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Abstract: We study a variational problem for hypersurfaces in the Euclidean space with an anisotropic
surface energy. An anisotropic surface energy is the integral of an energy density that depends on
the surface normal over the considered hypersurface, which was introduced to model the surface
tension of a small crystal. The purpose of this paper is two-fold. First, we give uniqueness and
nonuniqueness results for closed equilibria under weaker assumptions on the regularity of both
considered hypersurfaces and the anisotropic surface energy density than previous works and apply
the results to the anisotropic mean curvature flow. This part is an announcement of two forthcoming
papers by the author. Second, we give a new uniqueness result for stable anisotropic capillary surfaces
in a wedge in the three-dimensional Euclidean space.

Keywords: anisotropic mean curvature; anisotropic surface energy; Wulff shape; anisotropic mean
curvature flow; crystalline variational problem; capillary problem

1. Introduction

We study equilibrium hypersurfaces in the (n + 1)-dimensional Euclidean space Rn+1 for
anisotropic surface energy, which serve as a mathematical model of small crystals and small liquid
crystals with anisotropy. Therefore, the objects of our study should be not only smooth hypersurfaces
but also hypersurfaces with singular points like vertices and edges. However, such equilibrium
hypersurfaces with both smooth curved parts and singular points have not yet been studied sufficiently
well. One of the purposes of this paper is to give a new concept a piecewise-C2 weak immersion
and to study variational problems in this class of hypersurfaces. Piecewise-C2 weak immersions are
hypersurfaces with the weakest regularity in order to study this type of variational problem by using
essentially classical differential geometry. The other purpose of this paper is to give a new uniqueness
result for stable anisotropic capillary surfaces in a wedge in R3, which is proved by using the method
developed to pursue the first purpose together with careful treatment of the boundary part by using
several new formulas.

Let γ : Sn → R>0 be a positive continuous function on the unit sphere Sn = {ν ∈ Rn+1 ; ‖ν‖ = 1}
in Rn+1. Let X be a closed hypersurface in Rn+1 for which the tangent hyperplane is well defined
at almost every point. X will be represented as a mapping X : M → Rn+1 from an n-dimensional
oriented connected compact C∞ manifold M into Rn+1. Let ν be the unit normal vector field along
X|M\S[X], where S[X] is the set of singular points of X. The anisotropic energy Fγ(X) of X is defined
as Fγ(X) :=

∫
M\S[X] γ(ν) dA, where dA is the n-dimensional volume form of M induced by X. Such

an energy was introduced by Gibbs (1839–1903) in order to model the shape of small crystals, and it is
used as a mathematical model of anisotropic surface energy [1,2]. It is known that, for any positive
number V > 0, among all closed hypersurfaces as above enclosing the same (n + 1)-dimensional
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volume V, there exists a unique (up to translation in Rn+1) minimizer Wγ(V) of Fγ [3]. The minimizer
Wγ(V0) for the specific value V0 := (n + 1)−1

∫
Sn γ(ν) dSn is called the Wulff shape for γ, and we will

denote it by Wγ. When γ ≡ 1, Fγ(X) is the usual n-dimensional volume of the hypersurface X and
Wγ is the unit sphere Sn.

In this paper, we study variational problems for the anisotropic energy Fγ. In general, the Wulff
shape and equilibrium hypersurfaces of such an energy for volume-preserving variations are not
smooth. In view of the origin of the energy functional mentioned above, it is natural to try to study the
problem under the lowest possible regularities of the considered hypersurfaces and the energy density
function. In order to pursue it, we define a new concept “piecewise-C2 weakly immersed hypersurface”
and study the variational problem of the energy Fγ for C2 functions γ on Sn. These assumptions on the
regularity are weaker than any previous works that studied variational problems of anisotropic surface
energies in differential geometry (cf. References [4–9]). Under such a weak regularity assumption, we
concentrate upon the problem of uniqueness for closed equilibrium hypersurfaces. In order to give
precise statements of our results, we prepare a few words.

For any given convex set W̃ having the origin of Rn+1 inside, there exists a Lipschitz continuous
function γ : Sn → R>0 such that the boundary W := ∂W̃ of W̃ coincides with the Wulff shape Wγ for
γ. However, such γ is not unique. The “smallest” γ is called the convex integrand for W (or, simply,
convex) (for another equivalent definition, see Section 2).

Each equilibrium hypersurface X ofFγ for variations that preserve the enclosed (n+ 1)-dimensional
volume (we will call such a variation a volume-preserving variation) has constant anisotropic mean
curvature. Here, the anisotropic mean curvature Λ of a piecewise-C2 hypersurface X is defined at each
regular point of X as (cf. Reference [6,10]) Λ := (1/n)(−divMDγ + nHγ), where Dγ is the gradient of
γ and H is the mean curvature of X. If γ ≡ 1, Λ = H holds.

We call a piecewise-C2 weakly immersed equilibrium hypersurface X a CAMC (constant
anisotropic mean curvature) hypersurface (see Definition 3 for details). A CAMC hypersurface
is said to be stable if the second variation of the energy Fγ for any volume-preserving variation
is nonnegative.

One of the most basic questions is as follows:

Question 1. Is any closed CAMC hypersurface the Wulff shape?

