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Abstract: We propose a one-dimensional Saint-Venant (open-channel) model for overland flows,
including a water input–output source term modeling recharge via rainfall and infiltration (or ex-
filtration). We derive the model via asymptotic reduction from the two-dimensional Navier–Stokes
equations under the shallow water assumption, with boundary conditions including recharge via
ground infiltration and runoff. This new model recovers existing models as special cases, and adds
more scope by adding water-mixing friction terms that depend on the rate of water recharge. We pro-
pose a novel entropy function and its flux, which are useful in validating the model’s conservation or
dissipation properties. Based on this entropy function, we propose a finite volume scheme extending
a class of kinetic schemes and provide numerical comparisons with respect to the newly introduced
mixing friction coefficient. We also provide a comparison with experimental data.

Keywords: simulation; shallow water; Saint-Venant; rainfall; recharge; precipitation; friction; water

1. Introduction

In quantifying the dynamics of a watercourse, the most important components of the
hydrologic recharge and loss are the precipitation and infiltration processes, respectively.
These are particularly important today in understanding and forecasting the impact of
climate variability on the human and natural environment. Modeling these processes
and predicting the motion of water is a difficult task to which substantial effort has been
devoted [1–6].

One of the most widely used models to describe the overland motion of watercourses
is the classical one-dimensional Saint-Venant system (also known as the open channel
or shallow water equations) developed by de Saint-Venant [7] from first principles. The
Saint-Venant system can be derived as a reduction of the Navier–Stokes equation under
certain assumptions on the horizontal and vertical scales. For the specific problem of
modeling flooding caused by precipitation, the inclusion of a source term corresponding
to the recharge or infiltration in the Saint-Venant system turns it from a conservation
law into a balance law. Existing approaches for modeling surface flows under the effect
of rainfall or runoff are provided, for example, by Fiedler and Ramirez [8], Sochala [9],
Delestre and James [10], Costabile et al. [11], Fernández-Pato et al. [12] Cea and Bladé [13]
Kirstetter et al. [14], and Costabile et al. [15], , where all authors model this phenomenon
using (possibly viscous variants of) the system

∂th + ∂x[hu] = S

∂t[hu] + ∂x

[
hu2 +

g h2

2

]
= − g h∂xZ− k0(u)u,

(1)
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where the unknowns h(t, x) and u(t, x) model, respectively, the height and velocity
of the water column at a space–time point (t, x), g models the gravitational acceler-
ation (considered a constant ≈ 9.81 m/s2), Z(x) models the topography of the chan-
nel bed with slope ∂xZ(x), and k0 models an empirical fluid–wall friction. The source
term S quantifies the amount of water that is added to (S > 0) or subtracted from
(S < 0) the flow, which, in practice, may occur through a variety of mechanisms (e.g.,
direct rainfall, lateral flow, run-off, smaller tributaries). Among early works includ-
ing the effect of rainfall (or lateral inflow) on surface flows that relate to this research,
we note Woolhiser and Liggett [2], Zhang and Cundy [3], Wenzel [16]. In Kirstetter et al. [14],
friction is also taken into account in the case of rainfall and laminar; in that case, the Darcy–
Weisbach friction gives a good approximation.

Our goal in this paper is to derive a model akin to (1) via vertical averaging under the
shallow water assumption, starting from the Navier–Stokes equations with a permeable
Navier boundary condition to account for the infiltration and a kinematic boundary condi-
tion to consider the precipitation. The obtained averaged model extends this system in a
unique manner through an additional discharge source term of the form

Su− (k+(R) + k−(I))u with S := R− I, (2)

where R ≥ 0 denotes the recharge rate on the free surface (accounting for both rain and
runoff effects) and I denotes the infiltration rate from the water to the ground (when I > 0)
or the ground to the water (when I < 0), i.e., seepage, sometimes called exfiltration. The
terms k+(R) and k−(I), which will be discussed in detail in Section 2.1—particularly in
(18) and (28)—model the friction caused by recharge, i.e., the addition of water (assumed
to have zero horizontal velocity), which attaches to and is advected by the flow. We will
see below that these friction terms are necessary to avoid paradoxical outcomes, such
as perpetual motion, and, for simplicity, we will assume in this paper the most basic
constitutive relations for this friction: linear in R for k+(R) and piecewise linear in I for
k−(I), in agreement with approximations based on experimental results [3,17]. These
constitutive relations could, however, be generalized by having two separate friction
coefficients or by replacing the linearity with more precise functions, but this is beyond the
scope of this paper.

We outline the rest of the article as follows: In Section 2, we present the geometric
setup of the system and the adjusted boundary conditions (including precipitation, in-
filtration, and the corresponding friction terms) of the typical Navier–Stokes equations.
In Section 3, we derive the consequent Saint-Venant system through a first-order approx-
imation and discuss several theoretical results and corollaries that can be derived for the
system in Section 4. In Section 5, we adapt the finite volume kinetic scheme considered
in Audusse et al. [18] and Perthame and Simeoni [19] to our model, and finally present
numerical experiments of the resulting code to demonstrate the application of the model
in Section 6. A C and C++ implementation of this code written by Matthieu Besson,
Omar Lakkis, and Philip Townsend is freely available on request (an older version is given
by [20]).

2. Navier–Stokes Equations with Infiltration and Recharge

Our aim is to construct a mathematical model for overland flows that is consistent
with the physical phenomena that can affect the motion of such water. To this purpose,
we propose a model reduction of the two-dimensional Navier–Stokes equations leading
to an extension of the standard Saint-Venant system. By considering the suitably chosen
boundary conditions, we take into account the addition and removal of water, either by
rainfall (e.g., from runoff onto the top of the watercourse) or by groundwater infiltration or
exfiltration processes (e.g., via a porous soil).

We start in Section 2.1 by reviewing the Navier–Stokes equations in the special geo-
metric setting, describing the physics with a wet boundary on the bottom of the water
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course and a free surface on the top. We then introduce the boundary conditions for each
surface in Sections 2.2 and 2.3, respectively.

2.1. Geometric Set-Up and the Two-Dimensional Navier—Stokes Equations

With numerical and practical applications in mind, we assume an arbitrary final time
T > 0. With reference to Figure 1, we consider an incompressible fluid moving in the
space–time box

[0, T]×R2 with typical point denoted (t, x, z). (3)

The absolute height of the surface of the watercourse and the topography of the
channel bed are modeled, respectively, by the functions

H : [0, T]×R → R
(t, x) 7→ H(t, x) ,

Z : R → R
x 7→ Z(x) ,

(4)

whose values are measured with respect to a reference horizontal height 0. We define the
local height of the water by

h(t, x) := H(t, x)− Z(x). (5)

The wet region is defined as the area in which the fluid resides at each time t ∈ [0, T]

Ω(t) :=
{
(x, z) ∈ R2 : Z(x) < z < H(t, x)

}
, (6)

with its global counterpart
Ω :=

⋃
0≤t≤T

Ω(t). (7)

Z
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Figure 1. Diagram of a river and river bed depicting the variables of interest.

