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Abstract: The known multifunctional characteristic of porous graded materials makes them very
attractive in a number of diversified application fields, which simultaneously poses the need to deepen
research efforts in this broad field. The study of functionally graded porous materials is a research
topic of interest, particularly concerning the modeling of porosity distributions and the corresponding
estimations of their material properties—in both real situations and from a material modeling
perspective. This work aims to assess the influence of different porosity distribution approaches on
the shear correction factor, used in the context of the first-order shear deformation theory, which in
turn may introduce significant effects in a structure’s behavior. To this purpose, we evaluated porous
functionally graded plates with varying composition through their thickness. The bending behavior
of these plates was studied using the finite element method with two quadrilateral plate element
models. Verification studies were performed to assess the representativeness of the developed and
implemented models, namely, considering an alternative higher-order model also employed for
this specific purpose. Comparative analyses were developed to assess how porosity distributions
influence the shear correction factor, and ultimately the static behavior, of the plates.

Keywords: functionally graded materials; porosity distributions; first-order shear deformation theory;
shear correction factor; higher-order shear deformation theory; equivalent single-layer approach

1. Introduction

Material science has undergone great evolution in recent years, representing an extremely
important field for the development of many technological areas for several reasons, such as those
related to a sustainable economic and environmental nature. The introduction of the functional
gradient concept in the context of composite particulate materials has contributed to the design of
advanced materials able to meet specific objectives, through spatial variation in composition and/or
microstructure [1,2].

Functional gradient materials (FGMs) were developed in Japan in the late 1980s for thermal
insulation coatings [2]. With more than three decades of history, and being a part of a wide variety
of composite materials, materials with functional gradients continue to be the object of attention.
This is due to their tailorability, arising from a gradual and continuous microstructure evolution and,
consequently, of locally varying material properties in one or more spatial directions. Therefore, FGMs
can be appropriately idealized to meet certain specifications [3,4].
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Composite materials can generally be described as systems composed of a matrix and a
reinforcement, the material properties of which surpass those presented by each constituent
individually [5]. The gradual and continuous evolution of their material properties provide FGMs
with better mechanical behavior than traditional composite materials [6]. Among other characteristics
possessed by some FGMs, such as low thermal conductivity and low residual stresses, these materials
also make it possible to minimize the stress discontinuities of conventional laminated composites [5,7,8].
FGMs’ high resistance to temperature and the absence of interface problems gives them great importance
in several engineering applications, which is why these composite materials have been extensively
studied and used in the past two decades in a wide range of science fields requiring improved
mechanical and thermal performances [5–7]. This broad range of applications justifies the need to study
and predict the responses of FGMs’ components [9]. In the past year, Li et al. developed several studies
involving, among other topics, a stability and buckling analysis of functionally graded structures such
as cylinders and arches [10–14].

Considering the continuous mixture concept behind their composition, FGMs can be constituted
of two or more material phases. Hence, the resulting local material properties depend on this mixture
evolution, allowing for a design according to the desired functions and specifications [15]. From the
literature, the most common FGMs are constituted of two material phases, often one ceramic and one
metal [6,11].

The manufacturing process of sintering, which is common in the production of FGMs, is responsible
for the formation of micro voids or porosities within the materials, making important the introduction of
porosity effects at the structures’ design stage [9]. The literature contains various studies which include
dynamic and static analyses of functionally graded porous plates and beams [16–21]. In addition, there
are several studies considering ring and arch structures, especially those developed by Li et al. in the
past year [13,22–27].

Functionally graded porous materials (FGPs) combine both porosity and functional gradient
characteristics, where the porosity may have a graded evolution across the volume, providing desirable
properties for some applications (as in biomedical implants), and undesirable in others where voids
may cause serious problems (as in the aeronautical sector). The change in porosity in one or more
directions can be caused by local density effects or pore size alteration. Functionally graded porous
materials possess a cell-based structure, which can be classified as open or closed (i.e., containing
interconnected or isolated pores, respectively) [15].

Porous gradient materials also present a multifunctional character, where, among other aspects,
one may highlight a high performance-to-weight ratio and resistance to shock; nevertheless, it is
important to note that pores imply a local loss of stiffness. The latest advances in manufacturing
processes allow the consideration of the development of porous materials with a functional gradient,
using methods such as additive 3D printing. Thus, it becomes possible to design porous structures with
designed variable stiffness, which can be customized for specific engineering applications, optimizing
performance and minimizing weight [28]. Due to the relevant role that such materials have in a range
of applications, it is important to have a wider perspective of the contexts where one can find them.

Mechanical or more generically structural components made of porous materials, bioinspired
materials, can be designed for sensitive and very precise operating conditions—for example, robotic,
prosthetic, and aeronautical components, among others [28]. Most of the materials used in engineering
are dense; however, porous materials are also of great interest and applicability in fields such as in
membranes [3]. Bioinspired materials thus have great potential for current technologies, as their unique
characteristics allow them to meet various design requirements [28]. Natural or man-made, porous
compacts or foams—the types of porous materials are many and diverse. Bones, wood, ceramics,
and aluminum foams are just a few examples [29]. In the field of biomaterials, the inclusion of porosities
allows diversification of their applicability, with ceramic and polymeric scaffolds being examples of
this [3].
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In the biomedical field, a bone implant must guarantee a functional gradient that mimics real bone
stiffness variations. With functionally graded porous scaffolds it is possible to obtain the variations
in mechanical and biological properties required for bone implants, as the presence of a porosity
gradient is imperative for bone regeneration. Thus, functionally graded porous scaffolds for bone
implants are designed to achieve the ideal balance between porosity and mechanical properties [30].
Since bone implants have various requirements, it is important to have ceramic porous materials with a
wide and diversified range of pore sizes and morphologies in order to accomplish these requirements.
Therefore, different porous hydroxyapatite structures have been developed to mimic natural bone’s
bimodal structure [31]. Since implants with no porosity show weak tissue regeneration and implant
fixation capability, the introduction of a pore distribution in these alloys’ structures leads to bone-like
mechanical properties, allowing cellular activity [32].

In another field [33], membranes produced according to the Fuji process present a structure with
relatively wide pore surface, followed by a gradually tightening pore size and a clearing of pores,
finishing with an isotropic structure. Thus, these membranes can be mentioned as an example of
an asymmetric structure from the porosity perspective, being implemented in several applications,
with filtration and medical diagnosis being some examples. Porous membranes are the object of
research related to materials and structure optimization [34].

Membranes can also be used for gas separation applications, typically possessing a microporous
substrate, a mesoporous intermediate layer (or more), and a microporous top layer (or more).
Regarding materials, α-Al2O3 is the most frequent, but TiO2, ZrO2, SiC, and their combinations are
also very common [35]. For industrial wastewater treatment applications, ceramic microfiltration
membranes made of Al2O3, SiO2, ZrO2, TiO2, and their composites present excellent behavior.
These specific membranes possess multi-layered asymmetric structures, with a macroporous support
followed by intermediate layers of graded porosity [36]. The use of ceramic membranes extends to
catalytic membrane reactors due to the huge resistance to high temperatures and aggressive chemical
environments. In this case, the membranes usually present disk-like, planar, tubular, and hollow fiber
designs [37]. According to Sopyan et al., the material properties of porous ceramics (e.g., Young’s
modulus and flexural strength) depend exponentially on the ceramics’ total porosity [31].

Secondary batteries technology uses porous membranes to isolate cathode and anode from each
other, preventing a short circuit, and to allow the charge transport. Therefore, these membranes should
be simultaneously excellent electric insulators and good ion conductors, presenting a great safety
level. In this field of action there are microporous, ultrafiltration. and nanofiltration membranes, with
organic polymers being the most used materials [34].

Metallic foams are another example of materials whose mechanical properties depend on the
porosity characteristics. Recently, they have been gaining use among applications of aluminum and
other alloys since the combination of properties intrinsic to metal alloys with the effects of porosity are
of great interest, highlighting the low density and high energy absorption. The change in the porosity
characteristics of these materials (e.g., pore size) makes it possible to obtain properties suitable for
specific applications. Aluminum foams find use in structural applications, as well as automotive and
aeronautics industries, as examples [38].