The answer to this uniqueness problem is not affirmative in general [11–13]. However, it is
expected that, if one of the following “good” conditions (I)–(III) is satisfied, the image of any closed
CAMC hypersurface X coincides with the Wulff shape (up to translation and homothety).

(I) X is an embedding; that is, X is an injective mapping.
(II) X is stable.
(III) n = 2 and the genus of M is 0; that is, M is homeomorphic to S2.

If we assume that Wγ is a smooth, strictly convex hypersurface (that is, the support function γ of Wγ is
strictly convex. See Definition 1.), any closed CAMC hypersurface X is also smooth and the above
expectation was already proved. In fact, if X satisfies one of (I)–(III), it is a homothety of the Wulff shape
(which was proved by the following papers: For (I), Reference [14] for γ ≡ 1 and Reference [5] for
general γ; for (II), Reference [15] for γ ≡ 1 and Reference [8] for general γ; and for (III), Reference [16]
for γ ≡ 1 and Reference [7] for general γ). However, the situation is not the same for more general γ

and/or Wγ. Actually, if γ is not strictly convex, even if it is convex (See Definition 1) and of class C∞,
the Wulff shape can have singular points and its principal curvatures can be unbounded (Example 3).
Also, we have the following striking nonuniqueness results.

Theorem 1 ([17]). There exists a C∞ function γ : Sn → R>0 such that there exist closed embedded CAMC
hypersurfaces in Rn+1 for γ, each of which is not (any homothety or translation of) the Wulff shape Wγ.
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Theorem 2 ([17]). There exists a C∞ function γ : S2 → R>0 such that there exist closed embedded CAMC
surfaces in R3 with genus zero for γ, each of which is not (any homothety or translation of) the Wulff shape Wγ.

Theorems 1 and 2 are proved by giving suitable examples (Section 4). The same examples give
self-similar shrinking solutions with genus 0 for anisotropic mean curvature flow, which are not (any
homotheties or translations of) the Wulff shape (Section 6). In contrast with this, the round sphere is
the only closed embedded self-similar shrinking solution of the mean curvature flow in R3 with genus
zero [18].

As for the uniqueness of stable closed CAMC hypersurfaces, we obtain the following result.

Theorem 3 ([19]). Assume that γ : Sn → R>0 is of class C2 and convex. Then, the image of any closed stable
piecewise-C2 CAMC hypersurface for γ of which the rth anisotropic mean curvature for γ (see Section 3) is
integrable for r = 1, . . . , n is (up to translation and homothety) a covering of the Wulff shape Wγ.

Let us mention the preceding works relating to Theorem 3. As for planer curves, Morgan [20]
proved that, if γ : S1 → R>0 is continuous and convex, then any closed equilibrium rectifiable curve
for Fγ in R2 is (up to translation and homothety) a covering of the Wulff shape. About uniqueness
of closed stable equilibria in R3, Palmer [9] proved the same result as Theorem 3 but under the
assumptions that γ is of C3 and that considered surfaces and the Wulff shape satisfy some extra
assumptions.

A similar method to prove Theorem 3 together with careful treatment on the free boundary gives
a uniqueness result for a capillary problem. For simplicity, we assume that γ : S2 → R>0 is a strictly
convex function of class C∞. Let Ω be a wedge-shaped domain bounded by two planes Π1, Π2 in R3,
and let ω be a positive constant. Let M be a two-dimensional oriented connected compact C∞ manifold
with boundary ∂M = σ1 ∪ σ2, where each σj is a topological circle. Consider any C∞-immersion
X : (M, σ1, σ2) → (Ω, Π1, Π2) of which the restriction X|∂M to ∂M is an embedding. Set Cj = X(σj),
and let Dj ⊂ Πj be the domain bounded by Cj (j = 1, 2). We define the wetting energyW(X) of X
as follows:

W(X) = ω(H2(D1) +H2(D2)),

whereH2(Di) is the area of Di. Then, we define the total energy E(X) of X by

E(X) = Fγ(X) +W(X).

Note that X(M) ∪ D1 ∪ D2 is a piecewise smooth surface without boundary. We denote by V(X) the
oriented volume enclosed by X(M) ∪ D1 ∪ D2. We call a critical point of E for volume-preserving
variations an anisotropic capillary surface (or, simply, a capillary surface). A capillary surface is said to
be stable if the second variation of E is nonnegative for all volume-preserving variations of X. In the
following uniqueness theorem, we identify M with X(M).

Theorem 4. Let Ω be a wedge in R3 bounded by two planes Π1 and Π2, and let M ⊂ Ω be a compact oriented
immersed surface that is disjoint from the edge Π1 ∩Π2 of Ω, having embedded boundary ∂M ⊂ Π1 ∪Π2 and
satisfying ∂M ∩Πj = ∂Dj for a nonempty bounded domain Dj in Πj. If M is a stable anisotropic capillary
surface in Ω and both D1 and D2 are convex, then M is (up to translation and homothety) part of the Wulff
shape Wγ. Conversely, if M is part of Wγ (up to translation and homothety), then it is stable.