As we can see in Figure 1, the wet region has two boundaries; the first is the wet
boundary between the wet region and the ground, denoted by

B = {(x, Z) : x ∈ R}, (8)

and the second is the free surface between the wet region and the surrounding air, de-
noted by

F = {(t, x, H) : t > 0, x ∈ R}. (9)

We assume that the viscous flow u satisfies, on the space–time domain Ω, the two-
dimensional incompressible Navier–Stokes equation

div[ρ0uᵀ] = 0,

∂t[ρ0u] + div[ρ0u⊗ u]− divσ[u]− ρ0F = 0,
(10)



Math. Comput. Appl. 2021, 26, 1 4 of 27

where u = (u, v) is the velocity field, ρ0 is the density of the fluid (taken to be constant
since the fluid is incompressible), F = (0,− g) is the external force of gravity with constant
g, and σ[u] is the total stress tensor whose matrix is given by

σ[u] :=
[
−p + 2µ∂xu µ(∂zu + ∂xv)
µ(∂zu + ∂xv) −p + 2µ∂zv

]
, (11)

where p is the pressure and µ > 0 is the dynamic viscosity. The (algebraic) tensor product
of two vectors a ⊗ b is defined as abᵀ (all vectors are displayed as columns), and the
div of a covector/tensor is taken as the row-wise divergence of the associated matrix; in
coordinates, this means

[divα]i = ∑
j=x,z

∂jα
j
i for i = x, z. (12)

To work with the wet region, we introduce its indicator function

Φ(t, x, z) := 1Ω(t)(x, z) = 1[Z(x)≤z≤H(t,x)] for all t, x, z ∈ R. (13)

The function Φ is advected by the flow, so its material derivative with respect to the
flow u must, therefore, be zero. Moreover, thanks to the incompressibility condition, Φ
satisfies the following indicator transport equation:

∂tΦ + ∂x[Φu] + ∂z[Φv] = 0 on Ω. (14)

2.2. The Wet Boundary

Crucial to our model derivation is the particular situation on the wet boundary, where
the effect of infiltration plays a central role. Given a set G ∈ R2 and a point x ∈ ∂G,
we denote by tG(x) the unique normalized tangential vector and by nG(x) its outward
boundary normal (see Figure 1 for G = Ω).

On the wet boundary, the topography is assumed to be rough, and hence produces
friction, which we take into account by considering the following Navier boundary condi-
tion:

(σ[u] nΩ) · tΩ = −ρ0(k(u) + k−(I))u · tΩ on B. (15)

We will leave defining k−(I) for the moment and note that the scalar function k(u)
models a general kinematic friction law on the channel bed:

k(ξ) := (Clam + Ctur|ξ|), for all ξ ∈ R2, (16)

where the friction coefficients Clam and Ctur (which, by definition, are always non-negative)
correspond, respectively, to the laminar and turbulent friction factors [21–25]. The ground
may also, due to porosity, absorb water (by infiltration) or inject water (through recharge)
from and into the bulk. This mechanism is modeled with the following permeable boundary
condition:

u(t, x, z) · nΩ(x, z) = I(t, x) on B, (17)

where the infiltration function I models the amount of water that leaves (I > 0) or enters
(I < 0) the flow per elementary boundary element.

The term k−(I) models the friction effect that occurs when water that is recharging
through the ground (at an average microscopic velocity rate of zero) connects with the flow.
The magnitude of this effect is given by the parameter α, and hence, our infiltration mixing
friction law, as anticipated in (2), is given by

k−(I) := αI− = α max(0,−I). (18)

We note that the recharge-induced friction only occurs when water is entering the
flow (i.e., I < 0), and is zero otherwise. Although I should, in principle, be thought of as
a function of h, u, and possibly their derivatives—particularly σ[u], as in the recognized
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Beavers–Joseph–Saffman model described, for instance, by Beavers and Joseph [26], Saff-
man [27], Jäger and Mikelić [28], and Badea et al. [29]—we ignore this in this paper and,
for simplicity, consider the function I to be a given piecewise linear function of space–time.

We define Ω’s tangential and outward unit normal vectors on B by

tΩ(x, Z(x)) =
(−1,−∂xZ(x))√

1 + |∂xZ(x)|2
(19)

and

nΩ(x, Z(x)) =
(∂xZ(x),−1)√
1 + |∂xZ(x)|2

, (20)

respectively, following the convention that the outward normal is the tangential vector
rotated by π/2 counterclockwise. It thus follows that (15) and (17) on B can be rewritten,
respectively, as

µ(∂xv + ∂zu)
(
1− |∂xZ|2

)
− 2µ(∂xu− ∂zv)∂xZ(

1 + |∂xZ|2
)1/2

= ρ0(k(u, v) + k−(I))(u + v∂xZ)

(21)

and

v− u∂xZ(x) + I
√

1 + |∂xZ|2 = 0. (22)

2.3. The Free Surface

On the free surface, we neglect all other meteorological phenomena (such as evap-
oration) and consider only the addition of water in the form of direct rainfall and runoff.
Assuming a kinematic boundary condition, we set

u · nΩ =
∂tH − R√
1 + |∂x H|2

on F , (23)

where R(t, x) is the recharge rate due to rainfall. The unit tangential and normal vectors tΩ

and nΩ to the free surface can be explicitly computed in terms of H as

tΩ(x, H(t, x)) =
(1, ∂x H(t, x))√
1 + |∂x H(t, x)|2

(24)

and

nΩ(x, H(t, x)) =
(−∂x H(t, x), 1)√
1 + |∂x H(t, x)|2

, (25)

which leads to the following explicit form of (23):

∂tH + u∂x H − v = R on F . (26)

We also assume a stress condition on the free surface, given by

(σ[u] nΩ) · tΩ = −ρ0k+(R)u · tΩ, (27)

where we use the surface mixing friction law

k+(R) = αR, (28)
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which takes into account the frictional effect of the additional entering water’s mixing with
the flow from various sources (examples include runoff, direct rainfall, and small-scale
tributaries), with α again representing the magnitude of this effect (see Section 2.4 for more
on mixing friction and references). Using the tangential and normal vectors as above, this
condition becomes

µ(∂xv + ∂zu)
(

1− |∂x H|2
)
− 2µ(∂xu− ∂zv)∂x H√

1 + |∂x H|2
= −ρ0k+(R)(u + v∂x H). (29)

2.4. Mixing Friction

In adapting the boundary conditions of the Navier–Stokes equations in Sections 2.2
and 2.3, we included additional terms k+(R) and k−(I) that model the friction effect that
occurs when water that is falling on the free surface or recharging through the ground,
respectively, connects with the flow. The inclusion of these terms avoids certain paradoxical
outcomes in the shallow water equation, such as perpetual motion, that otherwise occur
when the terms are omitted. Such terms arise naturally from microscopic effects and
have been discussed in the hydrology literature, for instance, by Wenzel [16], Yoon and
Wenzel [17], Shen and Li [30], Lu et al. [31], where the laws are empirically derived from
measurements and account for turbulence.

The rate-to-friction constitutive relations (18) for k−(I) and (28) for k+(R), which we
take to be piecewise linear with a single slope α, could easily be given by more complicated
functions that may be nonlinear in I and R and depend also on the nature of the soil or local
geometries x, water depth h, and the flow u. The choices for such relations, however, share
essential characteristics, such as being monotone functions of I or R, [k−]I=0 = [k+]R=0 = 0,
and possibly homogeneous in the velocity u and the rates of additional water R and I; we
consider the simplest such models by taking a linear relation, and defer their refinement
to further studies. Furthermore, in this paper, we stick to the simplest case of a single
coefficient α for both R and I (or 0 for the latter), leaving the door open to modeling it in
future work as two (possibly spatially dependent) separate parameters x 7→ α+(x), α−(x).

It is worth pointing out that the coefficient α is dimensionless. Indeed, given that the
added/subtracted water rate has dimensions [R] = [I] = L2/T, the corresponding stress
has dimensions

[ρ0αRu] = [ρ0αIu] = [α]M/L2 × L2/T× L/T = ML/T2, (30)

while the stress has dimensions [σ(u) nΩ] = ML/T2, whence [α] = 1, i.e., dimensionless.

