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Abstract: This paper is dedicated to the modeling, analysis, and numerical simulation of a two-phase
non-Darcian flow through a porous medium with phase-coupling. Specifically, we introduce an
extended Forchheimer–Darcy model where the interaction between phases is taken into consideration.
From the modeling point of view, the extension consists of the addition to each phase equation of
a term depending on the gradient of the pressure of the other phase, leading to a coupled system
of differential equations. The obtained system is much more involved than the classical Darcy
system since it involves the Forchheimer equation in addition to the Darcy one. This model is more
appropriate when there is a substantial difference between the phases’ velocities, for instance in
the case of gas/water phases, and applications in oil recovery using gas flooding. Based on the
Buckley–Leverett theory, including capillary pressure, we derive an explicit expression of the phases’
velocities and fractional water flows in terms of the gradient of the capillary pressure, and the
total constant velocity. Various scenarios are considered, and the respective numerical simulations
are presented. In particular, comparisons with the classical models (without phase coupling) are
provided in terms of breakthrough time among others. Eventually, we provide a post-processing
method for the derivation of the solution of the new coupled system using the classical non-coupled
system. This method is of interest for industry since it allows for including the phase coupling
approach in existing numerical codes and software (designed for solving classical models) without
major technical changes.

Keywords: Forchheimer’s law; Darcy’s law; two-phase flows; phases coupling; fractional flow;
Buckley–Leverett theory; capillary pressure

1. Introduction

Most applications involving fluid dynamics in laminar flow regime through porous
media are described using Darcy’s equation. Forchheimer’s equation suggests the addition
of a quadratic correction to Darcy’s equation for high flow values, and it was shown
that it provides an alternative model to the basic Darcy’s law. In literature, the upper
limit of Darcy’s law is characterized by a limit of the Reynolds number Re (for instance,
see Equation (10) in [1]) that is limited between Re = 1 and Re = 10 (cf., e.g., Bear [2],
and Chapman [3]). In this paper, we consider the evolution of a two-phase system with
significantly different Reynolds numbers and considerable phase–interface interaction,
water/gas for instance. We describe the high flow rate phase velocity and pressure using
the Forchheimer equation and the relatively low flow rate phase using Darcy’s equation.
Therefore, we consider a coupled Frochhiemer–Darcy’s system that governs the water and
gas phases flow displacement in a porous medium. The modeling novelty here consists
of taking into account the effect of one phase on the other by introducing a coupling of
the Forchheimer equation and the Darcy one through pressure cross-terms in addition
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to the closure of the system through the capillary pressure and the saturation. The idea
is inspired from the results of Kalaydjian et al. [4] and Guérillot et al. [5] in the Darcy
scenario. Thus, our main objective in this paper is to extend the pressure cross-terms
classical (or fully Darcian) model to the non-Darcy case. Specifically, we generalize the
classical Darcy’s equation for the slow phase by adding a pressure cross-term (of the fast
phase) and coupling it to a generalized Forchheimer equation for the fast phase, including
a pressure cross-term (of the slow phase).

The application of our model ranges from a formation near high-rate oil or gas pro-
duction, groundwater pumping to liquid–waste injection wells. The literature dedicated
to the analysis of single-phase high flow rate is rich, and we refer, non-exhaustively,
to Tek et al. [6], Swift and Kiel [7], Lee et al. [8], Skjetne et al. [9], Yu-Shu Wu in [10],
Guppy et al. [11,12], Evans et al. [13], and Evans and Evans [14]. In particular, Tek et al. [6]
derived Forchheimer’s equation to generalize Darcy’s law and extend its application to
various fluid flow rates. Swift and Kiel [7] studied a gas-well performance based on a
Darcy and non-Darcy model for the flow of gas through a porous medium. Lee et al. [8]
quantified the “turbulence intensity” as related to deliverability front gas wells based on a
dimensionless number called the Forchheimer number. Yu-Shu Wu in [10] showed that
the values of the non-Darcy coefficients play a crucial role in the derivation of a non-Darcy
model by studying the impact of permeabilities on the flow dynamics. For fractured
reservoirs, Guppy et al. [11,12] studied the dynamics of a non-Darcy flow in the case
of high-permeable fractured wells. Evans et al. [13,14] analyzed the effect of an immo-
bile/mobile liquid saturation on a non-Darcy flow for single-phase displacement. Other
works concerning single and multiphase flow with the non-Darcy regime are discussed in
Ahmadi et al. [1], and Lasseux et al. [15].