A well-defined spatial porosity gradient is a requirement of solid foams for some specific
applications like filtration, energy adsorption, and tissue engineering. Therefore, control over
porosity in terms of morphology, pore size, and pores’ connectivity is a challenge in the development
of fabrication processes, since these parameters have a great influence on the porous materials’
performance [39]. In their work, Costantini et al. mentioned that a pore size gradient confers an
increased strength and energy absorption to a material, and that this kind of material needs a more
precise characterization of the porosity gradient concerning the mechanical properties [39].

Since pores can have different dimensions and distributions, porous materials can appear
with different porosity gradients. In a typical rectangular plate, there are several possible porosity
gradient configurations. Regardless of the specific distribution, the relevance should be placed on the
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correspondence to the design requirements [3], knowing that the heterogeneity and spatial gradient
characteristic of porous materials will play an extremely important role in the resulting mechanical
properties [40].

The Young modulus and shear modulus are strongly influenced by several factors, from the
manufacturing process, to the size, shape, and distribution of the pores. Consequently, the analytical
prediction of porous materials’ properties is not simple because of the randomness present in their
structures, and the need of a knowledge of the microstructure that is as accurate as possible in order to
obtain a significant numerical prediction [29].

Concerning porosity distributions, Nguyen et al. [41] studied the mechanical behavior of porous
FGPs. To this purpose they took into account two different porosity distributions, varying both through
the thickness direction (namely, the so-called even and uneven distributions). Zhang and Wang [15]
produced eight different porous material structures with different pore distributions, including gradient
distributions, and subjected them to some mechanical tests in order to evaluate important materials
properties like Young’s modulus. With this work they developed techniques to estimate the effective
Young’s modulus of functionally gradient porous materials. Having verified that there is an obvious
relation between this material property and porosity, the relationship between both is not necessarily
linear. However, the experimental results constitute a good basis for validating material properties
obtained through theoretical models.

With this introductory section, the importance of porous materials becomes clear, particularly
regarding the development of porosity distribution models that best represent the effects on the
respective effective material properties.

Hence, the present work presents three porosity distribution models, two of which are based on
the reference literature, and respective estimates of material properties. For these cases, we performed
a set of parametric studies focused on the static behavior of porous plates with a functional gradient
in order to characterize the influence of the shear correction factor, associated with the use of the
first-order shear deformation theory. These studies were performed via the finite element method
considering an equivalent single layer approach. To the best of our knowledge, there are no previously
published works focusing on the assessment of the influence of the shear correction factor in the static
bending behavior of porous plates. Hence, this study addresses this, considering the characterization of
the neutral surface deviation from the mid-plane surface, which also provides an illustrative measure
of the medium’s heterogeneity, typical of graded mixture and porous materials.

2. Materials and Methods

Considering the wide and varied number of applications of porous materials briefly discussed
in the introductory section, the prediction of their mechanical properties is very relevant. Several
models to predict the Young modulus of porous materials have recently been proposed, including
linear, quadratic, and exponential models, although these are not suitable for porosities which are
too low or too high [29]. Carranza et al. evaluated the Young modulus of metallic foams with fractal
porosity distribution, and the respective estimates were close to the experimental results. In this way,
they proved the expected effect, and verified that the appropriate choice of the porosity distribution
model is an important factor [38].

2.1. Functionally Graded Materials

The flexibility in tailoring material properties makes FGMs very interesting for many applications
in diverse engineering and science fields like bioengineering, mechanics, and aerospace.

The procedures for manufacturing FGMs are designed in order to obtain a specific spatial
distribution of the constitutive phases. The continuous and gradual spatial distribution is responsible
for the unique morphology and properties of these materials that make them stand out from others [1].
The gradual evolution of the phases can be varied, and there may even be different variations in more
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than one direction in the same FGM [2]. Figure 1 illustrates one example of material distribution
though one direction of a dual-phase FGM.Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 5 of 26 
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Figure 1. Example of dual-phase functional gradient material (FGM) mixture, with variation in
one direction.

As a consequence of the gradual evolution of the bulk fractions and microstructure of FGMs,
the respective macroscopic properties also present gradual changes. The gradual evolution of the
material properties characteristic of FGMs makes it possible to design them in order to achieve specific
mechanical, physical, or biological properties [1]. Since the volume fraction of the constituent phases
can vary gradually in one or more directions, the present work considers the particular case of a
dual-phase FGM plate in which this variation occurs in one only direction—specifically the thickness
direction, as in [42]. In this case, the evolution of the volume fraction according to the direction of the z
axis occurs according to the following power law:

V f =
( z

h
+

1
2

)p
, (1)

where h and z represent, respectively, the plate’s thickness and the thickness coordinate, where the origin
corresponds to the FGM plate’s middle surface, thus z ∈ [−h/2, h/2]. Representing this material distribution,
Figure 2 presents the volume fraction evolution through the thickness for some power law exponent
values. As can be seen, the exponent p dictates the volume fraction behavior along the plate’s thickness.
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As the volume fraction of the phases of the constituents of FGMs is a function of the z coordinate,
so too are the corresponding material properties. The effective material properties of an FGM can be
estimated by the Voigt rule of mixtures, according to:

PFGM = (Pt − Pb)V ft + Pb (2)

where PFGM is the FGM property, and Pt and Pb represent the corresponding property at top and
bottom surfaces, respectively. This approach is suitable for FGMs whose phases are not very different
from each other [43].

2.2. Porosity Distributions

Functionally graded porous materials combine characteristics of both FGMs and porous materials.
Beyond the great rigidity–weight ratio, the incomparable mechanical properties they present explains
why these distinctive materials are widely used in a wide range of diverse fields [44].

Despite great developments in manufacturing processes, the formation of micro-voids or porosities
is still a fact [4], and in some specific applications this can be even desirable and designed for. Regardless
of the specific case, as a consequence of these pores, the material’s strength will become lower, and this
should be included in mechanical behavior studies [44].

The present work considers three types of porosity distributions through the thickness, the first
one being proposed by Kim et al. [45] and applied in several studies, such as those developed by
Coskun et al. [46] and by Li and Zheng [22]. The last two were inspired in the uniform distribution
mentioned by Du et al. [47], whose studies focus on open-cell metal foams rectangular plates considering
different porosity distributions through the thickness.

• Porosity Model M1:

Concerning porous FGMs, Kim et al. [45] considered, among other things, a porosity distribution
through the thickness given by:

Φ(z) = φcos
[
π
2

( z
h
−

1
2

)]
, (3)

where z represents the thickness coordinate, h represents the plate’s thickness, and φ is the maximum
porosity value.

Thus, the rule of mixtures is affected by this distribution and the effective Young modulus (E) and
Poisson’s ratio (υ) can be estimated as follows:

E(z) =
[
(Et − Eb)

( z
h
+

1
2

)p
+ Eb

]
(1−Φ(z)), (4)

υ(z) =
[
(υt − υb)

( z
h
+

1
2

)p
+ υb

]
(1−Φ(z)). (5)

In both Equations (4) and (5), the indexes t and b indicate the top and bottom surfaces, respectively.
Figure 3 illustrates, in a normalized form, the porosity distribution through the thickness, showing

an evolution from an absence of pores in the bottom surface to a maximum porosity in the top surface,
and the normalized Young’s modulus evolution through the thickness for different maximum porosity
values and power law exponents, elucidating how this model of porosity distribution affects this
material property.

The next two porosity distribution models were based on the uniform distribution referred to in [47].
In both models, the porosity coefficient (e0) is given by Equation (6), and parameter β can be

calculated through the relation in Equation (7).

e0 = 1−
Eb
Et

, (6)
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β =
1
e0
−

1
e0

( 2
π

√
1− e0 −

2
π
+ 1

)2
, (7)
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• Porosity Model M2:

In this model, the material properties, namely Young’s modulus and Poisson’s ratio, are estimated
by Equations (8) and (9), and the graph of the evolution of the normalized Young modulus through the
thickness is presented in Figure 4.

E(z) =
[
(Et − Eb)

( z
h
+

1
2

)p
+ Eb

]
(1− e0β), (8)

υ(z) =
[
(υt − υb)

( z
h
+

1
2

)p
+ υb

]
(1− e0β). (9)
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• Porosity Model M3:

This model introduces to the previous one a porosity gradient through the thickness, with the
respective effective materials properties being given by:

E(z) =
[
(Et − Eb)

( z
h
+

1
2

)p
+ Eb

][
1− e0βcos2

(
2π

z
h

)]
, (10)

υ(z) =
[
(υt − υb)

( z
h
+

1
2

)p
+ υb

][
1− e0βcos2

(
2π

z
h

)]
. (11)

Figure 5 shows the variation of the normalized Young’s modulus through the thickness. Note that
the porosity distribution fluctuates between maxima and minima along the thickness.

Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 8 of 26 

 

Figure 4. Variation of the normalized Young’s modulus (E(z)) through the thickness for porosity 
model M2. 

• Porosity Model M3: 

This model introduces to the previous one a porosity gradient through the thickness, with the 
respective effective materials properties being given by: ( ) = ( − ) + + 1 − 2 , (10)

( ) = ( −  ) + +  1 − 2 . (11)

Figure 5 shows the variation of the normalized Young’s modulus through the thickness. Note 
that the porosity distribution fluctuates between maxima and minima along the thickness. 

 

Figure 5. Porosity model M3: normalized Young’s modulus (E(z)) through the thickness. 

Note that on the upper surface the normalized Young’s modulus takes the same value for all 
power law exponents evaluated once the equality ( ) = (1 − ) is verified. On the opposite 
surface, Young’s modulus is given by ( ) = (1 − ) , which justifies the fact that the 
corresponding p = 0 curve constitutes an exception from the others, since this particular case 
corresponds to a plate made up of a single phase whose Young’s modulus is given by Et, while in the 
remaining cases the bottom face corresponds to the phase with Young’s modulus given by Eb. 

In all three porosity distribution models, the shear modulus is estimated by: ( ) = ( )
( ) . (12)

In Figures 3b, 4, and 5, the curve corresponding to the case of null power law exponent without 
porosity is also presented. In this case the represented material property is given by Equation (2), 
taking the value of E . Thus, the corresponding normalized form takes the value 1 through the entire 
plate thickness. 

2.3. Constitutive Relation and Finite Element Models 

The static behavior of porous plates with functional classification was evaluated for a set of 
studies through finite element analysis based on the first-order shear deformation theory (FSDT) 
and on third-order shear deformation theory (HSDT). According to FSDT the displacement field can 
be described by: 

Figure 5. Porosity model M3: normalized Young’s modulus (E(z)) through the thickness.

Note that on the upper surface the normalized Young’s modulus takes the same value for all
power law exponents evaluated once the equality E(z) = Et(1− e0β) is verified. On the opposite
surface, Young’s modulus is given by E(z) = Eb(1− e0β), which justifies the fact that the corresponding
p = 0 curve constitutes an exception from the others, since this particular case corresponds to a plate
made up of a single phase whose Young’s modulus is given by Et, while in the remaining cases the
bottom face corresponds to the phase with Young’s modulus given by Eb.

In all three porosity distribution models, the shear modulus is estimated by:

G(z) =
E(z)

2(1 + υ(z))
. (12)

In Figures 3b, 4 and 5, the curve corresponding to the case of null power law exponent without
porosity is also presented. In this case the represented material property is given by Equation (2),
taking the value of Et. Thus, the corresponding normalized form takes the value 1 through the entire
plate thickness.

2.3. Constitutive Relation and Finite Element Models

The static behavior of porous plates with functional classification was evaluated for a set of
studies through finite element analysis based on the first-order shear deformation theory (FSDT) and
on third-order shear deformation theory (HSDT). According to FSDT the displacement field can be
described by:

u(x, y, z) = u0(x, y) + z·θ0
x(x, y),
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v(x, y, z) = v0(x, y) + z·θ0
y(x, y), (13)

w(x, y, z) = w0(x, y),

where u(x,y,z), v(x,y,z), and w(x,y,z) are the displacements of a certain plate coordinate point, and u0(x,y),
v0(x,y) and w0(x,y) represent the displacements of a mid-plane point associated to them. The normals to
the mid-plane rotations are represented by θ0

x and θ0
y, respectively. Thus, this model considers a total of

five degrees of freedom per node, q =
[
u0, v0, w0,θ0

x,θ0
y

]
. Considering small deformations, the elasticity

kinematic relation leads to the following strain field, omitting dependencies for simplicity reasons:

εx = ε0
x + z·k0

x
εy = ε0

y + z·k0
y

γxy = γ0
xy + z·k0

xy

γxz = γ0
xz

γyz = γ0
yz

(14)
ε0

x = ∂u0

∂x
ε0

y = ∂v0

∂y

γ0
xy = ∂u0

∂y + ∂v0

∂x

k0
x =

∂θ0
x

∂x

k0
y =

∂θ0
y

∂y

k0
xy =

∂θ0
y

∂x +
∂θ0

x
∂y

γ0
xz = θ0

x +
∂w0

∂x
γ0

yz = θ0
y +

∂w0

∂y

where εx, εy, and γxy correspond to the two in-plane normal strains and to the in-plane total shear strain,
respectively. The interlaminar transverse shear strains are represented by γyz and γxz. This strain
field is characterized by a null normal transverse strain (εz = 0), denoting thickness inextensibility.
Since the FGM considered in the studies carried out can be considered as an isotropic material, the
constitutive law governing the relationship between the stress and strain fields is given by:

σx

σy

σxy

σyz

σxz


=


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 k·Q44 0
0 0 0 0 k·Q55


·


εx

εy

γxy

γyz

γxz


. (15)

The coefficients Qij, provided by [48], stand for the elastic coefficients, which in the present work
depend on the z coordinate due to the variation in material properties through the thickness direction:

Q11 = Q22 =
EFGM(z)

1−υ2
FGM(z)

Q12 =
υFGM(z)·EFGM(z)

1−υ2
FGM(z)

,

Q44 = Q55 = Q66 = GFGM(z).

(16)

The HSDT displacement field also considered in this work for comparison purposes was proposed
by Kant et al. [49], and is given by:

u(x, y, z) = u0(x, y) + z·θ0
x(x, y) + z3

·θ∗x(x, y),

v(x, y, z) = v0(x, y) + z·θ0
y(x, y) + z3

·θ∗y(x, y), (17)

w(x, y, z) = w0(x, y) + z2
·w∗(x, y).

As can be observed, this higher-order displacement field not only allows for in-plane displacements
that vary as cubic functions of the thickness coordinate, but it also allows for thickness extensibility.
This higher-order theory was implemented for comparison purposes, but was not the main focus of
the present work.

The finite element method was used for the study presented in this work. This method is widely
used due to its great versatility, able to solve a wide range of physical problems ruled by differential
equations. In this numerical method, the domain of a certain problem is discretized into elementary
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subdomains, which obey continuity and equilibrium requirements between adjacent subdomains. The
resolution of a problem by the finite element method can generically be described by three steps [49,50],
as follows. After the pre-processing stage, where all aspects related to the domain discretization and
topology, material and geometrical characteristics, loading and boundary conditions are accomplished,
one proceeds to the analysis phase where the intended analysis is performed and primary variables
are obtained. The results of this analysis can then be post-processed in order to obtain other derived
physical quantities of interest in the third and final phase of this method. The plates analyzed in the
present work had a rectangular geometry configuration (Figure 6) with a graded material distribution,
as already mentioned.
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Figure 6. Plate geometry.

Taking into consideration their geometry, the plates were discretized into quadrilateral finite
elements. To enable a more comprehensive study, we considered bilinear and biquadratic quadrilateral
plate finite elements from the Lagrange family, as illustrated in Figure 7. The bilinear element (a)
contained one node at each vertex (four nodes in total), while the biquadratic element (b) additionally
contained a center node and one node at the midpoint of each side, resulting in a total of nine nodes.
Each node possessed five degrees of freedom—three translations and two rotations associated to the
plate mid-plane, as previously mentioned.

Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 10 of 26 

 

As can be observed, this higher-order displacement field not only allows for in-plane 
displacements that vary as cubic functions of the thickness coordinate, but it also allows for 
thickness extensibility. This higher-order theory was implemented for comparison purposes, but 
was not the main focus of the present work. 