As for previous works which are closely related to Theorem 4, we have the following. We studied
the existence and uniqueness of stable anisotropic capillary surfaces between two parallel planes
Π1 and Π2 in R3 [21–23]. Moreover, in Reference [24], we proved the uniqueness result similar to
Theorem 4 for isotropic capillary hypersurfaces in a wedge in Rn+1; here, isotropic means that γ ≡ 1.

This article is organized as follows. In Section 2, we give the definition and a representation of the
Wulff shape and some fundamental concepts relating to the Wulff shape. Also some typical examples
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are given. In Section 3, we give the Euler–Lagrange equations for our variational problem and the
definitions of anisotropic curvatures. In Section 4, we give outlines of the proofs of Theorems 1 and 2.
In Section 5, an outline of the proof of Theorem 3 is given. In Section 6, we mention an application to
anisotropic mean curvature flow. In Section 7, we give the proof of Theorem 4.

2. Preliminaries

Let γ : Sn → R>0 be a positive continuous function. In this paper, we call the boundary Wγ of the
convex set W̃[γ] := ∩ν∈Sn

{
X ∈ Rn+1 ; 〈X, ν〉 ≤ γ(ν)

}
the Wulff shape for γ, where 〈 , 〉 means the

standard inner product in Rn+1. In other literatures, W̃[γ] is often called the Wulff shape.
From now on, any parallel translation of the Wulff shape Wγ will be also called the Wulff shape,

and it will be denoted also by Wγ, if it does not cause any confusion.
Let us define two terminologies which represent the convexity of the energy density function γ.

Definition 1. (i) (cf. References [3,25]) A continuous map γ : Sn → R>0 is called a convex integrand
(or, simply, convex) if its homogeneous extension γ : Rn+1 → R≥0 defined by

γ(rX) := rγ(X), ∀X ∈ Sn, ∀r ≥ 0, (1)

is a convex function.
(ii) If γ : Sn → R>0 is of class C2, we say that γ is strictly convex if the n× n matrix D2γ + γ · In is

positive definite at any point in Sn; here, D2γ is the Hessian of γ on Sn and In is the identity matrix of size n.

The Wulff shape Wγ is not smooth, in general. It is smooth and strictly convex (that is, each
principal curvature of Wγ with respect to the inward-pointing normal is positive at each point of Wγ)
if and only if γ is of class C2 and strictly convex. On the other hand, if γ is of class C2, γ is convex if
and only if D2γ + γ · In is positive semi-definite. For such γ, the Wuff shape can have singular points
as Example 3 shows.

Assume that γ : Sn → R>0 is of class C2. The Cahn–Hoffman map ξγ : Sn → Rn+1 for γ is
defined as ξγ(ν) = Dγ|ν + γ(ν)ν, (ν ∈ Sn). Here, the tangent space Tν(Sn) of Sn at ν is naturally
identified with a hyperplane in Rn+1. If γ is convex, the image ξγ(Sn) coincides with Wγ; that is, ξγ

gives a representation of Wγ.
Here, we give four typical examples. We denote a point in Sn by ν = (ν1, . . . , νn+1).

Example 1. Define a function γ : Sn → R>0 as γ = 1. Then, γ is convex and ξγ(ν) = ν (∀ν ∈ Sn). Hence,
Wγ = ξγ(Sn) = Sn.

Example 2. Define a function γ : Sn → R>0 as γ(ν) =
n+1

∑
i=1
|νi|. Then, γ ∈ C0 and convex and the Wulff

shape Wγ is the cube {x = (x1, . . . , xn+1) ∈ Rn+1 ; max{|x1|, . . . , |xn+1|} = 1}.
Since γ is differentiable only at points except points in S[γ] := {ν ∈ Sn ; νi = ±1, ∃i ∈ {1, . . . , n+ 1}},

the Cahn–Hoffman map ξγ is defined on Sn \ S[γ] and the image ξ(Sn \ S[γ]) of ξ : Sn \ S[γ]→ Rn+1 is the
set of all vertices of the cube Wγ.

Example 3 ([19]). We give a simple example, which shows that, if the energy density function γ is not strictly
convex, even if it is convex, the Wulff shape can have singular points and its principal curvatures can be
unbounded. Set n = 1. For m ∈ N, define

γm(ν) := (ν2m
1 + ν2m

2 )1/(2m). (2)
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Then, γm is of class C∞ and convex. Hence, the Wulff shape and the image ξm(S1) of the Cahn–Hoffman map
ξm for γm coincide, and they are shown in Figure 1. ξm is represented as

ξm(cos θ, sin θ) = (cos2m θ + sin2m θ)(1/(2m))−1(cos2m−1 θ, sin2m−1 θ).

Moreover, we have

Am := D2γm + γm · 1
= (2m− 1) cos2m−2 θ sin2m−2 θ(cos2m θ + sin2m θ)(1/(2m))−2.

Hence, the following can be stated.
(i) If m ≥ 2, Am = 0 on S[γ] := {(cos θ, sin θ) ; θ = (1/2)`π, (` ∈ Z)}.
(ii) Am is positive definite on S1 \ S[γ] and positive semi-definite on S1.

The curvature κm of ξm with respect to the outward-pointing normal ν is represented as

κm(θ) =
−1

2m− 1
cos−2m+2 θ sin−2m+2 θ(cos2m θ + sin2m θ)2− 1

2m .