In summary, this work introduces a new coupled Forchheimer–Darcy’s system to
model the evolution, behavior, and interaction of a Darcian flow interacting with a non-
Darcian one in a porous reservoir. The model being entirely new, we proceed to its
full rigorous mathematical analysis to prove its well-posedness that is the existence and
uniqueness of solutions in the adequate functional spaces. From a mathematical point
of view, the main difficulty consists of dealing with the coupling terms. We overcome
this difficulty by recasting the system into a vectorial form. From the applications point
of view, we investigate the effect of the introduced coupling numerically by considering
several values for the amplitudes of the coupling coefficients, and provide comparisons
of the results with the classical Forchheimer–Darcy case (without coupling). Moreover,
the numerical analysis of the impact of the Forchheimer coefficient on the fractional flow
and the water saturation profile is provided. Eventually, application of our model to the
estimate of the breakthrough time is presented emphasizing the potential of our model.
Since all the models being used on a daily basis in the oil and gas industry ignore the
phase coupling, and therefore developing new codes and softwares to include the coupling
is rather heavy from the technical point of view, we propose a post-processing scheme
allowing for including the coupling using the latter mentioned and existing codes. Our
idea consists of using the classical codes to solve the classical Darcy–Forchheimer system
with modified phase mobilities, and then post-processing the solution to take into account
the coupling.

This paper is organized as follows: Section 2 is devoted to the physical model de-
scribing the two-phase fluid flow model and fluids’ parameters. Section 3 is dedicated to
the rigorous mathematical analysis of the coupled set of differential equations at hand,
namely the coupled Darcy–Forchheimer system. In addition, in this section, we derive
explicit mathematical expressions of the velocity solutions of the coupled system in addi-
tion to the phases’ fractional flows to be used for the development of a Buckley–Leverett
theory. Section 4 is dedicated to the numerical resolution of the system by solving the
associated Buckley–Leverett equation using the Euler scheme and finite volume method.
We investigate numerically several scenarios: different amplitudes of the coupling ampli-
tudes, different values of the Forchheimer coefficient, comparison with the classical system
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(without coupling), etc. Eventually, the last section is dedicated to the presentation of our
post-processing method and its theoretical and numerical validation.

2. Physical Model

In this work, the gravity effects are neglected. We assume that the flow in the fluid
domain is governed by the following system (for instance, see [16,17]):

vg + βgρgk
krg

µg
|vg|vg = −k

krg

µg
∇pg,

vw = −k
krw

µw
∇pw,

(1)

where µg and µw are the viscosities of gas-phase and water-phase, respectively, and k is
the absolute permeability tensor. krg and krw denote the relative permeability of gas-phase
and water-phase, respectively. (pg, vg), and (pw, vw) are the pressures and velocities of
gas-phase and water-phase, respectively. The parameter βg denotes the Forchheimer’s
coefficient flow, and ρg is the density of the gas phase. This study introduces a coupled
Forchheimer–Darcy’s system to justify the fact that each phase acts on the other one (cf.,
e.g., [4,5]). First, we introduce the mathematical formulation of the coupled Forchheimer–
Darcy system that governs the fluid evolution (cf., e.g., [4,16,17])

vg + βgρgk
krg

µg
|vg|vg = −k

krg

µg
∇pg − k

krg,w

µg
∇pw,

vw = −k
krw

µw
∇pw − k

krw,g

µw
∇pg,

(2)

where krg,w and krw,g denote the pseudo-permeabilities of gas and water phases, respec-
tively. Let us mention that all the permeabilities and pseudo permeabilities are assumed to
be functions depending on water saturation only. Now, we introduce the capillary pres-
sure pc,g,w defined as the difference between the gas-phase and the water-phase pressures.
That is,

pc,g,w = pg − pw. (3)