3. Saint-Venant System with Recharge via Vertical Averaging

We now proceed to write the Navier–Stokes equations with adapted boundary condi-
tions in non-dimensional form. Under an assumption on the shallowness of the ratio of the
water height to the horizontal domain (represented by a small parameter ε), we formally
make an asymptotic expansion of the Navier–Stokes system to the hydrostatic approxima-
tion at first order. Finally, we derive the Saint-Venant system through an integration on the
water height.

This approach follows one established by Gerbeau and Perthame [23], and is also
found in Ersoy [32], which differ in the boundary conditions for Navier–Stokes equations.
The latter turn into different source terms in Saint-Venant’s equation. Furthermore, we have
to take extra care in how we non-dimensionalize our additional precipitation, infiltration,
and friction terms. For simplicity, we will start from the two-dimensional Navier–Stokes
equations and obtain the one-dimensional Saint-Venant equations, although this procedure
can be employed to derive a two-dimensional analogue from the three-dimensional Navier–
Stokes, provided the boundary conditions are modified accordingly.
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3.1. Dimensionless Navier–Stokes Equations

To derive the Saint-Venant model, we assume that the water height is small with
respect to the horizontal length of the domain and that vertical variations in velocity
are small compared to the horizontal variations. This is achieved by postulating a small
parameter ratio

ε :=
D
L

=
V
U
� 1, (31)

where D, L, V, and U are the scales (or units) of, respectively, water height, domain length,
vertical fluid velocity, and horizontal fluid velocity. As a consequence, the time scale T is
such that

T =
L
U

=
D
V

. (32)

We also choose the pressure scale to be

P := ρ0U2. (33)

The rationale for this choice is that we are focusing on the effect of the horizontal
forces as mass per horizontal acceleration, which has a force scale of

F := (DL2−1ρ0)(UT−1), (34)

and these forces are applied to the vertical boundary scale to give the pressure scale

F
(

DL2−2
)−1

= DLρ0UT−1D−1 = ρ0ULT−1 = ρ0U2. (35)

It is convenient to define the spatial characteristic length, L, and horizontal velocity,
U (and, by definition, T), as finite constants with respect to ε→ 0, while the water height
and vertical velocity are defined as D = εL and V = εU, respectively. This allows us to
introduce the dimensionless quantities of time t̃, space (x̃, z̃), pressure p̃, and velocity field
(ũ, ṽ) via the following scaling relations:

t̃ :=
t
T

, p̃(x̃, t̃, z̃) :=
p(x, t, z)

P
,

x̃ :=
x
L

, ũ(x̃, t̃, z̃) :=
u(x, t, z)

U
,

z̃ :=
z
D

=
z

εL
, ṽ(x̃, t̃, z̃) :=

v(x, t, z)
V

=
v(x, t, z)

εU

(36)

In the following bind all the “tilde” variables together, i.e., ũ is a function of t̃, x̃, z̃. Hence,
variable-less operators change accordingly, e.g., divũ means div(x̃,z̃)(ũ, ṽ) when divu means
div(x,z)(u, v).

We also rescale the laminar and turbulent friction factors as, respectively,

Clam,0 :=
Clam

V
=

Clam
εU

, Ctur,0 :=
Ctur

ε
, (37)

and the infiltration and rainfall rates as, respectively,

Ĩ(t̃, x̃) :=
I(t, x)

V
, R̃(t̃, x̃) :=

R(t, x)
V

. (38)

Note that in the assumed asymptotic setting, Clam,0 and Ctur,0 are constants with
respect to ε, thus implying that Clam and Ctur vanish linearly with ε→ 0. Finally, we define
the following non-dimensional numbers:

Froude’s number, Fro := U/
√

g D,

Reynolds’s number with respect to µ, Rey := ρ0UL/µ,
(39)
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and consider the following asymptotic setting

Rey−1 = εµ0, (40)

where µ0 is the viscosity.
Using these dimensionless variables in the Navier–Stokes Equations (10) and (11),

and reordering the terms with respect to powers of ε, the dimensionless incompressible
Navier–Stokes system reads as follows:

div[ũ] = 0

∂t̃ũ + ∂x̃

[
ũ2
]
+ ∂z̃[ũṽ] + ∂x̃ p̃ = ∂z̃

[µ0

ε
∂z̃ũ
]
+ $42,ε, ũ

∂z̃ p̃ = − 1
Fro2 + $43,ε, ũ

(41)

where
$42,ε, ũ := εµ0

(
2∂ũ x̃x̃ + ∂ṽ z̃x̃

)
(42)

and
$43,ε, ũ := εµ0

(
∂x̃z̃ũ + ε2∂x̃x̃ ṽ + 2∂z̃z̃ṽ

)
− ε2

(
∂t̃ṽ + ∂x̃[ũṽ] + ∂z̃

[
ṽ2
])

. (43)

Assuming that ũ has bounded second derivatives, definitions (42) and (43) formally
lead to

$42,ε, ũ = O(ε) and $43,ε, ũ = O(ε). (44)

On the wet boundary B, recalling the scaling relations (36) and (38), and noting that

∂Z
∂x

=
εL
L

∂Z̃
∂x̃

= ε∂x̃Z̃, (45)

the dimensionless Navier boundary condition (21) implies

[
∂z̃ũ

εRey

]
B
=

(
Clam

U
ũ + Ctur(|ũ|+ ε|ṽ|)ũ + εk−( Ĩ)ũ

)√1 + ε2(∂x̃Z̃)2

1− ε2(∂x̃Z̃)2

+ ε2∂x̃Z̃
(

Clam
U

ṽ + Ctur(|ũ|+ ε|ṽ|)ṽ + εk−( Ĩ)ṽ
)√1 + ε2(∂x̃Z̃)2

1− ε2(∂x̃Z̃)2︸ ︷︷ ︸
O(ε2)

− ε

Rey

(
∂x̃ ṽ +

2∂x̃Z̃(∂z̃ṽ− ∂x̃ũ)
1− ε2(∂x̃Z̃)2

)
︸ ︷︷ ︸

O(ε/Rey)

.

(46)

Applying the non-dimensional friction factors (37) and recalling (40), we get

[
∂z̃ũ

εRey

]
B
= ε
(
Clam,εũ + Ctur,ε(|ũ|+ ε|ṽ|)ũ + k−( Ĩ)ũ

)√1 + ε2(∂x̃Z̃)2

1− ε2(∂x̃Z̃)2 + O(ε2)

= ε
(
Clam,εũ + Ctur,ε|ũ|ũ + k−( Ĩ)ũ

)
+ O(ε2)

= ε
(
k0(ũ) + k−( Ĩ)

)
ũ + O(ε2),

(47)

with asymptotic friction laws

k0(ξ) := Clam,0 + Ctur,0|ξ| for ξ ∈ R
k−( Ĩ) := αI− = −min(0, Ĩ) for α ∈ R,

(48)
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on the wet boundary. The permeable boundary condition (22) reads

ṽ = ũ∂xZ− I
√

1 + ε2(∂xZ)2 = ũ∂xZ− I + O(ε). (49)

For the boundary conditions on the free surfaceF , applying our non-dimensionalization
approach to the kinematic boundary condition (26), we derive

∂t̃H̃ + u∂x̃ H̃ − ṽ = R̃, (50)

while we can non-dimensionalize (29) in the same manner as the Navier boundary condi-
tion (21) on the wet boundary B, giving[

∂z̃ũ
εRey

]
F
= −εk+(R̃)ũ + O(ε2), (51)

with free surface asymptotic friction law

k+(R̃) = αR̃ for α ∈ R. (52)

3.2. Remark Slip vs. No-Slip Boundary Condition

The slip-type Navier boundary condition (15), which can prove useful in modeling
inundation of dry areas, e.g., may be replaced with a slip boundary condition in the case of
river flows. Indeed, the no-slip boundary condition (which may be viewed as a limit case
of the Navier boundary condition (15)) is consistent with our derivation (as well as that of
Gerbeau and Perthame [23]), and tthe friction constitutive relation (16) plays the role of
closure.