Hence, near each point in S[γ], κm is unbounded and the following holds.

lim
θ→ `

2 π
κm(θ) = −∞, ` ∈ Z, m ≥ 2.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1. On the left, Wγm for m = 1 and, on the right, Wγm for m = 2 for γm defined by Equation (2).

Example 4. We give a nonconvex example of γ. Set n = 1. Define γ as γ(ν) = 4ν3
1 − 3ν1 + 2. Then, γ is

of class C∞ and it is not convex. The whole of the closed curve with self-intersection in Figure 2 is the image
ξγ(S1) of the Cahn–Hoffman map ξγ, while the closed convex solid curve that is a proper subset of ξγ(S1) is
the Wulff shape Wγ. Denote by κγ the curvature of ξγ at its regular points with respect to the normal ν. By
computation, we obtain

ξγ(cos θ, sin θ) = (8 cos2 θ sin2 θ + 4 cos2 θ + 2 cos θ − 3,−8 cos3 θ sin θ + 2 sin θ),

dξγ = 2(−16 cos3 θ + 12 cos θ + 1)(− sin θ, cos θ) =: a(θ)(− sin θ, cos θ),

κγ(θ) =
−1

2| − 16 cos3 θ + 12 cos θ + 1)| =
−1
|a(θ)| .

Hence, for any ρ ∈ a−1(0),
lim

θ(/∈a−1(0))→ρ
κγ(θ) = −∞.
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a−1(0) ⊂ S1 is the set of exactly six points, and it is the set of the singular points of ξγ (Figure 2).

-3 -2 -1 1 2 3

-4

-2

2

4

Figure 2. The image of the Cahn–Hoffman map ξγ for γ in Example 4: The six vertices are the image of
the singular points of ξγ, and the closed convex solid curve is the Wulff shape Wγ.

3. Euler–Lagrange Equations and Anisotropic Curvatures

From now on, we assume that γ : Sn → R>0 is of class C2. Let M = ∪k
i=1Mi be an n-dimensional

oriented compact connected C∞ manifold, where each Mi is an n-dimensional connected compact
submanifold of M with piecewise-C∞ boundary and Mi ∩Mj = ∂Mi ∩ ∂Mj (i, j ∈ {1, . . . , k}, i 6= j).
We call a map X : M→ Rn+1 a piecewise-C2 weak immersion (or a piecewise-C2 weakly immersed
hypersurface) if X satisfies the following conditions (A1), (A2), and (A3) for i = 1, . . . , k [19].

(A1) X is continuous, and each Xi := X|Mi : Mi → Rn+1 is of class C2.
(A2) The restriction X|Mo

i
of X to the interior Mo

i of Mi is a C2-immersion.

(A3) The unit normal vector field νi : Mo
i → Sn along Xi|Mo

i
can be extended to a C1-mapping

νi : Mi → Sn. Here, the orientation of νi is determined so that, if (u1, . . . , un) is a local
coordinate system in Mi, then {νi, ∂/∂u1, . . . , ∂/∂un} gives the canonical orientation in Rn+1.

The Cahn–Hoffman field ξ̃i along Xi for γ is defined as ξ̃i := ξγ ◦ νi : Mi → Rn+1. Note that the
Cahn–Hoffman map ξγ : Sn → Rn+1 is a front ([19]). Hence the “tangent space” Tqξγ(Sn) of the image
ξγ(Sn) at each point q ∈ ξγ(Sn) can be defined. Since the unit normal νi(p) of Xi at p ∈ Mi coincides
with the unit normal of ξγ at the point νi(p), we can identify Tp Mi with Tξ̃i(p)ξγ(Sn).

The linear map Sγ
p : Tp Mi → Tp Mi given by the n× n matrix Sγ := −dξ̃i is called the anisotropic

shape operatior of Xi. Various anisotropic curvatures of X are defined as follows.

Definition 2 (anisotropic curvatures; cf. References [5,10]). (i) The eigenvalues of Sγ are called the
anisotropic principal curvatures of X. We denote them by kγ

1 , . . . , kγ
n .

(ii) Let σ
γ
r be the elementary symmetric functions of kγ

1 , . . . , kγ
n :

σ
γ
r := ∑

1≤l1<···<lr≤n
kγ

l1
. . . kγ

lr
, r = 1, . . . , n. (3)

Set σ
γ
0 := 1. Hγ

r := σ
γ
r /nCr is called the rth anisotropic mean curvature of X, where nCr =

n!
k!(n− k)!

.

(iii) Hγ
1 is called the anisotropic mean curvature of X, and we often denote it by Λ; that is, Λ =

1
n

n

∑
i=1

kγ
i .
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The anisotropic curvatures of the most fundamental hypersurfaces Wγ and ξγ are simply stated
as follows.

Remark 1 ([6,19]). For the Cahn–Hoffman map ξγ : Sn → Rn+1, ξγ(ν) = Dγ|ν + γ(ν)ν, (ν ∈ Sn), it is
shown that the unit normal vector field νξγ

is given by ξ−1
γ . Hence, the anisotropic shape operator of ξγ is

Sγ = −d(ξγ ◦ νξγ
) = −d(idSn) = −In. Therefore, the anisotropic principal curvatures of ξγ are −1, and

hence, each rth anisotropic mean curvature of ξγ is (−1)r. Particularly, the anisotropic mean curvature of ξγ

for the normal ν and that of Wγ for the outward-pointing unit normal is −1 at any regular point.