To compute the fractional flow of the water-phase and derive a mathematical formula
of the velocity vectors, we denote by Mg and Mw the gas and water mobilities. In addition,
we introduce the gas and water pseudo-mobilities Mg,w and Mw,g, respectively, depending
on the cross-terms amplitudes of their respective gas and water phases in (2), as

Mg =
krg

µg
, Mw =

krw

µw
, Mg,w =

krg,w

µg
, Mw,g =

krw,g

µw
. (4)

We introduce the non-Darcy flow coefficient following [18] and given by

βg = k̄5/4 Cg

(krg)5/4[φ(1− Sw − Snr)]
3/4 , (5)

where Cg is a non-Darcy flow constant, Sw is the water-phase saturation, and Swr is the
connate saturation of the water-phase. φ is the porosity of the porous medium. Now, we
assume that the permeabilities krg and krw are as in the Brooks and Corey model [19], that
is, for all Swr ≤ Sw ≤ 1− Snr,

krw = kmax
rw

(
Sw − Swr

1− Swr − Snr

)nw,1

, krg = kmax
rg

(
1− Sw − Snr

1− Swr − Snr

)ng,2

,

and we assume that the cross-terms in system (2) are given by
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krg,w = (Sw − Swr)
ng,1(1− Sw − Snr)

ng,2 , and krw,g = (Sw − Swr)
nw,1(1− Sw − Snr)

nw,2 , (6)

where ng,1 , ng,2, nw,1, and nw,2 are real numbers that can be obtained from laboratory
experiments and measurements, and Snr and Swr denote the residual gas-phase saturation
and the connate water saturation, respectively. In addition, kmax

rw and kmax
rg denote the

maximal relative permeabilities of water and gas phases, respectively. We consider the Van
Genuchten capillary pressure [20] (assumed function of the water saturation only) whose
expression is given by

pc,g,w = τ(S−1/m
e − 1)1−m, with Se =

Sw − Swr

(1− Swr − Snr)
, (7)

where τ denotes a displacement pressure, and m is a prescribed empirical real number
between 0 and 1.

3. Mathematical Solutions

We are interested in the description of incompressible fluids displacement in a porous
medium reservoir. The mass conservation equations for the gas and the water phases,
denoted with subscripts g and w respectively, read

∂(φ ρg Sg)
∂t +∇.(ρgvg) = 0,

∂(φ ρw Sw)
∂t +∇.(ρwvw) = 0,

Sw(t = 0, x) = S0
wr,

(8)

where ρg, Sg, and ρw, Sw denote the density and saturations of gas and water, respec-
tively. Moreover, vg and vw denote the superficial velocity of the gas and the water
phases, respectively.

3.1. Well-Posedness Result

In this section, we develop an existence and uniqueness theory of the solutions to the
coupled system (2) in general d-dimensional flow. For this purpose, we recast the system
(2) as follows:

U + ρgβg A|U|U = −B G(P), (9)

where U is the vector solution, and A and B symbolize the following matrices given by

U =

(
vg
vw

)
, P =

(
pg
pw

)
, A =

(
k Mg 0

0 0

)
, (10)

and

B =

(
k Mg k Mg,w

k Mw,g k Mw

)
, G(P) =

(
∇pg
∇pw

)
. (11)

We complete that matrix system (9) with the following boundary conditions:

∇ · (k Mgvg) = vg,1, ∇ · (k Mg,wvg) = vg,2, in Ω,

∇ · (k Mwvw) = vw,1, ∇ · (k Mw,gvw) = vw,2, in Ω,

k Mgvg · n = wg,1, k Mg,wvg · n = wg,2, in Γ,

k Mwvw · n = ww,1, k Mw,gvw · n = ww,2, in Γ,

pw(t, x = L) = pout
w ,

(12)
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where L is the reservoir length, and n is the unit outer normal vector to the fluid domain
boundary denoted by Γ. Moreover, we assume that the terms in the boundary conditions
(12) satisfy ∫

Ω
vg,1 dx =

∫
∂Ω

wg,1 dγ
∫

Ω
vg,2 dx =

∫
Γ

wg,2 dγ,∫
Ω

vw,1 dx =
∫

Γ
ww,1 dγ,

∫
Ω

vw,2 dx =
∫

Γ
ww,2 dγ.

(13)

Now, we denote by Vg, Vw, Wg and Ww the following vectors:

Vg =

(
vg,1
vg,2

)
, Vw =

(
vw,1
vw,2

)
, Wg =

(
wg,1
wg,2

)
, and Ww =

(
ww,1
ww,2

)
. (14)

Thus, we can write the conditions (12) and (13) as follows:

∇ · (BU) =

(
Vg
Vw

)
, BU ·

(
n
n

)
=

(
Wg
Ww

)
,

∫
Ω

Vg dx =
∫

Γ
Wgdγ, and

∫
Ω

Vw dx =
∫

Γ
Ww dγ.

(15)

In addition, we denote by Vg,w and Wg,w the following vectors:

Vg,w =

(
Vg
Vw

)
, and Wg,w

(
Wg
Ww

)
. (16)

Before going further, we shall need the following preliminaries. First, we give the
following classical inequalities (for instance, see [21,22]):

(a + b)p ≤ 2p−1(ap + bp), ∀a, b ∈ R+, ∀ p ∈ [1, ∞), (17)

ab ≤ ap

p
+

bq

q
, with

1
p
+

1
q
= 1. (18)

Lemma 1 (see [23]). Let (X, ||.||X) and (M, ||.||Y) be two reflexive Banach spaces and (X∗, ||.||X∗),
(M∗, ||.||M∗) be their corresponding duals. Let B : X −→ M∗ be a linear continuous operator
and B : M −→ X∗ be the dual of B. Let V = ker(B) be a kernel of B. Denote by V0 ⊂ X the
polar subspace of V, V0 = {x∗ ∈ X∗|〈x∗, v〉 = 0, ∀v ∈ X} and Ḃ : X/V −→ M∗ the quotient
operator associated with B. Then, the following properties are equivalent:

1. There exists a constant α > 0 such that

inf
q∈M\{0}

sup
u∈X\{0}

〈Bu, q〉
||q||Y||u||X

≥ α.

2. B∗ is an isomorphism from M onto V0 and

||B∗q||X∗ ≥ α||q||M, ∀ q ∈ M.

3. B∗ is an isomorphism from X/V onto M∗ and

||Ṁu̇||M∗ ≥ α||u̇||X/V , ∀ u̇ ∈ X/V.

Now, letMp,q(X) be the space of matrices of p rows and q columns in X. We define
the following spaces:

L2
0 =

{
v : v ∈ (L2(Ω))2d,

∫
Ω

v(x)dx = 0
}

, (19)

Xdiv =

{
Φ : Φ ∈ (L2(Ω))2d, BU ·

(
n
n

)
= Wg,w, and ∇ · (BΦ) = Vg,w

}
, (20)
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and

X = (L3(Ω))2d ∩ Xdiv, M = (H3/2(Ω) ∩ L2(Ω))2, (21)

N = (H1(Ω) ∩ L2(Ω))2, and Y = M ∩ N. (22)