3.3. First-Order Approximation of the Dimensionless Navier–Stokes Equations

Dropping all terms of O(ε) and above in Equations (41)–(51), we deduce the hydro-
static approximation of the dimensionless Navier–Stokes system (cf. [33]):

∂xuε + ∂zvε = 0 (53)

∂tuε + ∂x

[
uε

2
]
+ ∂z[uεvε] + ∂x pε = ∂z

[µ0

ε
∂zuε

]
(54)

∂z pε = −
1

Fro2 , (55)

whilst the boundary conditions, as a result of the asymptotic setting (40), simplify to[µ0

ε
∂zuε

]
= (k0(uε) + k−(I))uε and vε = uε∂xZ− I on B, (56)

and [µ0

ε
∂zuε

]
= −k+(R)uε and ∂tH + uε∂x H − vε = R on F , (57)

in view of Equations (47), (49), (51), and (50), respectively. Here, (uε, vε, pε) represents the
solution of the first-order dimensionless Navier–Stokes system.

Vertically integrating both members of Equation (55) over [z, H(t, x)], we obtain the
hydrostatic pressure

pε(t, x, H)− pε(t, x, z) = − 1
Fro2 (H(t, x)− z). (58)

Assuming that the pressure exerted by the rain on the free surface pε(t, x, H) = pc for
some constant pc ∈ R (as we neglected all other meteorological phenomena), this becomes

pε(t, x, z) =
1

Fro2 (H(t, x)− z) + pc. (59)
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Moreover, identifying terms at order 1/ε in (54), (56), and (57), we obtain the motion
by slices decomposition

uε(t, x, z) = u0(t, x) + O(ε) (60)

for some function u0 = u0(t, x), as a consequence of

∂z[µ0∂zuε] = O(ε), for z ∈ (Z(x), H(t, x)) (61)

with

[µ0∂zuε]|z=Z(x) = O(ε) and [µ0∂zuε]|z=H(t,x) = O(ε). (62)

Noting 〈uε(t, x)〉 as the mean speed of the fluid over the section [Z(x), H(t, x)],

〈uε(t, x)〉 = 1
h(t, x)

∫ H(t,x)

Z(x)
uε(t, x, z)dz, (63)

we are able to use the following approximations and drop the first- and higher-order terms
in ε:

uε(t, x, z) = 〈uε(t, x)〉+ O(ε) and
〈

uε(t, x)2
〉
= 〈uε(t, x)〉2 + O(ε). (64)

Although (64) could be taken as an assumption, we obtain it as a consequence of the
assumptions of motion by slices (60) and the asymptotic setting (40). As a consequence, the
Boussinesq coefficient, also known as Boussinesq Γ, equals 1. It would be worth discussing
whether this comes from reasonable choices of assumptions, but this is not the purpose
of this paper, where Γ = 1 suffices. Yang et al. [34] provide an interesting study of the
Boussinesq coefficient.

3.4. The Saint-Venant System with Recharge

Keeping (64) in mind and integrating the indicator transport Equation (14) for
z ∈ [Z(x), H(t, x)], we get

0 =
∫ H(t,x)

Z(x)
∂tΦ(t, x, z) + ∂x[Φuε] + ∂z[Φvε]dz

= ∂th + ∂xq− [∂tH + uε∂x H − vε]z=H(t,x)] + [uε∂xZ− vε]z=Z(x),
(65)

where q is the discharge defined by

q(t, x) := 〈uε(t, x)〉h(t, x). (66)

In view of the penetration condition (56) and the kinematic boundary condition (57),
we deduce the mass-balance equation:

∂th + ∂xq = S, (67)

where the source term S := R− I measures the gain or loss of water through the (nonneg-
ative) recharge rate R (ultimately from rainfall) and (signed) infiltration rate, respectively.
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Keeping equations (58), (60), and (64) in mind and thanks to the penetration condition
(56) and the kinematic boundary condition (57), integrating the left-hand side of (54) for
z ∈ [Z(x), H(t, x)], we get

∫ H(t,x)

Z(x)
LHS(54) dz = ∂tq + ∂x

[
q2

h
+

h2

2Fro2

]
+

h
Fro2 ∂xZ

− [(∂tH + uε∂x H − vε)uε](t,x,H(t,x))

+ [(uε∂xZ− vε)uε](t,x,Z(x))

= ∂tq + ∂x

[
q2

h
+

h2

2Fro2

]
+

h
Fro2 ∂xZ

− R[uε](t,x,H(t,x)) + I[uε](t,x,Z(x))

= ∂tq + ∂x

[
q2

h
+

h2

2Fro2

]
+

h
Fro2 ∂xZ− S

q
h

,

(68)

where S is again defined as above. Now, integrating the right-hand side of (54) for
z ∈ [Z(x), H(t, x)] using the wet boundary condition (56) and the free surface bound-
ary condition (57), we obtain:

∫ H(t,x)

Z(x)
RHS(54) dz =

[µ0

ε
∂zuε

]
z=H(t,x)

−
[µ0

ε
∂zuε

]
z=Z(x)

= −
(

k+(R) + k−(I) + k0

( q
h

)) q
h

,
(69)

where the friction factors k+(R), k−(I), and k0 are defined by Formulas (52) and (48),
respectively. Finally, multiplying both sides of each of (67)–(69) by ρ0U2/D, and recalling
the mass-balance (67), we obtain the following Saint-Venant system with recharge:

∂th + ∂xq = S := R− I,

∂tq + ∂x

[
q2

h
+ g

h2

2

]
= − g h∂xZ + S

q
h
−
(

k+(R) + k−(I) + k0

( q
h

)) q
h

where q = hu,

(70)

which we study in the rest of this paper.

3.5. Example (Lake at Rest and Filling the Lake)

The still water steady state (also known as lake at rest) reads

q ≡ u ≡ S ≡ 0 and h + Z ≡ H0 for some constant H0 > 0. (71)

This is a classical example used in testing the conservation properties of numerical
schemes, based on which we develop some benchmark tests for our schemes. A first
interesting nontrivial variation for numerical tests is S = R− I ≡ 0 with R = I ≥ 0. This
simple situation has the feature of detecting a scheme that is not well balanced, and is thus
considered to be the first benchmark for well-balanced schemes when R = I = 0.

Another simple (yet important) example is a uniform space–time filling of a lake
with initial height h(0, ·) ≡ H0 as in (71) with a constant time–space S > 0 and a spatially
constant discharge with periodic boundary conditions. In this case, symmetry implies that
system (70) simplifies to

∂th ≡ S and ∂tq ≡ S
q
h
−
(

k+(R) + k−(I) + k0

( q
h

)) q
h

, (72)

with given initial conditions.
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3.6. Why the Mixing Friction?

