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Model Selection for Marginal Distribution f : ICL-BIC

The Bayesian Information Criterion (BIC) [1] is defined as BIC = 2LX(θ̂) −
|Θ| logN , with LX(θ̂) being the log-likelihood of the estimated parameters given

the observed data and |Θ| being the size of the parameter space. The Integrated

Completed Likelihood (ICL) - BIC is defined as ICL−BIC = 2LX,Ŷ (θ̂)−|Θ| logN ,

with Ŷ being the maximum a posteriori (MAP) estimate of the value of the hidden

data. All other things being equal, the model with the higher (often “less negative”)

ICL − BIC is preferred. See [2] for an application of this criterion to models of

gene expression, and [3] for a comparison to other model selection criteria, where

ICL − BIC outperforms AIC (Akaike’s information criterion), BIC, and other

criteria in selecting the correct mixture model.

Selection of Weights wtrn

The modeling of the observed data is the same as in the unsupervised case. By

default, labeled samples are given the same weight as unlabeled samples in the

parameter estimations. However, if we have a small training sample, we may choose

to assign a higher weight wtrn to labeled samples. For further (M-step) calculations

involving the posterior probabilities calculated in Equation (7) from the main text,

we make the transformation wn,y ← wtrnwn,y for each n such that tn ≤ K, while

leaving wn,y as-is for each n such that tn = Ktrn. The effective result of this is to

add “copies” of the labeled samples to the data set, thus increasing their influence

on parameter estimation. For example, if we choose wtrn = 2, we are effectively

doubling the size of the training data.

Although values of wtrn > 1 often lead to better parameter estimates and therefore

to better model predictions, overfitting can occur if wtrn grows too large. We use

Monte Carlo cross-validation [4] to choose the best value from a list of candidate

values, currently wtrn ∈ {1, 5, 10, 20, 50, 100}. For a specified number of replications,

currently 30, we sample without replacement half the training data, leaving the

other half to serve as testing data for the current replication. We then train the

model with the first half of the data at each candidate weight, and calculate the

receiver operating characteristic (ROC) area under the curve (AUC) for the trained

models at each candidate weight. The weight with the highest mean ROC-AUC

across all replications is chosen as the final value of wtrn.

EM Algorithm for Hierarchical Mixture Model

Details for the estimation of parameters and conditional probabilities for the hidden

variables are provided in this section. The unconditional status probability is p0,y0 =

P (Y0 = y0), where Y0 generates the distribution for the Yz’s, and the component

probability given the status is qz,y0,yz = P (Yz = yz|Y0 = y0). Given observed data
~X = ( ~X1, . . . , ~Xz) where ~Xz = (~xz,1, . . . , ~xz,n), and parameters θ(i−1), denote the

conditional probabilities for the hidden variables by

un,y0 = P (y0,n = y0|~x·,n, θ(i−1)),
vz,y0,n,yz = P (y0,n = y0, yz,n = yz|~x·,n, θ(i−1)) or

wz,n,yz = P (yz,n = yz|~x·,n, θ(i−1)).
(1)
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Let I(P) denote the indicator function. Then for ~X as above, and hidden data
~Y = (~y1, . . . , ~yZ) where ~yz = (yz,1, . . . , yz,n) with ~y0 = (y0,1, . . . , y0,n), the complete

data log-likelihood is

LX,Y,y0(θ) =
∑
n,k0

I(y0,n = k0) log p0,k0
+
∑
n,z,(k),kz

(I) log qz,(k),kz
+
∑
n,z,kz

I(yz,n = kz) log fkz (xz,n|θ).
(2)

where (k) denotes k0 and (I) denotes I(y0,n = k0, yz,n = kz). The Q-function is

thus

Q(θ|θ(i−1)) =
∑
n,k0

un,k0 log p0,k0
+
∑
n,z,(k),kz

vz,(k),n,kz log qz,(k),kz
+
∑
n,z,kz

wz,n,kz log fkz (~xz,n|θ(i−1)).
(3)

The first step in joint model fitting is to fit a single mixture model to each data

source, as described in the Methods section of the main text, to choose the number

of components Kz and marginal distribution that will be used for that data. Then

the initialization, execution, and output of the EM algorithm as adapted for the

model topologies are as follows:

1 Initialize the parameters for the hierarchical model based on the selected in-

dividual mixture models. Note that the individual model fits are used for

initialization only, and do not imply any hard categorization of the observed

data before fitting the hierarchical model.

2 E-step: for the ith iteration, using the previous iteration’s parameter estimates

θ(i−1), estimate the conditional probabilities defined in Equation (1), which

are

un,y0 =
p(i−1)
y0

∏
z

∑
kz
q
(i−1)
z,y0,kz

gz,n,kz∑
k0
p
(i−1)
k0

∏
z

∑
kz
q
(i−1)
z,k0,kz

gz,n,kz

,

vz,y0,n,yz = un,y0
q(i−1)
y0,yz

gz,n,yz∑
kz
q
(i−1)
z,y0,kz

gz,n,kz

,

wz,n,yz =
∑
k0
vz,k0,n,yz

(4)

where gz,n,yz = fyz (~xz,n|θ(i−1)).
3 M-step: estimate the current iteration’s parameters, θ(i) = arg maxθ Q(θ|θ(i−1)).

This is a straightforward maximum likelihood estimation for the p’s and q’s,

and a weighted MLE for the parameters relating to the observed variables,

using weights ~wz,·,yz and data ~Xz.

4 Repeat steps 2 and 3 until convergence.

5 Report the final estimated parameters θ̂ and posterior status probabilities
~̂
U ,

the N×K0 matrix of which the (n, y0)th element is ûn,y0 = P (y0,n = y0|~xn, θ̂).
Specifically, ûn,1 is the estimated probability, given the data and the final

estimated parameters, that the nth gene is a gene of interest.



Page 3 of 3

EM Algorithm for Semi-Supervised Hierarchical Mixture Model

The conditional probabilities for the hidden variables in the hierarchical semi-

supervised models [5] are

un,y0 = P (y0,n = y0|tn, ~x.,n, θ(i−1)),
vz,y0,n,yz = P (y0,n = y0, yz,n = yz|tn, ~x.,n, θ(i−1)) layered,

wz,n,yz = P (yz,n = yz|tn, ~x.,n, θ(i−1)).
(5)

The Q-function is

Q(θ|θ(i−1)) =
∑
n,ktrn t

′
n,ktrn log ptrnktrn +

∑
n,ktrn,(k) t

′
n,ktrnun,(k) log rtrnktrn,(k)

+
∑
z,n,(k),kz

vz,(k),n,kz log qz,(k),kz +
∑
z,n,kz

wz,n,kz log fkz (~xz,n)

(6)

where t′n,t is as introduced in Equation (6) in the main text, and (k) denotes k0.

The initial calculation in the E-step for the layered semi-supervised model is

un,y0 =
r
trn(i−1)
tn,y0

∏
z

∑
kz
q
(i−1)
z,y0,kz

gz,n,kz∑
k0
r
trn(i−1)
tn,k0

∏
z

∑
kz
q
(i−1)
z,k0,kz

gz,n,kz
. (7)

With the value of un,y0 in hand, the remaining calculations in the E-step proceed

exactly as in the unsupervised model described in [5]. Cross-validation as described

above is used to choose a value for wtrn.
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