The finite element method was used for the study presented in this work. This method is 
widely used due to its great versatility, able to solve a wide range of physical problems ruled by 
differential equations. In this numerical method, the domain of a certain problem is discretized into 
elementary subdomains, which obey continuity and equilibrium requirements between adjacent 
subdomains. The resolution of a problem by the finite element method can generically be described 
by three steps [49,50], as follows. After the pre-processing stage, where all aspects related to the 
domain discretization and topology, material and geometrical characteristics, loading and boundary 
conditions are accomplished, one proceeds to the analysis phase where the intended analysis is 
performed and primary variables are obtained. The results of this analysis can then be 
post-processed in order to obtain other derived physical quantities of interest in the third and final 
phase of this method. The plates analyzed in the present work had a rectangular geometry 
configuration (Figure 6) with a graded material distribution, as already mentioned. 

 
Figure 6. Plate geometry. 

Taking into consideration their geometry, the plates were discretized into quadrilateral finite 
elements. To enable a more comprehensive study, we considered bilinear and biquadratic 
quadrilateral plate finite elements from the Lagrange family, as illustrated in Figure 7. The bilinear 
element (a) contained one node at each vertex (four nodes in total), while the biquadratic element (b) 
additionally contained a center node and one node at the midpoint of each side, resulting in a total of 
nine nodes. Each node possessed five degrees of freedom—three translations and two rotations 
associated to the plate mid-plane, as previously mentioned. 

  
(a) (b) 

Figure 7. Plate elements from Lagrange family: (a) bilinear element; (b) biquadratic element. 

As the main aim of the present work is related to the assessment of the influence of the shear 
correction factor on the static bending of FGP plates, the procedure considered to achieve the global 
equilibrium equations to be solved was based on the minimization of the plates’ potential energy. 
This mathematical formulation yields for each element a set of equilibrium equations. Considering 
the whole discretized domain where continuity and equilibrium aspects ensure the discretized 
model will be representative, we finally obtain the global equilibrium equation: = . , (18)

where  denotes the problem solution (i.e., the generalized nodal displacements),  represents the generalized forces applied to the plates, and  is the global stiffness 

Figure 7. Plate elements from Lagrange family: (a) bilinear element; (b) biquadratic element.

As the main aim of the present work is related to the assessment of the influence of the shear
correction factor on the static bending of FGP plates, the procedure considered to achieve the global
equilibrium equations to be solved was based on the minimization of the plates’ potential energy. This
mathematical formulation yields for each element a set of equilibrium equations. Considering the
whole discretized domain where continuity and equilibrium aspects ensure the discretized model will
be representative, we finally obtain the global equilibrium equation:{

f
}global = [K]global

·{u}global, (18)

where {u}global denotes the problem solution (i.e., the generalized nodal displacements),
{
f
}global

represents the generalized forces applied to the plates, and [K]global is the global stiffness matrix. The
solution of the problem is obtained after the imposition of the plates’ boundary conditions.
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2.4. Shear Correction Factor

The studies developed in this work are based on FSDT, which requires the introduction of a shear
correction factor on the transverse shear components of the elastic stiffness coefficients matrix in order
to redress the uniform transverse shear stresses/strains arising from the deformation kinematics based
on the displacement field. Despite this need, FSDT-based models continue to be widely used in the
modeling of structures, due to their lower computational cost when compared to other theories and
also due to their applicability domain. It is possible to conclude that, even considering a bilinear
element, results were very good when compared to other authors’ alternative solutions and with
biquadratic elements, while also having a lower computational cost. Regarding the homogeneous
plates, the shear correction value considered was 5/6. However, the overall heterogeneity of FGMs due
to the gradual evolution of their properties makes it desirable to calculate the correction factor for each
specific case [6,43,51].

Shear correction factors determined through predictor–corrector procedures that use iteration
processes depend on plate geometry, as well as boundary and load conditions. Therefore, the factors
thus determined are limited to a given system and cannot be applied to different configurations. The
use of energy considerations for the calculation of shear correction coefficients is quite common in
studies involving laminated composite materials and FGMs [51]. Nguyen et al. [51] worked on this
subject concerning FGMs, comparing the strain energies obtained from the average shear stresses and
from the equilibrium to calculate the shear correction factors. Efraim and Eisenberg developed a shear
correction factor depending on Poisson’s ratio and the volume fractions of both material phases present
in a functionally graded plate [52]. Working on FGPs, Li et al. [53] calculated the shear correction
factor as a function of the power law exponent, thickness-to-length ratio (a/h), and of some constant
coefficients that depend on the material phases involved.

The shear correction factor used in the present work (here represented by k) was estimated using a
formulation similar to the one used by Singha et al. [54]. Accordingly, the reference surface used for the
shear correction factor calculation was the neutral one and not the mid-surface as usual. To this purpose
we considered an FGP with thickness h as illustrated in Figure 8, where zms and zns are the coordinates
of a point in the thickness direction relative to the medium and neutral surfaces, respectively.
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According to this formulation, the shift of the neutral surface (d) is given by:

d =

∫ h/2
−h/2 E(zms)·zms dzms∫ h/2
−h/2 E(zms) dzms

. (19)

The shear correction factor is then derived from the equivalent energy principle, and can be
determined by Equation (20) [54]:
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k =

(∫ h
2−d

−
h
2−d

(∫ zns

−
h
2−d E(ξ)· ξdξ

)
dzns

)2

∫ zns

−
h
2−d Q55 dzns·

∫ h
2−d

−
h
2−d

(∫ zns
−

h
2−d

E(ξ)· ξdξ
)2

G(zns)

. (20)

As applied to determine shear correction factor, all calculations carried out a posteriori were
simply affected by a referential translation according to the coordinate vector (0, 0, −d).

3. Results

The present section, dedicated to the presentation of results and their preliminary discussion,
comprises a first verification study, after which a set of case studies considering different porosity
distributions models are presented and analyzed concerning their influence on neutral surface shift,
shear correction factor, and maximum transverse displacement.

3.1. Verification Studies

3.1.1. Shear Correction Factor

In the course of the literature review, no studies were found on the correction factor in the context
of FGMs considering porosity distributions. For this reason, this first verification study regarding the
approach applied to the correction factor determination was carried out considering a metal/ceramic
functionally graded plate where the volume fraction of the ceramic phase is given by Equation (1).
To this purpose, a square plate with unitary length and aspect ratio of 100 was considered, according
to [43]. The results obtained for different power law exponents and Young’s modulus ratios between
both ceramic and metallic phases are presented in Table 1, showing an excellent agreement with the
reference results for all parameter values considered.

Table 1. Shear correction factor for different material parameters.

p
Ec/Em

1 2 4 6

k [43] k k [43] k k [43] k k [43] k

0 5/6 0.8333 5/6 0.8333 5/6 0.8333 5/6 0.8333
1 5/6 0.8333 0.8320 0.8320 0.8305 0.8305 0.8305 0.8305
2 5/6 0.8333 0.8095 0.8095 0.7804 0.7804 0.7662 0.7662
5 5/6 0.8333 0.7891 0.7891 0.7175 0.7175 0.6643 0.6641
10 5/6 0.8333 0.7989 0.7989 0.7316 0.7318 0.6743 0.6746

p
Ec/Em

8 10 15 20

k [43] k k [43] k k [43] k k [43] k

0 5/6 0.8333 5/6 0.8333 5/6 0.8333 5/6 0.8333
1 0.8308 0.8308 0.8312 0.8312 0.8319 0.8319 0.8323 0.8323
2 0.7593 0.7594 0.7563 0.7563 0.7555 0.7556 0.758 0.7580
5 0.6238 0.6235 0.5923 0.5919 0.5381 0.5377 0.5046 0.5043
10 0.6262 0.6266 0.5856 0.5860 0.5073 0.5080 0.4513 0.4521

3.1.2. Porosity Distribution Model 1 (M1)

The first porosity model (M1) was submitted to verification studies. For this, and according to
reference [6], an FGM square plate with 17.6 µm thickness and an aspect ratio of 20 was considered.
Regarding the constituent materials, the Young moduli of the top and bottom surfaces were assumed
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to be Et = 14.4 GPa and Eb = 1.44 GPa respectively, and in this particular study, the Poisson ratio was
considered constant, assuming the value of 0.38. The plate, simply supported, was considered under a
uniformly distributed load with 100 kPa magnitude and was discretized in a 10 × 10 mesh of four
node finite elements (Q4).