To gauge the influence of the friction effect α on the solution, we consider an idealized
scenario that will enable us to calculate an exact solution to system (70). We take a constant
rainfall–runoff process on a river spanning spatial domain x ∈ [0, 10] and time domain
t ∈ [0, 1], with topography Z ≡ 0.1; for simplicity, we assume the infiltration I ≡ 0 and
a linear recharge friction k+(R) = αR. We prescribe periodic boundary conditions and
assume a constant initial height and discharge of

h(0, x) = q(0, x) = 1 for 0 < x < 10. (73)

The rainfall intensity is applied uniformly on the river as a function of time up to the
final time T = 1:

R(t) = 1.0 for 0 < t < 1. (74)

Since the rain function, initial height, and initial discharge do not have any dependence
on x, we can ignore the spatial derivatives in both the mass (height h) and momentum
(discharge q) equations. Under these assumptions, (70) simplifies to:

∂th = 1, and ∂tq = (1− α)
q
h

where q = hu. (75)

We can solve explicitly for h and q (which are constant in space), as well as the
corresponding velocity

h(t, x) = t + 1, q(t, x) = (t + 1)1−α, u(t, x) = (t + 1)−α. (76)

Using these equations, we can plot how the discharge and velocity change over time
depending on the mixing friction coefficients α. We consider three cases, which are reported
in Figure 2. We can conclude from considering this idealized scenario that the additional
friction terms cannot be omitted, as doing so leads to a paradoxical situation where the
discharge increases over time even though the rain is assumed to be added to the system
with zero discharge. We therefore only have physically realistic solutions when the friction
α ≥ 1, as it is within this regime that the discharge is either conserved or decreasing. As
is clear from the equations, this occurs when the reduction in velocity is large enough to
either compensate or balance the increase in water height.
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0
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momentum

α = 0
α = 1
α = 2
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Figure 2. Exact solution’s discharge and velocity in three cases of mixing friction coefficient α, as discussed in Section 2.4.
The case α = 0 means no mixing friction whatsoever and leads to a physical paradox where discharge increases in time as
mass increases. The case α = 1 is critical and ensures no artificial discharge gain, but this case is also an unrealistic idealized
situation because it implies discharge conservation in the presence of mixing friction. Finally, the case α > 1 is the most
physically relevant.
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4. Entropy

Entropy plays an essential role in the analytical and numerical understanding of
conservation and balance laws (e.g., [35–40]). In this section, we study the effect of the
rainfall terms and associated mixing friction on the entropy–entropy-flux pair for the Saint-
Venant system (70)—in particular, the effect of the additional rainfall terms on entropy
production.

4.1. Theorem (Hyperbolicity and Stability)

Let (h, q) satisfy the Saint-Venant system with recharge (70) for a given topography
Z, rainfall R, and infiltration I, with velocity

u :=
q
h

(77)

and total head ψ := ψ̂(h, q, Z) defined by

ψ̂(h, q, Z) :=
q2

2h2 + g(h + Z), for (h, q, Z) ∈ R+ ×R2. (78)

Then, the following hold:

(a) System (70) is strictly hyperbolic on the set {h > 0}.

(b) If (h, q) is smooth and h > 0, we have the velocity balance equation

∂tu + ∂xψ = − (k+(R) + k−(I) + k0(u))u
h

. (79)

Proof. The proof follows standard arguments from conservation laws and is provided for
self-containment’s sake. We consider each statement in turn.

(a) The Jacobian of (70)’s flux function (q, h) 7→ (q, q2/h + g h2/2) is given by

J = Ĵ(h, q) :=
[

0 1
−q2/h2 + g h 2q/h

]
, (80)

with eigenvalues

λ1,2 = λ̂1,2(h, q) =
q
h
±
√

g h. (81)

For these eigenvalues to be real and distinct, we require that h > 0; the Jacobian
matrix is thus diagonalizable and system (70) is strictly hyperbolic on the set {h > 0}.

(b) We rewrite the conservation of momentum equation in system (70) in terms of the
unknowns (h, u), with u = q/h, as

∂t[hu] + ∂x

[
hu2 + g

h2

2

]
= − g h∂xZ + Su− (k+(R) + k−(I) + k0(u))u. (82)

Applying the product rule to the first term of (82) and substituting in the conservation
of mass equation, we get

h∂tu + u(S− ∂x[hu]) + ∂x

[
hu2
]
+ ∂x

[
g

h2

2

]
= − g h∂xZ + Su− (k+(R) + k−(I) + k0(u))u, (83)

from which we can cancel Su on both sides. Using the product rule again, we
have that

u∂x[hu] = ∂x

[
hu2
]
− hu∂xu, (84)
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which can be substituted into (83) to give

h∂tu− ∂x

[
hu2
]
+ hu∂xu + ∂x

[
hu2
]
+ ∂x

[
g

h2

2

]
= − g h∂xZ− (k+(R) + k−(I) + k0(u))u, (85)

enabling us to now cancel ∂x
[
hu2]. We note that

∂x

[
g

h2

2

]
= h∂x[g h]. (86)

Substituting this into (85) and dividing by h throughout, we get

∂tu + u∂xu + ∂x[g h] = − g ∂xZ− (k+(R) + k−(I) + k0(u))u
h

. (87)

Making the further substitution

u∂xu = ∂x

[
u2
]
/2 (88)

and grouping derivatives of x, we have

∂tu + ∂xψ = − (k+(R) + k−(I) + k0(u))u
h

. (89)

The theorem is thus proved.

4.2. Remark (Friction Effects)

It is worth noting that the only way S = R− I enters in the velocity balance Equation (79)
is through the friction terms k+(R) and k−(I). This is a further indication that these terms
are necessary, especially for small water height h, which, as a denominator of the right-hand
side in (79), amplifies the effects of friction, as these occur in the Navier–Stokes on a layer
close to the boundaries.

4.3. Theorem (Entropy Production)

Consider the entropy and entropy flux , respectively, defined by

Ê(h, q, Z) :=
q2

2h
+ g h

(
h
2
+ Z

)
=

hu2 + g h2

2
+ g hZ, (90)

Ψ̂(h, q, Z, S) :=
(

Ê(h, q) +
g h2

2

)
q
h
− g Θ, (91)

where
Θ(t, x) :=

∫ x

0
S(t, s)Z(s)ds for each t > 0, x ∈ R. (92)

The pair of functions (Ê, Ψ̂) forms a mathematical entropy–entropy-flux pair for
system (70) when S ≡ 0 and ki = 0 for i = 0,±. Furthermore, for smooth solutions (h, q) of
(70), the functions

E := Ê(h, q, Z) and Ψ := Ψ̂(h, q, Z, S) (93)

satisfy the following entropy production relation:

∂tE + ∂xΨ = S
(

u2

2
+ g h

)
− (k+(R) + k−(I) + k0(u))u2. (94)
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4.4. Remark (Entropy–Entropy-Flux Pairs and Entropy Production)

The entropy–entropy-flux pair of Theorem 4.3 is typical for shallow water equations
(e.g., [18], Th. 2.1). Indeed (94), when S = 0 and ki = 0, for i = 0,±, generalizes the
well-known (zero) entropy condition

∂tE + ∂xΨ = 0, (95)

which implies that (Ê, Ψ̂) is an entropy–entropy-flux pair. The additional term − g Θ in
(91) corresponds to the flux of entropy due to the added or subtracted rain; thanks to this
term, the entropy production is frame invariant.