Sγ is not symmetric in general. However, we have the following good properties of the anisotropic
curvatures.

Remark 2. (i) If dξγ = D2γ + γ · In is positive definite at a point ν(p) (p ∈ Mo
i ), then all of the anisotropic

principal curvatures of X at p are real [26].
(ii) kγ

i is not a real value in general. However, each Hγ
r is always a real valued function on Mo

i [19].

We have the following first variation formula for the anisotropic surface energy Fγ.

Proposition 1 ([19]). Assume that the map X : M0 → Rn+1 satisfies (A1), (A2), and (A3) above with Xi = X,
Mi = M0, and νi = ν. Let Xε : M0 → Rn+1 (ε ∈ J := (−ε0, ε0)), be a variation of X; that is, ε0 > 0 and
X0 = X. Assume for simplicity that Xε is of class C∞ in ε. We also assume that, for each ε ∈ J, the anisotropic
mean curvature Λε of Xε (ε 6= 0) is bounded on Mo

0. Set

δX :=
∂Xε

∂ε

∣∣∣
ε=0

, ψ :=
〈
δX, ν

〉
.

Then, the first variation of the anisotropic energy Fγ is given as follows.

dFγ(Xε)

dε

∣∣∣
ε=0

= −
∫

M0

nΛψ dA−
∮

∂M0

〈δX, R(p(ξ̃))〉 ds, (4)

where ds is the (n− 1)-dimensional volume form of ∂M0 induced by X, N is the outward-pointing unit conormal
along ∂M0, R is the π/2-rotation on the (N, ν)-plane, p is the projection from Rn+1 to the (N, ν)-plane, and
the first integral in the right hand side of Equation (4) which is an improper integral converges.

On the other hand, the first variation of the (n + 1)-dimensional volume enclosed by Xε is

δV =
∫

M0

ψ dA (5)

(cf. Reference [27]). This with Equation (4) gives the following Euler–Lagrange equations.

Proposition 2 (Euler–Lagrange equations, Koiso [19]. For n = 2, see Palmer [9]). A piecewise-C2 weak
immersion X : M = ∪k

i=1Mi → Rn+1 is a critical point of the anisotropic energy Fγ for volume-preserving
variations if and only if the following conditions (i) and (ii) hold.

(i) The anisotropic mean curvature of X is constant on M \ S[X].
(ii) ξ̃i(ζ)− ξ̃ j(ζ) ∈ Tζ Mi ∩ Tζ Mj = Tζ(∂Mi ∩ ∂Mj) holds at any ζ ∈ ∂Mi ∩ ∂Mj, where a tangent

space of a submanifold of Rn+1 is naturally identified with a linear subspace of Rn+1.

In view of Proposition 2, we will use the following terminology.

Definition 3 ([19]). A piecewise-C2 weak immersion X : M = ∪k
i=1Mi → Rn+1 is called a hypersurface with

constant anisotropic mean curvature (CAMC) if both conditions (i) and (ii) in Proposition 2 hold.
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4. Outline of the Proofs of Theorems 1 and 2

Theorems 1 and 2 are proven by giving explicit examples [17]. Here, we give an example for
n = 2. Consider the C∞ function γ : S2 → R>0 defined by

γ(ν1, ν2, ν3) = (ν2
1 + ν2

2)
3 + 15(ν2

1 + ν2
2)

2ν2
3 + 15(ν2

1 + ν2
2)ν

4
3 + ν6

3 , (ν1, ν2, ν3) ∈ S2. (6)

By computation, the corresponding Cahn–Hoffman map ξγ : S2 → R3 is given as follows.

ξγ(ν) = 1
4
(
(cos θ)(cos6 θ − 9 cos4 θ sin2 θ + 15 cos2 θ sin4 θ + 25 sin6 θ)(cos ρ),
(cos θ)(cos6 θ − 9 cos4 θ sin2 θ + 15 cos2 θ sin4 θ + 25 sin6 θ)(sin ρ),
(sin θ)(25 cos6 θ + 15 cos4 θ sin2 θ − 9 cos2 θ sin4 θ + sin6 θ)

)
,

(7)

where ν = (cos θ cos ρ, cos θ sin ρ, sin θ) ∈ S2. The image ξγ(S2) of ξγ is shown in Figure 3, left. It is
a surface of revolution, and we show by the right figure in Figure 3 its section in the (x1, x3)-plane.
In Figure 4, we show three closed embedded surfaces of revolution with genus 0, each of which is a
subset of ξγ(S2). Since the anisotropic mean curvature of ξγ is −1 for the unit normal ν (Remark 1),
all of these three surfaces have constant anisotropic mean curvature −1. The surface in Figure 3a is the
Wulff shape Wγ, and the surfaces in Figure 3b,c are closed piecewise-C∞ CAMC surfaces for γ, which
are not the Wulff shape Wγ (up to homothety and translation). These two surfaces give the proof of
Theorems 1 and 2 for n = 2.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 3. Left: The image ξγ(S2) of the Cahn–Hoffman map ξγ : S2 → R3 for γ : S2 → R>0 defined
by Equation (6). Right: The section of ξγ(S2) in the (x1, x3)-plane.