The normalized transverse displacement and the respective relative deviation to the reference,
presented in Table 2, were obtained by Equations (21) and (22), respectively.

w =
Eb·h3

q0·a4
w
(

a
2

,
b
2

, 0
)
, (21)

δ(%) =
wpresent

−wre f erence

wre f erence
·100(%). (22)

Table 2. Results of the porosity distribution model 1 (M1) verification study.

p φ w δ (%)

0
0 4.220 × 10−3 1.49

0.2 4.798 × 10−3 0.43
0.5 6.242 × 10−3 −0.57

1 0.5 1.452 × 10−2 0.26
5 0.5 2.685 × 10−2 −0.18

The small relative deviations observed make it possible to conclude that there is very good
agreement between the present model and the reference results, although a different approach was
applied. In particular, the higher relative deviation occurs when considering an isotropic homogeneous
material without porosities (p = 0, φ = 0).

3.2. Case Studies

In order to perform a set of parametric studies relevant for this work’s objectives, we carried out
simulations on a set of case studies, in which FGM square plates with 25 mm thickness and aspect
ratio 20 were considered. The material properties involved in the studies presented in this section are
given in Table 3, and the volume fraction of TiO2 is given by Equation (1). The plates were considered
simply supported and submitted to a uniform load with 100 kPa of magnitude.

Table 3. Material properties.

Material Young’s Modulus (GPa) Poisson’s Ratio

Aluminum (Al) 70 0.33
Titanium Oxide (TiO2) 230 0.27

The case studies show the influence of the different porosity distribution models in the neutral
surface shift, shear correction factor, and maximum transverse displacement for a range of power law
exponents. The influence of finite element type used was also studied.

3.2.1. Influence on Neutral Surface Shift and Shear Correction Factor

In this subsection we present the studies performed to explore the effects of the porosity distribution
on the neutral surface shift and shear correction factor.

• Porosity Distribution Model 1 (M1):

When considering porosities distributed according to model M1, it is important to evaluate how the
maximum porosity value combined with the power law exponent affects the neutral surface shift and the
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shear correction factor. For this purpose, the following sets of values were respectively considered for
the maximum porosity value and for the exponent of the power law: φ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
and p = {0, 1, 2, 5, 10}. The results obtained are presented in Table 4, Figures 9 and 10.

Table 4. Porosities distribution M1: neutral surface’ shift and shear correction factor.

φ p d (m) d/h k

0

0 0 0 5/6
1 2.2222 × 10−3 0.0889 0.8279
2 2.7027 × 10−3 0.1081 0.7828
5 2.4631 × 10−3 0.0985 0.7344

10 1.7921 × 10−3 0.0717 0.7499

0.1

0 −2.3222 × 10−4 −0.0093 0.8316
1 2.0233 × 10−3 0.0809 0.8289
2 2.4955 × 10−3 0.0998 0.7843
5 2.2257 × 10−3 0.0890 0.7359

10 1.5422 × 10−3 0.0617 0.7505

0.2

0 −4.9832 × 10−4 −0.0199 0.8297
1 1.7903 × 10−3 0.0716 0.8304
2 2.2520 × 10−3 0.0901 0.7865
5 1.9481 × 10−3 0.0779 0.7378

10 1.2519 × 10−3 0.0501 0.7513

0.3

0 −8.0630 × 10−4 −0.0323 0.8275
1 1.5138 × 10−3 0.0606 0.8325
2 1.9620 × 10−3 0.0785 0.7894
5 1.6190 × 10−3 0.0648 0.7403

10 9.1039 × 10−4 0.0364 0.7522

0.4

0 −1.1669 × 10−3 −0.0467 0.8248
1 1.1805 × 10−3 0.0472 0.8353
2 1.6107 × 10−3 0.0644 0.7934
5 1.2227 × 10−3 0.0489 0.7436

10 5.0299 × 10−4 0.0201 0.7534

0.5

0 −1.5948 × 10−3 −0.0638 0.8217
1 7.7050 × 10−4 0.0308 0.8390
2 1.1761 × 10−3 0.0470 0.7988
5 7.3631 × 10−4 0.0295 0.7477

10 8.5279 × 10−6 0.0003 0.7546

0.6

0 2.1109 × 10−3 0.0844 0.8177
1 2.5421 × 10−4 0.0102 0.8439
2 6.2495 × 10−4 0.0250 0.8059
5 1.2505 × 10−4 0.0050 0.7529

10 −6.0425 × 10−4 −0.0242 0.7560

Independent of the φ value, the neutral surface shift increased from p = 0 to p = 2, where it had its
maximum value, then decreasing from p = 2 to p = 10. Additionally, for all maximum porosity values
considered, except for the case where φ = 0.6, the shear correction factor decreased for power law
exponents between 0 and 5, increasing for the last transition from p = 5 to p = 10. This is explained by
the fact that, for higher values of the power law exponent, the functionally graded plate approaches a
homogeneous isotropic composition, and at the limit where p tends to infinity, the plate will consist of
a single phase (aluminum in this case), so the value of the shear correction factor tends to the typical
value 5/6.

When the maximum porosities took the values 0 or 0.1, the shear correction factor decreased
from p = 0 to p = 5, increasing for higher values of power law exponent. For the remaining values of
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maximum porosities this factor increased in the transition from p = 0 to p = 1, decreased from p = 1 to
p = 5, and increased again until p = 10.
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In the case of an isotropic homogeneous plate (p = 0), the shear correction factor decreased when
the maximum porosity values increased. This was also true for the neutral surface shift, excepting for
the abrupt increase in the transition between φ = 0.5 and φ = 0.6. For other power law exponents, as
the maximum porosity values increased the neutral surface shift decreased and the shear correction
factor increased.

• Porosity Distribution Models 2 and 3 (M2 and M3):

Concerning these models, we evaluated the influence of the power law exponent, taking the
set of integers from 0 to 10. Figures 11 and 12 show the evolution of neutral surface shift and shear
correction factor, respectively, for both distribution models M2 and M3. The curves show a neutral
surface shift behavior similar to the one observed in the previous study and a shear correction factor
with a decreasing behavior up to p = 5, after which it increased with the exponent of the power law.
This behavior was similar in both models. The porosity distribution M3 led to smaller neutral surface
shifts, and the difference between both models increased with increasing power law exponent.

The porosity distribution model M3 generated lower values for the shear correction factor, with
the difference between the two models decreasing with the increase in the power law exponent, as
opposed to what was observed for the neutral surface shift.



Math. Comput. Appl. 2020, 25, 25 16 of 26Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 16 of 26 

 

 

Figure 11. Porosity distribution models M2 and M3: evolution of neutral surface shift. 

The porosity distribution model M3 generated lower values for the shear correction factor, with 
the difference between the two models decreasing with the increase in the power law exponent, as 
opposed to what was observed for the neutral surface shift. 

 

Figure 12. Porosity distribution models M2 and M3: evolution of the shear correction factor. 

3.2.2. Influence on Absolute Maximum Transverse Displacement 

In the studies presented in this section, the absolute maximum transverse displacement 
corresponds to the magnitude of the plate’s center displacement given the considered boundary and 
load conditions. The results include both 4-node (Q4) and 9-node (Q9) plate finite element results, 
using the calculated shear correction factor (Section 2.4) here denoted by  and the often used 
value of 5/6. The relative deviations presented were determined by the following equations: 

(%) = − . 100(%), (23)

(%) = − . 100(%). (24)

Figure 11. Porosity distribution models M2 and M3: evolution of neutral surface shift.

Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 16 of 26 

 

 

Figure 11. Porosity distribution models M2 and M3: evolution of neutral surface shift. 

The porosity distribution model M3 generated lower values for the shear correction factor, with 
the difference between the two models decreasing with the increase in the power law exponent, as 
opposed to what was observed for the neutral surface shift. 

 

Figure 12. Porosity distribution models M2 and M3: evolution of the shear correction factor. 

3.2.2. Influence on Absolute Maximum Transverse Displacement 

In the studies presented in this section, the absolute maximum transverse displacement 
corresponds to the magnitude of the plate’s center displacement given the considered boundary and 
load conditions. The results include both 4-node (Q4) and 9-node (Q9) plate finite element results, 
using the calculated shear correction factor (Section 2.4) here denoted by  and the often used 
value of 5/6. The relative deviations presented were determined by the following equations: 

(%) = − . 100(%), (23)

(%) = − . 100(%). (24)

Figure 12. Porosity distribution models M2 and M3: evolution of the shear correction factor.