Proof. Theorem 4.3: In view of 4.4, it is enough to prove only (94). We begin by recalling
that we showed in Theorem 4.1 that the conservation of momentum equation can be
rewritten in terms of the velocity u as

∂tu + ∂xψ = − (k+(R) + k−(I) + k0(u))u
h

, (96)

where ψ is the total head, given by

ψ =
u2

2
+ g h + g Z. (97)

Proceeding from this, multiplying the conservation of mass equation by ψ, we have

ψ∂th + ψ∂x[hu] = Sψ, (98)

which we can rewrite as

∂t[ψh] + ∂x[ψhu]− (h∂tψ + (hu)∂xψ) = Sψ. (99)

The term h∂tψ in the second component can be expanded as

h∂tψ =
h
2

∂t

[
u2
]
+ h g ∂th + h g ∂tZ

= (hu)∂tu +
g
2

∂t

[
h2
]
.

(100)

In the second component, we may write

∂xψ = −∂tu−
(k+(R) + k−(I) + k0(u))u

h
(101)

from (96), and hence, after cancelling terms, we have

∂t[ψh] + ∂x[ψhu]−
(

∂t

[
g

h2

2

]
+ (k+(R) + k−(I) + k0(u))u2

)
= Sψ, (102)

which can be rewritten as

∂t

[
ψh− g

h2

2

]
+ ∂x[ψhu] = Sψ− (k+(R) + k−(I) + k0(u))u2. (103)

Making ψ explicit as a function of h, q, S, Z and noting that

∂x

[
g
∫ x

0
S(s, t)Z(s)ds

]
= g S(t, x)Z(x) for each (t, x) (104)

concludes the proof.
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4.5. Remark (Discontinuous Solutions)

In Theorems 4.1 and 4.3, we only made reference to smooth solutions (h, u) in defin-
ing the stability and entropy relations of the Saint-Venant system (70). For rough weak
solutions, as with conservation laws, the entropy–entropy-flux pair (Ê, Ψ̂) has the potential
to play a selection mechanism role to ensure uniqueness of weak solutions, as it does with
conservation laws.

5. The Numerical Model

We now consider the numerical approximation of the Saint-Venant system with rain.
We follow the approach developed by Audusse et al. [18], and Perthame and Simeoni [19],
with a suitable modification to accommodate the additional source and friction terms.
While any well-balanced computational finite volume method could be adapted to simulate
our model [36,41–45], the kinetic approach has the pleasant feature of naturally including
the additional term Su, and thereby also the corresponding friction coefficients k+(R) and
k−(I), in the Saint-Venant system. As a result, as observed in Audusse et al. [18], the
resulting schemes are automatically up-winded and well balanced.

5.1. Well-Balanced Schemes

A desirable property of the standard Saint-Venant system is the preservation of equi-
librium states (referred to as the lake at rest), given by

h + Z = constant and u = 0. (105)

For our system, since, through the addition of rainfall and infiltration effects, we no
longer have a conservation law, but rather a balance law, we have the possibility of water
being added to or lost from the lake, and thus, this particular equilibrium only holds in
the case S = 0. We must adapt this property, therefore, and instead desire that our system
preserves the filling-the-lake state (see Figure 3), given by

∂th = R and u = 0, (106)

that is, the rate at which the water height changes is equal to the rate at which water is
added to the system through the rainfall term. Failing to preserve this property would
mean that a change is the mass of the water that is greater or lower than the rate at which it
is added, thus violating the balance of mass property of our system.

Z(x)

h(t, x) wet region

ground

R(t, x) R(t, x)

0 L

Figure 3. In considering a balance law system, we must adapt the lake at rest property used for
conservation laws to account for the addition of water.

If we wish to maintain this property, we cannot rely on the usual finite difference or
finite volume methods, and thus, a new (so-called well-balanced) scheme is required. Such
an approach can be found by going back to a kinetic interpretation of the system, as detailed
in Perthame and Simeoni [19] and Ersoy [32]. The method we use for the derivation of our
kinetic scheme will follow quite the same approach, though with the added complication
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of accounting for the additional terms. These kinetic solvers can be modified to preserve
the filling-the-lake state, while, at the same time, maintaining their simplicity and stability
properties.

One of the direct benefits of using such an approach for the Saint-Venant system is the
ability of the kinetic solver to deal with dry soil cases (that is, when h = 0) [18], which will
be of importance in ensuring that our model continues to function if infiltration causes the
water level to fall close to zero, or if we consider cases such as water flowing away from a
beach front.

5.2. Kinetic Function

To derive the kinetic equation for system (70), we follow the kinetic formulation
proposed by Audusse et al. [18] and Perthame and Simeoni [19] and further developed
by Bourdarias et al. [46] and Ersoy [32]. We consider a kinetic averaging weight function
χ : R→ R and a kinetic density function M satisfying

χ(ω) = χ(−ω) ≥ 0,
∫

χ(ω)dω = 1,
∫

ω2χ(ω)dω =
g
2

, (107)

M(t, x, ξ) :=
√

h(t, x)χ

(
ξ − u(t, x)√

h(t, x)

)
. (108)

These functions originate in the kinetic theory where M(t, x, ξ) accounts for the density
of particles with speed ξ at the space–time point (t, x).

In developing a numerical method, the goal is for the derivation of the finite-volume
scheme fluxes to be based on M through the following property, which links the macro-
scopic variables with the microscopic ones.

5.3. Proposition (Macroscopic–Microscopic Relations)

Let the functions h, u solve the Saint-Venant system (70) and M as in (108). If h(t, x) > 0
at (t, x), then the following macroscopic–microscopic relations hold:

∫
R

 1
ξ
ξ2

M(t, x, ξ)dξ =

 h(t, x)
h(t, x)u(t, x)

h(t, x)u(t, x)2 + g h(t,x)2/2

. (109)

5.4. Kinetic Connection to Saint-Venant

Recalling the Saint-Venant system (70), we note that, by substituting u = q/h (for
h > 0), the topography and friction terms on the right-hand side of the conservation of
momentum equation can be rewritten as

− g h∂xZ− (k+(R) + k−(I) + k0(u))u = − g h
(

∂xZ +
(k+(R) + k−(I) + k0(u))u

g h

)
, (110)

following the approach considered in, for example, Bourdarias et al. [47], adapted to
account for our additional friction terms. The reason for rewriting these terms in this
manner is so we can pack them into a single divergence form; that is, we define the
nonlinear flux integral operator

Ŵ[h(t, ·), u(t, ·)](x) := Z(x) +
∫ x

0

[
(k+(R) + k−(I) + k0(u))u

g h

]
(t, s)ds (111)
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for each x ∈ R, and system (70) thus becomes

∂th + ∂x[hu] = S

∂t[hu] + ∂x

[
hu2 +

g h2

2

]
= − g h∂xŴ[h, u] + Su.

(112)

The kinetic scheme approach allows us to connect the Saint-Venant system with the
single scalar equation obtained by introducing an auxiliary microscopic velocity variable
ξ and looking at the evolution of the density (0, T)× R2 3 (t, x, ξ) 7→ M(t, x, ξ) as the
solution of the following semilinear kinetic equation:

∂t M + ξ∂x M− g ∂xŴ
[
〈M〉0,

〈M〉1
〈M〉0

]
∂ξ M +

SM
〈M〉0

= Q, (113)

where we use the following moment notation for m = 0, 1, . . . :

〈M〉m :=
∫
R

ξm M(·, ·, ξ)dξ. (114)

The right-hand side in (113), Q(t, x, ξ), plays the mathematical role of a collision
term, similar, for instance, to the ones encountered in Boltzmann’s equation. In view of
Proposition 5.3, if (h, u) satisfying (70) is given, the pair (M, Q) defined by (108) and (113)
satisfies the collision 0-moment condition

〈Q〉m = 0 for m = 0, 1. (115)

Conversely, each pair of functions (M, Q) satisfying (113) and (115) provides a pair
(h, u) satisfying (70) by taking

h := 〈M〉0 and hu := 〈M〉1. (116)

5.5. Remark (Advantages of the Kinetic Formulation)

While the kinetic approach is one of many possibilities, and not without drawbacks,
we mention some of its nice features:

(i) In contrast to previous work (e.g., [19]), the kinetic Equation (113) contains an extra
term accounting for precipitation and infiltration effects. This departure is crucial
for the derivation of the fluxes that lead to a well-balanced scheme in the presence
of such terms.