(a) (b) (c)
Figure 4. Some of the closed surfaces which are subsets of ξγ(S2) for γ defined by Equation (6)
(Figure 3). The anisotropic mean curvature for the outward-pointing normal is −1: (a) Wulff shape Wγ;
(b) a constant anisotropic mean curvature (CAMC) surface for γ; and (c) a CAMC surface for γ.
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The section γ1 : S1 → R>0 of γ and that of ξγ in the (x1, x3)-plane (Figure 3, right) give an
example to prove Theorem 1 for n = 1. Suitable rotations of γ1 give a proof of Theorem 1 for n > 2
similar to the above discussion for n = 2.

5. Outline of the Proof of Theorem 3

In this section, first, we give two useful integral formulas that are generalizations of the Steiner
formula and the Minkowski formula (see Reference [26] for smooth case). They are proven in
Reference [19] and are used to prove Theorem 3.

“Anisotropic parallel hypersurface” is a generalization of parallel hypersurface and is defined
as follows.

Definition 4 (Anisotropic parallel hypersurface, cf. Reference [10]). Let X be a piecewise-C2 weak
immersion. For any real number t, we call the map Xt := X + tξ̃ : M → Rn+1 the anisotropic parallel
deformation of X of height t. If Xt is a piecewise-C2 weak immersion, then we call it the anisotropic parallel
hypersurface of X of height t.

The anisotropic energy Fγ(Xt) of the anisotropic parallel hypersurface Xt := X + tξ̃ is a
polynomial of t with degree at the most n as follows.

Theorem 5 (Steiner-type formula [19]). Assume that γ : Sn → R>0 is of class C2. Let X : M =

∪k
i=1Mi → Rn+1 be a piecewise-C2 weak immersion. Consider anisotropic parallel hypersurfaces Xt = X + tξ̃ :

M \ S[X]→ Rn+1, where S[X] is the set of singular points of X. Then, the following integral formula holds.

Fγ(Xt) =
∫

M
γ(ν)

n

∑
r=0

(−1)rtr(nCr)Hγ
r dA,

where
∫

M means ∑k
i=1
∫

Mi
.

The isotropic version of Theorem 5 is known as the Weyl’s tube formula [28]. The isotropic
2-dimensional version is the well-known Steiner’s formula.

Next, we give a generalization of the Minkowski formula.

Theorem 6 (Minkowski-type formula [19]). Assume that γ : Sn → R>0 is of class C2. Assume also that
X : M = ∪k

i=1Mi → Rn+1 is a closed piecewise-C2 weak immersion and that X satisfies the following condition.

ξ̃i(ζ) = ξ̃ j(ζ), ∀ζ ∈ ∂Mi ∩ ∂Mj,

where ξ̃i := ξγ ◦ νi : Mi → Rn+1 is the Cahn–Hoffman field along X|Mi and the tangent space of a submanifold
of Rn+1 is naturally identified with a linear subspace of Rn+1. Then, we have the following integral formulas.

(i) ∫
M
(γ(ν) + Λ〈X, ν〉) dA = 0.

(ii) Assume that the rth anisotropic mean curvature of X for γ is integrable on M for r = 1, . . . , n. Then,∫
M
(γ(ν)Hγ

r + 〈X, ν〉Hγ
r+1) dA = 0, r = 0, . . . , n− 1,

holds, where Hγ
r is the rth anisotropic mean curvature of X.

Now, let us give an outline of the proof of Theorem 3. We first prove that the Cahn–Hoffman
field ξ̃ along a closed CAMC hypersurface X : M = ∪k

i=1Mi → Rn+1 can be defined as a continuous
map on the whole of M. Then, we consider the anisotropic parallel hypersurfaces Xt := X + tξ̃ (t ∈ R,
|t| << 1) of X. By taking homotheties of Xt if necessary, we have a volume-preserving variation Yt =
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µ(t)Xt = µ(t)(X + tξ̃) (µ(t) > 0, µ(0) = 1) of X. Using Theorems 5 and 6, by long computation, we

prove that the following holds:
d2Fγ(Yt)

dt2

∣∣∣
t=0

=
−1
n

∫
M

γ(ν) ∑
1≤i<j≤n

(kγ
i − kγ

j )
2 dA. Since γ is convex,

all kγ
i are real values on M \ S[X] (Remark 2). Hence, if X has constant anisotropic mean curvature Λ

and is stable, then kγ
1 = · · · = kγ

n = Λ/n 6= 0 must hold on M \ S[X]. Therefore, from Corollary 1 in
Reference [10], X(M \ S[X]) ⊂ rWγ holds for some r > 0. Because M is closed and Wγ has anisotropic
mean curvature −1, this inclusion implies that the following holds: X(M) = (1/|Λ|)Wγ.