3.2.2. Influence on Absolute Maximum Transverse Displacement

In the studies presented in this section, the absolute maximum transverse displacement corresponds
to the magnitude of the plate’s center displacement given the considered boundary and load conditions.
The results include both 4-node (Q4) and 9-node (Q9) plate finite element results, using the calculated
shear correction factor (Section 2.4) here denoted by kcalc and the often used value of 5/6. The relative
deviations presented were determined by the following equations:

δQ4(%) =

wQ4

(k= 5
6 )
−wQ4

(kcalc)

wQ4
(kcalc)

·100(%), (23)

δQ9(%) =

wQ9

(k= 5
6 )
−wQ9

(kcalc)

wQ9
(kcalc)

·100(%). (24)

In the convergence study presented for porosity distribution model 1, the relative deviations
were determined by Equation (25), where the index i denotes the order of the data in the respective
results table.

δmesh(%) =
wi −wi−1

wi−1
·100(%), i ≥ 2 (25)
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• Porosity Distribution Model 1 (M1):

We developed convergence studies in order to evidence the reason for the discretization selection.
To illustrate them, we present the results obtained for two sets of distinct parameterizations of maximum
porosities and power law exponent values, considering Q4 finite elements and FSDT. The results
achieved and presented in Table 5 show that the mesh refinement from 10 × 10 elements presents a
deviation of less than 0.2%. Based on this evidence, the following studies were performed considering
a mesh of 10 × 10 elements.

Table 5. Porosity distribution model M1: convergence study.

φ p Mesh w( a
2 , b

2 ,0) (m) δmesh (%)

0.1 1

4 × 4 −1.3855 × 10−4 -
6 × 6 −1.4035 × 10−4 1.30
8 × 8 −1.4091 × 10−4 0.39

10 × 10 −1.4116 × 10−4 0.18
12 × 12 −1.4129 × 10−4 0.10
14 × 14 −1.4137 × 10−4 0.06
16 × 16 −1.4142 × 10−4 0.04
18 × 18 −1.4146 × 10−4 0.03
20 × 20 −1.4149 × 10−4 0.02

0.5 5

4 × 4 −2.5263 × 10−4 -
6 × 6 −2.5597 × 10−4 1.32
8 × 8 −2.5701 × 10−4 0.40

10 × 10 −2.5747 × 10−4 0.18
12 × 12 −2.5773 × 10−4 0.10
14 × 14 −2.5788 × 10−4 0.06
16 × 16 −2.5798 × 10−4 0.04
18 × 18 −2.5804 × 10−4 0.03
20 × 20 −2.5809 × 10−4 0.02

The results obtained regarding transverse displacement at the plate’s center are presented in
Table 6. In this study, the displacement increased with increasing maximum porosity for all power law
exponents considered, as expected.

Table 6. Porosity distribution model M1: plates center transverse displacement for different finite
models and shear correction factor approaches.

φ p
Q4 Q9

kcalc k= 5/6 kcalc k= 5/6

w( a
2 , b

2 ,0) (m) δQ4 (%) w( a
2 , b

2 ,0) (m) δQ9 (%)

0

0 −7.9330 × 10−5 0.00 −7.9625 × 10−5 0.00
1 −1.3168 × 10−4 −5.14 −1.3215 × 10−4 −4.96
2 −1.5267 × 10−4 −7.17 −1.5321 × 10−4 −6.94
5 −1.7054 × 10−4 −5.51 −1.7114 × 10−4 −5.33
10 −1.8510 × 10−4 −2.95 −1.8574 × 10−4 −2.85

0.3

0 −9.9540 × 10−5 −0.94 −9.9930 × 10−5 −0.93
1 −1.6493 × 10−4 −1.81 −1.6556 × 10−4 −1.70
2 −1.9003 × 10−4 −3.06 −1.9075 × 10−4 −2.91
5 −2.1256 × 10−4 −1.83 −2.1335 × 10−4 −1.73
10 −2.3281 × 10−4 −0.50 −2.3367 × 10−4 −0.46

0.6

0 −1.3788 × 10−4 −5.65 −1.3845 × 10−4 −5.55
1 −2.2603 × 10−4 0.13 −2.2695 × 10−4 0.14
2 −2.5832 × 10−4 0.03 −2.5936 × 10−4 0.07
5 −2.9115 × 10−4 −0.07 −2.9231 × 10−4 −0.06
10 −3.2350 × 10−4 −0.91 −3.2479 × 10−4 −0.91
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Comparing the results with 4-node elements and different shear correction factor approaches,
the relative deviation increased from p = 0 to p = 2, decreasing with increasing power law exponents.
Moreover, the increase in maximum porosity value resulted in a relative deviation increase for p =

0—the opposite behavior to that verified for the intermediate power law exponents. When considering
p = 10, the relative deviations showed an oscillating behavior with increasing maximum porosity value.
However, for maximum porosity values of 0.5 and 0.6 and intermediate power law exponents these
deviations were nearly zero, except for the case of null power law exponent. The same behavior was
verified when doing the same comparative study with 9-node elements, except for the specific case
considering a maximum porosity value of 0.6.

Additionally, we verified that when considering the common value of 5/6 for the shear correction
factor, the relative deviation between the results observed for Q4 and Q9 elements was very low,
presenting a decreasing behavior with increasing maximum porosity value, except for p = 0, where
the opposite was verified. With the other approach, this relative deviation also presented very low
values, although the increase of maximum porosity value resulted in higher deviations for all power
law exponents considered.

Figure 13 shows the plate’s center displacement for different power law exponents and maximum
porosity values, obtained considering Q4 finite elements. In the figure, it is clear that higher
maximum porosity values corresponded to higher maximum transverse displacement magnitudes for
all exponents, with the effect being more pronounced when considering larger exponents.

Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 18 of 26 

 

φ p 
Q4 Q9 

 = /   = /  , ,  (m)  (%) , ,  (m)  (%) 
5 −2.1256 × 10−4 −1.83 −2.1335 × 10−4 −1.73 
10 −2.3281 × 10−4 −0.50 −2.3367 × 10−4 −0.46 

0.6 

0 −1.3788 × 10−4 −5.65 −1.3845 × 10−4 −5.55 
1 −2.2603 × 10−4 0.13 −2.2695 × 10−4 0.14 
2 −2.5832 × 10−4 0.03 −2.5936 × 10−4 0.07 
5 −2.9115 × 10−4 −0.07 −2.9231 × 10−4 −0.06 
10 −3.2350 × 10−4 −0.91 −3.2479 × 10−4 −0.91 

Comparing the results with 4-node elements and different shear correction factor approaches, 
the relative deviation increased from p = 0 to p = 2, decreasing with increasing power law exponents. 
Moreover, the increase in maximum porosity value resulted in a relative deviation increase for p = 
0—the opposite behavior to that verified for the intermediate power law exponents. When 
considering p = 10, the relative deviations showed an oscillating behavior with increasing maximum 
porosity value. However, for maximum porosity values of 0.5 and 0.6 and intermediate power law 
exponents these deviations were nearly zero, except for the case of null power law exponent. The 
same behavior was verified when doing the same comparative study with 9-node elements, except 
for the specific case considering a maximum porosity value of 0.6. 

Additionally, we verified that when considering the common value of 5/6 for the shear 
correction factor, the relative deviation between the results observed for Q4 and Q9 elements was 
very low, presenting a decreasing behavior with increasing maximum porosity value, except for p = 
0, where the opposite was verified. With the other approach, this relative deviation also presented 
very low values, although the increase of maximum porosity value resulted in higher deviations for 
all power law exponents considered. 

Figure 13 shows the plate’s center displacement for different power law exponents and 
maximum porosity values, obtained considering Q4 finite elements. In the figure, it is clear that 
higher maximum porosity values corresponded to higher maximum transverse displacement 
magnitudes for all exponents, with the effect being more pronounced when considering larger 
exponents. 

 

Figure 13. Porosity distribution model M1: evolution of plate’s center transverse displacement. 

In order to compare the results obtained by applying different shear deformation theories, 
keeping the configurations considered above, the plate’s center displacement was determined by 
applying the third-order shear deformation theory (HSDT) proposed by [49], and also implemented 

Figure 13. Porosity distribution model M1: evolution of plate’s center transverse displacement.