(iii) We also note that, even though the Maxellian M is constructed for still water steady
states, where S(t, x) = 0, we can still use it here to ensure a well-balanced scheme.

(iii) In general, it is easier to find a numerical scheme to solve Equation (113) for M
that has the properties we desire, such as entropy stability, than to solve the full
Saint-Venant system for h and u. However, in finding M, we can calculate h and hu
by virtue of the macro-/microscopic relations (Proposition 5.3). In fact, M is never
calculated explicitly; rather, the function

M̂(ζ, ϕ) :=
√

ζχ

(
ϕ√
ζ

)
whereby M(t, x, ξ) = M̂(h(t, x), ξ − u(t, x)),

(117)

is used to build the fluxes appearing in a finite volume method, as we shall explain
in Section 5.6.

(vi) As shown and fixed by Xia et al. [48], Buttinger-Kreuzhuber et al. [49], and
Taccone et al. [50], some other well-balanced numerical methods fail to correctly
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represent the effect of the topography, especially when the water height h is close to
zero, while the kinetic approach used herein supports arbitrarily small h.

5.6. Discretization and Kinetic Fluxes

To go from the kinetic equation (113) to a numerical method, we follow the approach
of Perthame and Simeoni [19], in which they developed a kinetic scheme for the standard
Saint-Venant system, i.e., Equation (113) with S = 0. Their approach was based on the
general method for developing a finite volume scheme, integrating the kinetic equation
over the domain of interest, with the vector of unknowns defined as

Un
i =

∫
R

[
1
ξ

]
Mn

i (ξ)dξ =

[
hn

i
hn

i un
i

]
, (118)

where the final equality can be seen from the macroscopic–microscopic relations (109) and
in view of the second observation above. We follow the same process for our Saint-Venant
system, giving us the numerical scheme

Un+1
i = Un

i −
∆t
∆x
(

Fn
i+1/2 − Fn

i−1/2
)
+ ∆t

[
Sn

i
Sn

i un
i

]
, (119)

where Sn
i is a discretization of the combined rain and infiltration terms. We pick the

time-step, ∆t, according to

∆t =
CFL ∆x

maxi
(
|un

i |+
√

2 g hn
i
) , (120)

where CFL ∈ (0, 1] is the Courant–Friedrichs–Lewy stability constant (e.g., [19]).
The construction of the numerical fluxes Fn

i±1/2 in (119) is based on the operator
associated with M̂ given in (117). We give here a brief overview of how the successive
numerical flux terms are developed; the interested reader is directed to Perthame and
Simeoni [19] and Bourdarias et al. [46] for more details.

We define the numerical flux (which has two components representing the conserva-
tion of mass and momentum equations) as the integral

Fn
i± 1

2
:=
∫
R

ξ

[
1
ξ

]
M∓i±1/2(ξ)dξ. (121)

The intermediate quantities M∓i±1/2(ξ), which measure the flux at the upper and lower
boundaries of the cell ci = [xi−1/2, xi+1/2], respectively, are realized as up-winded fluxes:

M−i+1/2 := Mn
i (ξ)1[ξ>0] + Mn

i+1/2(ξ)1[ξ<0],

M+
i−1/2 := Mn

i (ξ)1[ξ<0] + Mn
i−1/2(ξ)1[ξ>0],

(122)

with
Mn

i±1/2 := Mn
i (−ξ)1[|ξ|2≤2 g ∆Wn

i±1/2]

+ Mn
i±1

(
∓
√
|ξ|2 − 2 g ∆Wn

i±1/2

)
1[|ξ|2≥2 g ∆Wn

i±1/2]
,

(123)

where we use the notation

1[P] :=

{
1 if P is true,
0 if P is false.

(124)

To understand how these fluxes are defined, consider the flux over the upper bound
M−i+1/2. From (122), we can see that it comprises two terms:

(i) Mn
i (ξ)1[ξ>0]: movement of water with positive velocity (ξ > 0) from within cell ci to

cell ci+1;
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(ii) Mn
i+1/2(ξ)1[ξ<0]: movement of water with negative velocity (ξ < 0) from within cell

ci+1 to cell ci. This term is decomposed a second time into components reflecting
whether the water has enough energy to overcome the topography and friction to
enter or leave the cell.

A similar decomposition exists for the second term, M+
i−1/2, where this time, we

consider the negative and positive velocity of ξ for each case, respectively.
The term ∆Wn

i±1/2 is the up-winded source term and provides the jump condition
necessary for a particle in one cell to overcome the friction and topography to move to an
adjacent cell. Consistently with previous definitions, we calculate this term numerically as:

∆Wn
i+1/2 = Wi+1(tn)−Wi(tn), ∆Wn

i−1/2 = Wi−1(tn)−Wi(tn), (125)

where
Wi(t) = 1ci (x)

1
∆x

∫
ci

W(t, x)dx (126)

for a given cell ci. The semi-discretized kinetic density, Mn
i , is defined as

Mn
i (ξ) :=

√
hn

i χ

(
ξ − un

i√
hn

i

)
. (127)

The discretization we use in our scheme will be based upon the Barrenblatt kinetic
weighting function

χ(ω) =
1

π g

√
(2 g−ω2)+ for ω ∈ R, (128)

where (X)+ stands for the positive part of X ([19], Equation (2.13)). We note that this choice
of function satisfies the properties we outlined in Section 5.2.

6. Numerical Tests

The kinetic scheme we use for our numerical method was implemented by extending
the code of Besson et al. [20] to account for the additional source term in (119), and we
present here two simple numerical tests to demonstrate the validity and application of our
Saint-Venant system and the associated numerical method. For this paper, we will focus
on the rain term only, and thus assume I ≡ 0; the coupling of a realistic infiltration model
with our Saint-Venant system and the treatment of the boundary conditions would be a
paper in itself, and will thus be considered in future research.

In Section 6.1, we compare the accuracy of our numerical model to a flume experi-
ment, considering how our results compare to both the physical data collected from this
experiment and also previous numerical simulations of this experiment by other authors.
Then, in Section 6.2, we simulate multiple rainfall processes of increasing duration on a
slope with both a constant and decreasing gradient, and measure how the value of the
friction effect α impacts the solution.

6.1. Comparison with Real-World Data

For our first test, we explore the accuracy of our numerical scheme by comparing with
data taken from the flume experiment (Figure 4) run as part of the ANR project METHODE
at INRA-Orléans; we also compare our results to those obtained by Delestre and James [10],
who considered only an addition to the conservation of mass equation.
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4 m

0.2 m

Figure 4. Visualization of the flume experiment.

