,
the resulting magnetic flux density in the normal (Figure 6) and in longitudinal direction (Figure 7)
was plotted against the steady-state FEA solution, showing excellent correspondence. The output
thrust force, normal force, and Joule losses were calculated using (25)–(27), respectively, and predicted
within 1.5%, 1.7%, and 3.1% when compared to FEA.

Table 1. Parameters of the double-layer single-sided LIM.

Parameter Symbol Value Unit

Number of phases Np 3 -
Number of poles 2p 6 -
Number of slots z1 16 -
Number of turns per coil Nt 57 -

Stack width Ls 50 mm
Fundamental pitch of the primary τ1 12 mm
Primary tooth width wt 6 mm
Primary slot width ws 10 mm
Primary slot height hs 20 mm
Primary yoke height hy 6.5 mm
Air gap length hg 2.7 mm
Thickness of the aluminum plate hAl 2 mm
Thickness of the back-iron plate hbi 8 mm

Conductivity of aluminum σAl 17× 106 Sm−1

Conductivity of iron σFe 4.5× 106 Sm−1

Relative permeability iron µr 1000 mm
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HAM
FEM

Figure 6. Magnetic flux density in normal direction in the middle of the air gap (Ip = 10 A, v = 0 m/s,
f = 100 Hz).

HAM
FEM

Figure 7. Magnetic flux density in longitudinal direction in the middle of the air gap (Ip = 10 A,
v = 0 m/s, f = 100 Hz).

In addition, the thrust and normal forces, obtained at different synchronous frequencies from
both the presented model and FEA, were validated by static measurements. As shown in Figure 8,
the secondary of the LIM was mounted on a moving translator, while the mechanical construction on
top of it held the primary and a six-axis load cell [14]. The thrust and normal force were measured
with a fixed secondary and primary (v = 0 m/s). For Ip = 10 A, the results are shown in Figure 9.
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Figure 8. Measurement setup [14].
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Figure 9. Normal and thrust force for different frequency in comparison with steady-state measurement
data (Ip = 10 A, v = 0 m/s).

Having the resulting field represented by complex Fourier series allowed obtaining the
contribution of each harmonic to the propulsion force. Including the end-effects of the primary
provided information on the full harmonic spectrum contribution, as shown on Figure 10. As the
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velocity of the motor was accounted for in this steady-state hybrid model, two simulations at the same
fundamental slip frequency:

fslip = f − v
2τ1

(30)

were performed:

• Case 1: velocity v = 0 m/s at frequency f = 50 Hz,
• Case 2: velocity v = 10 m/s at frequency f = 154.17 Hz.

In Case 1, the eddy-currents generated in the static secondary were interacting with the traveling
wave, produced by the three-phase primary winding, and thus, propulsion force in the positive
x-direction was acting on the primary. The fundamental motor harmonic, contributing to the propulsion
force generation, was defined by one periodical section of the primary. Due to the definition of this
electromagnetic problem, where xp = 12τ, the fundamental motor harmonic was equal to the sixth
field harmonic in the Fourier series, and analogically, the fifth motor harmonic was equal to the
thirtieth field harmonic in the Fourier series, as can be clearly seen in Figure 10. Additional thrust force
contributions from the fifth and seventh field harmonics were caused by the end-effects, and the total
thrust force in Case 1 was Fx = 20.4 N.

-2

-1

0

1

2

3

4

5

6

7

8

9

10

F
or

ce
 [N

]

-50 -40 -30 -20 -10 0 10 20 30 40 50

Harmonic number

v = 0 m/s; f = 50 Hz
v = 10 m/s; f = 154.17 Hz

Figure 10. Harmonics contributing to the propulsion force at v = 0 m/s; f = 50 Hz and v = 10 m/s;
f = 154.1667 Hz.

As the velocity was accounted for in Case 2, new conductive material, unaffected by the induced
magnetic field, was constantly seen by the front end of the primary, while there were still trailing
eddy-currents in the conductive plate, behind the rear end of the motor. This effect caused the fifth
motor harmonic (thirtieth field harmonic) to oppose the fundamental motor harmonic (sixth field
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harmonic), which was additionally reduced by the longitudinal end-effects, and thus, the generated
thrust force was decreased to Fx = 15.8 N, as seen in Figure 10.

4. Conclusions

In this paper, a 2D hybrid steady-state magnetic field model that included the full primary of
a double-layer single-sided linear induction motor, thus accounting for the longitudinal end-effects,
was presented. Compared to finite elements analysis, the model showed excellent correspondence of
the magnetic field distribution inside the LIM. The velocity of the primary, with respect to the secondary,
and the resulting longitudinal end-effects were accounted for in the solution of the magnetic field.
The obtained thrust and normal forces for different fundamental slip frequencies had a discrepancy
within 1.7% compared to FEA and were verified by static measurements. Future research will focus on
derivation of secondary parameters and adding saturation effects to the model, which will allow the
implementation for different motor topologies.
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