In order to compare the results obtained by applying different shear deformation theories, keeping
the configurations considered above, the plate’s center displacement was determined by applying the
third-order shear deformation theory (HSDT) proposed by [49], and also implemented by the authors for
this purpose. The results obtained are presented in Table 7, with the relative deviations determined by:

δHSDT(%) =
wHSDT −wFSDT

wFSDT
·100(%). (26)

When considering a homogeneous isotropic material (p = 0), the deviation between the results
obtained was very small for low maximum porosity values, increasing with the increase in porosity.
Fixing the power law exponent, the increase of maximum porosities values led to a decrease in the
relative deviations, except for the exponent p = 10 where the transition between φ = 0.4 and φ = 0.5
led to an increase in the relative deviation. For all the maximum porosity values presented, there were
slighter relative deviations in cases where the evolution of the material’s constitution through the
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thickness was smoother (i.e., for lower and higher power law exponents), except for the case where
φ = 0.6, for which the highest power law exponent presented a relative deviation higher than the
other non-nulls.

Table 7. Porosity distribution model M1: plate’s center transverse displacement for different shear
deformation theories.

φ p wFSDT( a
2 , b

2 ,0) (m) wHSDT( a
2 , b

2 ,0) (m) δHSDT (%)

0

0 −7.9330 × 10−5
−7.9359 × 10−5 0.04

1 −1.3168 × 10−4
−1.2363 × 10−4 −6.11

2 −1.5267 × 10−4
−1.3980 × 10−4 −8.43

5 −1.7054 × 10−4
−1.5964 × 10−4 −6.39

10 −1.8510 × 10−4
−1.7875 × 10−4 −3.43

0.1

0 −8.5029 × 10−5
−8.4957 × 10−5 −0.08

1 −1.4116 × 10−4
−1.3402 × 10−4 −5.05

2 −1.6335 × 10−4
−1.5175 × 10−4 −7.10

5 −1.8250 × 10−4
−1.7308 × 10−4 −5.16

10 −1.9861 × 10−4
−1.9351 × 10−4 −2.57

0.2

0 −9.1656 × 10−5
−9.1228 × 10−5 −0.47

1 −1.5208 × 10−4
−1.4588 × 10−4 −4.08

2 −1.7562 × 10−4
−1.6538 × 10−4 −5.83

5 −1.9628 × 10−4
−1.8833 × 10−4 −4.05

10 −2.1425 × 10−4
−2.1017 × 10−4 −1.91

0.3

0 −9.9540 × 10−5
−9.8380 × 10−5 −1.17

1 −1.6493 × 10−4
−1.5965 × 10−4 −3.20

2 −1.9003 × 10−4
−1.8120 × 10−4 −4.64

5 −2.1256 × 10−4
−2.0596 × 10−4 −3.10

10 −2.3281 × 10−4
−2.2936 × 10−4 −1.48

0.4

0 −1.0919 × 10−4
−1.0672 × 10−4 −2.27

1 −1.8050 × 10−4
−1.7601 × 10−4 −2.49

2 −2.0744 × 10−4
−2.0002 × 10−4 −3.58

5 −2.3237 × 10−4
−2.2687 × 10−4 −2.36

10 −2.5551 × 10−4
−2.5202 × 10−4 −1.37

0.5

0 −1.2147 × 10−4
−1.1671 × 10−4 −3.92

1 −2.0008 × 10−4
−1.9602 × 10−4 −2.03

2 −2.2932 × 10−4
−2.2304 × 10−4 −2.74

5 −2.5747 × 10−4
−2.5241 × 10−4 −1.97

10 −2.8446 × 10−4
−2.7959 × 10−4 −1.71

0.6

0 −1.3788 × 10−4
−1.2913 × 10−4 −6.35

1 −2.2603 × 10−4
−2.2146 × 10−4 −2.02

2 −2.5832 × 10−4
−2.5238 × 10−4 −2.30

5 −2.9115 × 10−4
−2.8491 × 10−4 −2.14

10 −3.2350 × 10−4
−3.1455 × 10−4 −2.77

• Porosity Distribution Models M2 and M3:

The results presented in Tables 8 and 9 were obtained considering porosity distribution models
M2 and M3, for Q4 and Q9 finite element discretizations and different shear correction factor
approaches, respectively.
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Table 8. Porosity distribution model M2: plate’s center transverse displacement for different finite
elements and shear correction factor approaches.

p
Q4 Q9

kcalc k= 5/6 kcalc k= 5/6

w( a
2 , b

2 ,0) (m) δQ4 (%) w( a
2 , b

2 ,0) (m) δQ9 (%)

0 −1.6403 × 10−4 0.00 −1.6472 × 10−4 0.00
1 −2.7631 × 10−4 −5.20 −2.7747 × 10−4 −5.01
2 −3.2144 × 10−4 −7.21 −3.2278 × 10−4 −6.95
3 −3.4037 × 10−4 −7.01 −3.4178 × 10−4 −6.76
4 −3.5137 × 10−4 −6.28 −3.5282 × 10−4 −6.05
5 −3.5972 × 10−4 −5.50 −3.6120 × 10−4 −5.31
6 −3.6697 × 10−4 −4.81 −3.6848 × 10−4 −4.64
7 −3.7359 × 10−4 −4.22 −3.7512 × 10−4 −4.06
8 −3.7975 × 10−4 −3.72 −3.8131 × 10−4 −3.58
9 −3.8552 × 10−4 −3.29 −3.8710 × 10−4 −3.17

10 −3.9093 × 10−4 −2.94 −3.9254 × 10−4 −2.83

Table 9. Porosity distribution model M3: plate’s center transverse displacement for different finite
elements and shear correction factor approaches.

p
Q4 Q9

kcalc k= 5/6 kcalc k= 5/6

w( a
2 , b

2 ,0) (m) δQ4 (%) w( a
2 , b

2 ,0) (m) δQ9 (%)

0 −1.1377 × 10−4 −0.10 −1.1422 × 10−4 −0.10
1 −1.8911 × 10−4 −4.98 −1.8984 × 10−4 −4.80
2 −2.2387 × 10−4 −7.09 −2.2473 × 10−4 −6.85
3 −2.3900 × 10−4 −6.79 −2.3991 × 10−4 −6.56
4 −2.4781 × 10−4 −5.91 −2.4875 × 10−4 −5.71
5 −2.5454 × 10−4 −5.01 −2.5551 × 10−4 −4.84
6 −2.6041 × 10−4 −4.24 −2.6140 × 10−4 −4.09
7 −2.6576 × 10−4 −3.59 −2.6677 × 10−4 −3.46
8 −2.7070 × 10−4 −3.07 −2.7173 × 10−4 −2.96
9 −2.7529 × 10−4 −2.64 −2.7633 × 10−4 −2.54

10 −2.7953 × 10−4 −2.29 −2.8059 × 10−4 −2.21

In general, both porosity distribution models led to the same verifications about relative deviations.
Like in the previous study, the relative deviations δQ4 and δQ9 increased for increasing power law
exponents between p = 0 and p = 2, after which these deviations presented a decreasing behavior.
Additionally, comparing Q4 and Q9 results denoted by kcal we verified that the relative deviation was
maximal when p = 0, and presented a decreasing behavior with increasing power law exponent. When
k = 5/6, the relative deviation of Q4 and Q9 to Q4 with kcalc also increased from p = 0 to p = 2, then
decreased with increasing power law exponent in both comparative analyses.

Figure 14 depicts the behavior of the plate’s center transverse displacement, using Q4 finite
elements, for the power law exponents considered, evidencing the fact that porosity distribution model
M3 provided smaller displacements than model M2, and the increase in the exponent of the power law
induced a greater difference between the results obtained with each model.
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Similar to the M1 porosity distribution model, the plate’s center displacements for models M2
and M3 were also obtained, considering the same third-order shear deformation theory. The results
obtained for both porosity distribution models with the different shear deformation theories are shown
in Table 10, where the relative deviations presented were determined by Equation (26). The results
show a behavior similar to the one observed and described for model M1 about the effect of the power
law exponent on the relative deviation.