The experiment in question concerns a slope with a 5% gradient, an initial height
h0 = 0, and initial discharge q0 = 0. The topography for the slope is given by

Z(x) = 0.2− x
20

for x ∈ [0, 4], (129)

we consider N = 1000 meshpoints, and we assume CFL = 0.95 (cf. (120)). Rain falls onto
the slope uniformly at a constant rate within a given time interval,

R(t, x) =

{
50 mm h−1 if (t, x) ∈ [5, 125]× [0, 3.95],
0 otherwise,

(130)

and we measure the discharge at the downstream edge of the slope up to time T = 250 s.
For our simulation, we assume the rain-induced friction level α = 1. The hydrograph for
the experiment, together with the simulated values, is provided in Figure 5.
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Figure 5. Hydrograph for the uniform slope test with both the experimental data and the simu-
lated solution.

The results from the simulation compare well with the experimental data, particularly
in the third and final phase when no rain is falling and the discharge is decreasing gradually
over time. For the initial phase, where the discharge is increasing, the simulation matches
well to begin with (up to around 25 s), but subsequently appears to increase at a slower rate
than in the experiment; at t = 35 s, for example, the experiment shows a discharge level of
5.7 g/s compared to the simulation, which is at 3.59 g/s. For the secondary phase, where
the discharge has stabilized, while the simulation does not capture the fluctuations that
were present in the experiment, it does maintain a smooth transition through the center of
the data, and begins to decrease at the same point as the experiment.

Comparing the results of our simulation to those of Delestre and James [10], we see
that our simulation matches much better in both the initial and final phases; in the initial
phase, their simulation increases a lot sooner than in the experiment, and though it begins
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to decrease at the correct time, it also underestimates the total discharge level in the final
phase. For the secondary phase, their results are slightly lower than ours, but are still
consistent with the experimental data.

6.2. Single-Level and Three-Level Cascades

For our second test, we consider the classical Iwagaki [51] scenario, which is similar
to Section 6.1, but with a higher intensity rainfall–runoff process on a slope with a much
shallower gradient. We compare how the water flows when the gradient of the slope is
constant and how it flows when the gradient decreases periodically from the upstream to
downstream end. We consider a spatial domain x ∈ [0, 12], a final time t = 40 s, a rainfall
intensity R0 = 0.001 that falls across the entire domain, N = 1000 meshpoints, and a CFL
number of 0.95. The parameters that we want to change and measure the effect of are the
following:

(1) The total length of the rainfall process TR = 10 s, 20 s and 30 s,

(2) The topography of the slope onto which the rain falls, for which we consider a
constant slope (the single cascade) with Z1(x) = (12− x)0.005 and a decreasing
slope (the three-level cascade, see Figure 6) with

Z2(x) =


(12− x)0.006− 0.012 if x ∈ [0, 4]
(12− x)0.005− 0.004 if x ∈ [4, 8]
(12− x)0.004 if x ∈ [8, 12]

(131)

(3) The rain-induced friction level α, for which we take α = 0, 1, and 5 for both the single
cascade and the three-level cascade.

4 m 4 m 4 m

Figure 6. Topography for the three-level cascade, showing the decrease in gradient from the upstream
to downstream end.

For our outputs, we measure the height of the flow across the entire domain at the
point the rainfall stops, and we also measure the height and discharge at the downstream
end (i.e., x = 12) up to the final time.

Starting with the height profile at t = TR, we see in Figure 7 that for the single-level
cascade, increasing the value of α causes more water to accumulate at the upstream end,
as expected, since the discharge of the water will decrease with higher values of α. It is
interesting to note also that for TR = 10 s, the water still accumulates to the same maximum
amount irrespective of the value of α, though at different points; for longer rainfall times,
this accumulation can still occur, but potentially beyond the end of the domain if the water
has enough discharge.
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Figure 7. Height profiles for the single-level cascade for varying values of α at the rainfall end time TR = 10 s, 20 s and 30 s.

For the three-level cascade shown in Figure 8, the reduction in gradient induces
multiple waves to be formed, though these waves become more smoothed out as the
rainfall time increases. This effect is reduced as α is increased, consistently with our
expectation, since the water flow will be more slowed. The flows do not accumulate to the
same amount, though this may be due to the length of the domain.
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Figure 8. Height profiles for the three-level cascade for values of α = 0 and 1 at the rainfall end time TR = 10 s, 20 s and 30 s.

For the second part of our numerical test, we consider the height and discharge profiles
over time at the end of the domain (x = 12 m). For the single-level cascade (see Figure 9),
we see that increasing the friction level α extends the height profile of the flow, causing it
to decrease at a later time. This occurs for all lengths of rainfall TR, though notably, we see
that as TR increases, the length of time for which the flow plateaus is decreased.

For the discharge, the change in friction and length of rainfall have a much more
pronounced effect. For TR = 10 s, the three friction levels result in a profile that shifts as
the level increases. For TR = 20 s and 30 s, however, the profiles are more varied, with the
discharge tending to change rather linearly for α = 0, but showing a much more curved
profile for α = 5. We can also see that for TR = 30, the discharge is decreasing when the
rainfall stops for α = 0 and 1, but continues to rise at an increased rate for α = 5.

The three-level cascade shown in Figure 10 exhibits a similar behavior to the single-
level cascade, with perhaps the most notable changes being in the height profile; for the
single-level cascade, the height profile for α = 0 remains consistently below that for α = 1,
but for the three-level cascade, this does not hold true between, approximately, t = 10 and
t = 20. The discharge profile for the three-level cascade is very similar in behavior to the
single level.
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Figure 9. Height and discharge profiles over time for the single-level cascade for varying values of rain-induced friction α

at the domain end x = 12 m.
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Figure 10. Height and discharge profiles over time for the three-level cascade for varying values of rain-induced friction α

at the domain end x = 12 m.

7. Conclusions

Our aim in this paper was a mathematically rigorous derivation of a one-dimensional
Saint-Venant system, which was extended to include both precipitation and infiltration
effects. Although a special case of this system has been used in the literature, to our know-
ledge, we present a first derivation from earlier principles. In fact, we went back to the two-
dimensional Navier–Stokes equations and adapted the boundary conditions as appropriate
to model these additional phenomena (our derivation extends to a 3 7→ 2-dimensional
case). The new model (70) that we have derived includes additional momentum (discharge)
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source and friction terms in comparison to other models, which become special cases of our
system. The friction terms are obtained naturally from the derivation and their presence
is essential in explaining how the velocity of the water body interacts with the additional
water coming from either precipitation or runoff; we demonstrated in Section 2.4 that, for
certain regimes, this model may yield non-physical solutions. We showed in Theorem 4.1
that the existence of these additional terms leads to a model whose energetic consistency
depends solely on the level of assumed rain-induced friction, denoted by α.

In developing a numerical model, existing approaches such as finite difference or
finite volume can be used, but they fail to ensure certain properties that we would like our
method to have. The alternative approach we took was to instead use a kinetic formulation,
writing our Saint-Venant system as a single kinetic equation that can then be solved using a
finite volume method to find the original variables (h, q). To demonstrate the applicability
and viability of our system and the associated kinetic scheme, we ran a number of numerical
simulations of our model; in Section 6.1, we compared the accuracy of our model against a
real-world experiment, while in Section 6.2, we saw that increasing the value of α slows
down the propagation of the flow; these results were all in line with our expectations and
analysis of the model.

Though our Saint-Venant model goes some way toward incorporating precipitation
and infiltration effects, that it only includes one spatial dimension makes its application to
modeling realistic real-world problems limited in scope, particularly on very large domains.
The techniques and approach that we have used herein can be readily extended to the
two-dimensional system, though some consideration needs to be given to determine the
friction terms and kinetic scheme for this system; we note, for example, that it is not clear if
the kinetic formulation we have derived for the one-dimensional model can be extended to
a second dimension, and thus, an entirely new approach may be required. This work is
proposed for future research.
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