6. Application to Anisotropic Mean Curvature Flow

Let γ : Sn → R>0 be of class C2 with Cahn–Hoffman map ξγ. Let Xt : M → Rn+1 be a
one-parameter family of embedded piecewise-C2 hypersurfaces with anisotropic mean curvature Λt.
Assume that the Cahn–Hoffman field ξ̃t along Xt is defined as a continuous map on M. If Xt satisfies
∂Xt/∂t = Λt ξ̃t, it is called an anisotropic mean curvature flow, which diminishes the anisotropic
energy if Λt 6≡ 0 [17]. The example given in Section 4 (see Figure 4b,c) gives self-similar shrinking
solutions with genus 0, which are not (any homotheties or translations of) the Wulff shape.

7. Proof of Theorem 4

Most of the work in this section can be generalized to hypersurfaces in Rn+1. We will discuss it in
another paper [29].

Let Π1 and Π2 be two planes in R3 containing the x1-axis and making angles α and −α (0 < α <

π/2) with the horizontal plane {x3 = 0}, respectively. Let Ω ⊂ {x2 > 0} be the wedge-shaped domain
bounded by Π1 and Π2 (Figure 5). We denote by Ω the closure of Ω. The x1-axis is called the edge of
the wedge Ω. Denote by Ñj the unit normal to Πj which points outward from Ω.

π2

π1

M Ω

2α

Figure 5. The wedge Ω and an admissible surface M.

Let γ : S2 → R>0 be a strictly convex function of class C∞. As in Section 1, let X : (M, σ1, σ2)→
(Ω, Π1, Π2) be a C∞-immersion of which the restriction X|∂M is an embedding onto two simple closed
curves C1 ⊂ Π1 and C2 ⊂ Π2. Denote by Dj ⊂ Πj the (nonempty) domain bounded by Cj. Then, by a
similar way to the way to derive the Euler–Lagrange equations in Reference [22], we can prove the
following Euler–Lagrange equations for our capillary problem.

Lemma 1. X is a capillary surface if and only if both of the following conditions (i) and (ii) hold.
(i) The anisotropic mean curvature Λ of X is constant on M.
(ii) 〈ξ̃, Ñj〉 = ω on σj (j = 1, 2), where ξ̃ is the Cahn–Hoffman field along X.

In view of the property of condition (ii) in Lemma 1, it is useful to consider the anisotropic energy
for curves in Πj. First, define planes Pj (j = 1, 2) by

Pj := {x ∈ R3 ; 〈x, Ñj〉 = ω}.

Then, set the following:
Ŵj := Wγ ∩ Pj, Ôj := ωÑj.
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Assume that ω > 0 is sufficiently small so that Ŵj includes at least two distinct points. Then, Ŵj is a
strictly convex closed C∞ curve in the plane Pj. We regard the point Ôj as the origin of Pj. Denote by
γ̂j : S1 → R>0 the support function of Ŵj. Then, Ŵj is the Wulff shape for γ̂j. For later use, we denote
by ξ̂ j the Cahn–Hoffman map for γ̂j.

Now, let χ : S1 → Πj be a C∞ regular embedded curve with outward unit normal ρ = ρj. Define
the anisotropic energy of χ by

F̂j(χ) :=
∫

S1
γ̂j(ρ) ds, (8)

where ds is the line element of χ.
From now on, we assume that X is a capillary surface. Set the following:

χj := X|σj .

Denote by ρ the outward-pointing unit normal to χj in the plane Πj. X has the following property,
which we call the balancing formula that is a generalization of the balancing formula for the isotropic
case [24].

Lemma 2.
F̂j(χj) = −2ΛH2(Dj), j = 1, 2. (9)

Proof. Let u be a constant vector in R3. Consider the parallel translations:

Xt = X + tu.

Then, by the first variation formulas in Equations (4) and (5), we have

0 =
d
dt

∣∣∣
t=0

E(Xt) =
d
dt

∣∣∣
t=0

(E(Xt) + 2ΛV(Xt))

= −2
∫

M
Λ〈u, ν〉 dA−

∮
∂M
〈u, R(p(ξ̃))〉 ds

+ω
2

∑
j=1

∮
σj

〈p(u), ρ〉 ds + 2Λ
∫

M
〈u, ν〉 dA + 2Λ

2

∑
j=1

∫
Dj

〈u, Ñj〉 dA

= −
∮

∂M
〈u, R(p(ξ̃))〉 ds + ω

2

∑
j=1

∮
σj

〈u, ρ〉 ds + 2Λ
2

∑
j=1

∫
Dj

〈u, Ñj〉 dA

= −
∮

∂M
〈u, R(p(ξ̃))〉 ds + 2Λ

2

∑
j=1

∫
Dj

〈u, Ñj〉 dA.

Hence, by setting u = (1, 0, 0), (0, 1, 0), (0, 0, 1), we have

− 2Λ
2

∑
j=1
H2(Dj)Ñj = −

2

∑
j=1

∮
σj

R(p(ξ̃)) ds. (10)

On σj, since 〈ξ̃, Ñj〉 = ω and 〈ξ̃, ρj〉 = 〈ξ̂ j, ρj〉 = γ̂j hold, we can write

ξ̃ = ωÑj + γ̂jρj + τ,

where τ is tangent to Cj. Then, we have

R(p(ξ̃)) = R(ωÑj + γ̂jρj) = ωρj − γ̂jÑj. (11)
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Note that, by the divergence theorem, the following holds:∮
σj

ρj ds = 0.