Table 10. Porosity distribution models M2 and M3: plate’s center transverse displacement for different
shear deformation theories.

p M2 M3

wFSDT( a
2 , b

2 ,0) (m) wHSDT( a
2 , b

2 ,0) (m) δHSDT (%) wHSDT( a
2 , b

2 ,0) (m) wHSDT( a
2 , b

2 ,0) (m) δHSDT (%)

0 −1.6403 × 10−4
−1.6407 × 10−4 0.03 −1.1377 × 10−4

−1.1308 × 10−4 −0.60
1 −2.7631 × 10−4

−2.6157 × 10−4 −5.34 −1.8911 × 10−4
−1.7729 × 10−4 −6.25

2 −3.2144 × 10−4
−2.9782 × 10−4 −7.35 −2.2387 × 10−4

−2.0457 × 10−4 −8.62
3 −3.4037 × 10−4

−3.1621 × 10−4 −7.10 −2.3900 × 10−4
−2.1909 × 10−4 −8.33

4 −3.5137 × 10−4
−3.2917 × 10−4 −6.32 −2.4781 × 10−4

−2.2945 × 10−4 −7.41
5 −3.5972 × 10−4

−3.3992 × 10−4 −5.50 −2.5454 × 10−4
−2.3807 × 10−4 −6.47

6 −3.6697 × 10−4
−3.4941 × 10−4 −4.79 −2.6041 × 10−4

−2.4565 × 10−4 −5.67
7 −3.7359 × 10−4

−3.5798 × 10−4 −4.18 −2.6576 × 10−4
−2.5247 × 10−4 −5.00

8 −3.7975 × 10−4
−3.6582 × 10−4 −3.67 −2.7070 × 10−4

−2.5862 × 10−4 −4.46
9 −3.8552 × 10−4

−3.7302 × 10−4 −3.24 −2.7529 × 10−4
−2.6421 × 10−4 −4.02

10 −3.9093 × 10−4
−3.7967 × 10−4 −2.88 −2.7953 × 10−4

−2.6928 × 10−4 −3.67

In the present work, the three porosity distributions analyzed showed some similarities regarding
the estimation of effective material properties. Noting that for the materials considered, the product
e0β assumed an approximate value of 0.49, we can then compare this case for models 2 and 3 (M2 and
M3) to the case where in model 1 (M1) the maximum porosity value took the value 0.5. In this sense,
Table 11 presents the results obtained under these conditions, considering a Q4 plate model and a shear
correction factor determined with Equation (20), with respect to neutral surface shift, shear correction
factor, and plate’s center displacement.
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Table 11. Results obtained with the three porosity distribution models considered.

p Model 1 (φ = 0.5) Model 2 Model 3

d/h k w( a
2 , b

2 ,0) (m) d/h k w( a
2 , b

2 ,0) (m) d/h k w( a
2 , b

2 ,0) (m)

0 −0.0638 0.8217 −1.215 × 10−4 0 5/6 −1.640 × 10−4 2.6 × 10−25 0.7632 −1.138 × 10−4

1 0.0308 0.8390 −2.001 × 10−4 0.0889 0.8291 −2.763 × 10−4 0.0845 0.7590 −1.891 × 10−4

2 0.0470 0.7988 −2.293 × 10−4 0.1081 0.7853 −3.214 × 10−4 0.1033 0.7199 −2.239 × 10−4

5 0.0295 0.7477 −2.575 × 10−4 0.0985 0.7371 −3.597 × 10−4 0.0899 0.6791 −2.545 × 10−4

10 0.0003 0.7546 −2.845 × 10−4 0.0717 0.7519 −3.909 × 10−4 0.0604 0.7074 −2.795 × 10−4

These results indicate that porosity distribution M2 promoted greater displacement of the plate’s
center, whereas model M3 led to smaller displacements. Regarding the neutral surface shift, in the case
of model M1, it started to assume a negative value when p = 0 (the highest shift for the exponents
evaluated). Then, the neutral surface approached the medium surface and moved away, presenting
this behavior from p = 0 to p = 2, after which the neutral surface shift assumed smaller and smaller
values in the sense of a new approximation between the neutral and medium surfaces as the exponent
of the power law increased. In models M2 and M3 the neutral surface shift presented a monotonic
increasing behavior from p = 0 to p = 2, starting with coincident neutral and medium surfaces when p
= 0, then decreasing with increasing power law exponents, presenting higher neutral surface shifts
than those verified with model 3.

Regarding the shear correction factor, there was an oscillating behavior observed in model M1,
with an increasing trend between p = 0 and p = 1, a decreasing one between p = 2 and p = 5, and
finishing with an increasing trend again from p = 5 to p = 10. In models M2 and M3, this factor
presented a decreasing behavior with increasing power law exponents until p = 5, and then increases
from p = 5 to p = 10. It is important to note that in the results presented in Table 11 the null power
law exponent corresponds to a material constituted only by titanium oxide, but with the presence of a
porosity distribution.

In the particular case of model M3 considering p = 0, the neutral surface presented a shift from the
medium surface that can numerically be considered as zero. However, it is important to highlight that
this result does not lead to the expected shear correction factor value of 5/6, as verified with model M2.
For this reason, the authors decided to maintain the value of 2.6 × 10−25 for the respective normalized
neutral surface shift, d/h.

4. Discussion and Conclusions

The analyses carried out on the various case studies led to the following conclusions:

• In all porosity distributions models studied, the neutral surface shift increased for power law
exponents between 0 and 2, and for larger exponents it showed a decreasing behavior.

• The studies of the influence of porosity distribution model M1 on the shear correction factor
showed that for a certain power law exponent the shear correction factor increased with increasing
maximum porosity values, except for the case in which p = 0 which corresponds to a plate
constituted only by TiO2. The increasing behavior was more pronounced when the power law
exponent took the value 2, and was less pronounced for the higher power law exponents considered.

• Concerning the influence of the porosity distribution models on the deviation from the neutral
surface, models M2 and M3 resulted in behaviors similar to each other and similar to those verified
in the corresponding analysis carried out on model M1, with model M2 leading to lower neutral
surface shifts. The difference between the models increased with increasing power law exponents.

• With respect to the shear correction factor, porosity distribution models M2 and M3 showed
a similar behavior, with M3 presenting lower values (i.e., leading to higher corrections of the
transverse shear stiffness coefficients). In this case, the difference between both models decreased
with increasing power law exponents.
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• Regarding the maximum transverse displacement, and in correspondence to the expected trend,
all case studies showed an increasing behavior with the increase in maximum porosity values and
power law exponents. In the case of model M1, for a certain power law exponent the increase
in the plate’s center displacement became more pronounced as the maximum porosity value
increased. The increase in the magnitude of the maximum transverse displacement with the
increase of power law exponent is explained by the fact that higher exponents correspond to a
smaller volume fraction of the stiffer phase, TiO2.

• The last study carried out to promote a comparison between the three porosity distributions
demonstrated that model M2 led to higher displacements of the plate’s center, while model M3 led
to lower ones. Except for the case of null power law exponent, in which model M2 presented the
higher shear correction factor and model M3 the lower one, in the remaining power law exponents
considered model M1 and model M3 presented the higher and the lower shear correction factors,
respectively. Moreover, the shear correction factor presented a similar behavior with the increase
of power law exponent in both models M2 and M3, decreasing from p = 0 to p = 5, and increasing
in the last transition between p = 5 and p = 10. The first model had a different behavior concerning
the shear correction factor and power law exponent relation, first presenting an increase in the
transition between p = 0 and p = 1, decreasing for the intermediate exponents, and increasing in
the transition between the two largest exponents presented.

• The results regarding the maximum absolute plate displacement obtained with the plate elements
Q4 and Q9 were quite close to each other in most of the studied configurations. Therefore,
depending on the application, in order to obtain a shorter computing time the Q4 model may be a
good choice, resulting in an accuracy similar to the one obtained with the Q9 model.

• When comparing the relative deviations between the results obtained with the present FSDT and
HSDT, model M1 showed an increasing relative deviation with increasing maximum porosity
values when considering a null power law exponent. For all three porosity distribution models,
the lower relative deviations obtained, corresponded to the lower and to the highest power law
exponents (i.e., to smoother material evolutions through the thickness).

• In the future, it is important to give continuity to the development of theoretical models to
describe the real porosity distributions and how they influence the resulting material properties
and, consequently, the constitutive relations. Obtaining more accurate predictions of porous
functionally graded material properties and/or designed ones, will continue to be an important
research topic in order to allow for higher-quality predictions of structures’ behavior.

• Another important aspect and a limitation of the present work is related to the behavior prediction
of thicker plate structures with different porosity models, wherein higher-order models are
expected to behave better. However, it will be important to compare the response achieved via
higher-order models with the present results under comparable situations.
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