Hence, substituting Equation (11) into Equation (10), we obtain

− 2Λ
2

∑
j=1
H2(Dj)Ñj =

2

∑
j=1

∮
σj

γ̂jÑj ds =
2

∑
j=1
F̂j(χj)Ñj. (12)

Because Ñ1, Ñ2 are linearly independent, Equation (12) implies Equation (9).

Now, consider the anisotropic parallel surfaces Xt := X + tξ̃ (t ∈ R, |t| << 1) of X. Set

B :=
(

0,
ω

sin α
, 0
)

. Then, the variation Zt := Xt + tb of X satisfies the boundary condition. Take
homotheties

Yt := µ(t)Zt = µ(t)(X + t(ξ̃ + b)), µ(t) > 0, µ(0) = 1,

of Zt if necessary so that Yt : (M, ∂M)→ (Ω, ∂Ω) is a volume-preserving variation of X (Figure 6).

tξ

tξ

tξ

tξ

X X
Xt

Xt

Π1

Π2

1 2 3 4 5
x

-2

-1

1

2

y

Π1

Π2

Zt
Zt

1 2 3 4 5
x

-3

-2

-1

1

2

3

y

Π1

Π2

Yt
Yt

1 2 3 4 5
x

-2

-1

1

2

y

Figure 6. Construction of volume-preserving variation Yt using anisotropic parallel surfaces Xt of
X. Upper left: A capillary surface X and its anisotropic parallel surface Xt. Upper right: A parallel
translation Zt of Xt that satisfies the boundary condition. Bottom: A homothety Yt of Zt that satisfies
the volume condition.

Denote by e(t) the total energy E(Yt) of Yt. Then, by a similar way to the proof of Theorem 3,
we obtain

e′′(0) =
−1
2

∫
M

γ(ν)(kγ
1 − kγ

2 )
2 dA−ω

2

∑
j=1

(
2Λ2H2(Dj) +

∫
σj

γ̂j(ρ)Λ̂ ds
)

, (13)
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where Λ̂ is the anisotropic (mean) curvature of χj for γ̂j.
Note that, from Remark 2(i), kγ

j is real. Since X has constant anisotropic mean curvature Λ, the

first term of the right hand side of Equation (13) is nonnegative if and only if kγ
1 = kγ

2 = Λ/2 6= 0.
Hence, again by Corollary 1 in Reference [10], X(M) ⊂ (1/|Λ|)Wγ holds.

Let us study the second term of the right hand side of Equation (13). Set the following:

Bj := 2Λ2H2(Dj) +
∫

σj

γ̂j(ρ)Λ̂ ds.

We will prove that Bj ≥ 0 holds and that the equality holds if and only if χj(σj) = rŴj for some r > 0.
Using Equation (9), we obtain

Bj =
(F̂j(χj))

2

2H2(Dj)
+
∫

σj

γ̂j(ρ)Λ̂ ds. (14)

Below, for simplicity, we identify an embedded closed curve in a plane with the domain bounded
by this curve.

Since the Wulff shape Ŵj is the minimizer of F̂j among closed curves enclosing the same area,
it holds that

(F̂j(χj))
2

2H2(Dj)
≥

(F̂j(Ŵj))
2

2H2(Ŵj)
, (15)

where the equality holds if and only if χj(σj) = rŴj for some r > 0. Denote by ξ̂ j the Cahn–Hoffman
map for γ̂j and by dsŴj

the line element of ξ̂ j : S1 → R2. Then, by the definition of F̂j and since γ̂j is

the support function of Ŵj, we have

(F̂j(Ŵj))
2

2H2(Ŵj)
=

(
∫

S1 γ̂j(ν) dsŴj
)2

2H2(Ŵj)
=

(2H2(Ŵj))
2

2H2(Ŵj)
= 2H2(Ŵj). (16)

Let us compute the second term of Bj. For simplicity, we denote by ξ̂ j also the Cahn–Hoffman
field of χj. Then, by Equations (4) and (5), we have

∫
σj

γ̂j(ρ)Λ̂ ds = −
dF̂j(χj + tξ̂ j))

dt

∣∣∣
t=0

= −
d2H2(χj + tξ̂ j)

dt2

∣∣∣
t=0

. (17)

Assume now that Dj is convex. Then, for t ≥ 0, it holds that

H2(χj + tξ̂ j) = H2(Dj + tŴj) = H2(Dj) + 2tv(Dj, Ŵj) + t2H2(Ŵj), (18)

where v(Dj, Ŵj) is a real number depending on Dj and Ŵj ([30], Theorem 5.1.7). Equation (17) with
Equation (18) gives ∫

σj

γ̂j(ρ)Λ̂ ds = −2H2(Ŵj). (19)

From Equations (14)–(16) and (19), we obtain

Bj ≥ 0, (20)

where the equality holds if and only if χj(σj) = rŴj for some r > 0.
If the capillary surface X is stable, then e′′(0) ≥ 0. Hence, by the above observations, X(M) ⊂

(1/|Λ|)Wγ holds. Conversely, if X(M) is part of a homothety of the Wulff shape Wγ, by a similar way
to the proof of Theorem 4.1 in Reference [22], it is shown that X is stable, which proves Theorem 4.
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