The weak formulation of system (9)–(13) reads

Find U =

(
vg
vw

)
∈ X and P =

(
pg
pw

)
∈ Y such that

∫
Ω

U ·Φ dx + ρg

∫
Ω

βg A|U|U ·Φ dx = −
∫

Ω
BG(P) ·Φ, (23)

and

Ig,w(U) =
∫

Ω
BU · ∇q = −


∫

Ω
Vgq1dx +

∫
Γ

Wgq1dγ∫
Ω

Vwq2dx +
∫

Γ
Wwq2dγ

, (24)

for all q =

(
q1
g2

)
∈ Y, and for all Φ ∈ X, and for every

Vg = (vg,1, vg,2) ∈ (L3d/(d+3)(Ω))2, and Wg = (wg,1, wg,2) ∈ (L3(d−1)/d(Γ))2, (25)

Vw = (vw,1, vw,2) ∈ (Ld/(d+1)(Ω))2, and Ww = (ww,1, ww,2) ∈ (L(d−1)/d(Γ))2, (26)

satisfying (15). Next, define the spaces

Rg =
{

v ∈ X : Ig,w(v) = 0
}

, (27)

Xg,w = (L3d/(d+3)(Ω)) ∩ Ld/(d+1)(Ω))2d, (28)

Yg,w = (L3(d−1)/d(Γ)) ∩ L(d−1)/d(Γ))2d. (29)

Proposition 1. Assuming that Vg,w ∈ Xg,w, Wg,w ∈ Yg,w satisfies (15), then there is unique
Ug,w ∈ X/Rg such that

||Ug,w||X/Rg ≤ C
(
||Vg,w||Xg,w + ||Wg,w||Yg,w

)
. (30)

The proof of this proposition is similar to the proof of Proposition 3.1 in [24].
Inspired by Proposition 1, we write U = Ug,w,0 + Ug,w where Ug,w,0 ∈ Rg. The weak

formulation (23) and (24) reads

Find Ug,w,0 ∈ Rg such that∫
Ω
A(Ug,w,0 + Ug,w) ·Φ dx = 0, for all Φ ∈ Rg, (31)

where the operator A is defined as

A(U) = U + ρg βg A|U|U. (32)

Proposition 2 (see Proposition 3.2 in Audu et al. [24]). Problem (31) is equivalent to problem
(23) and (24).

Lemma 2 (see Lemma 4.1 in Audu et al. [24]). The operator A : X −→ Y satisfies the
following inequalities:

||A(U)||Y ≤ ||U||Y + ρg|βg| ||A|| ||U||X , (33)
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and
|A(U)−A(V)| ≤

(
1 + 2ρg|βg| ||A||∞(|U|+ |V|)

)
|U −V|. (34)

Lemma 3 (see Lemma 4.2 in Audu et al. [24]). The function U → A(U + Ug,w) defined in
(32) is strongly monotone, that is, for all U, V ∈ X, we have∫

Ω

(
A(U + Ug,w)−A(V + Ug,w)

)
· (U −V) dx ≥ ||U −V||2X . (35)

Proof. Define the map F as F : X −→ R given by

F(V) =
∫

Ω
V ·V dx +

ρg

3

∫
Ω

βg A|V|3 dx, for all V ∈ X. (36)

Let U, V ∈ X, for all h ∈ R, we write

F(U + hV)− F(V)

h
=
∫

Ω
U ·V dx +

ρg

3

∫
Ω

βg A
(|U + hV|3 − |V|3)

h
dx. (37)

Consequently,

lim
h→0

F(U + hV)− F(V)

h
=
∫

Ω
U ·V dx +

ρg

3
lim
h→0

∫
Ω

βg A
(|U + hV|3 − |V|3)

h
dx. (38)

Using Lebesgue convergence theorem (for details, see [25]), we have

F
′
(U) ·V =

∫
Ω

U ·V dx +
ρg

3
lim
h→0

∫
Ω

βg A
(|U + hV|3 − |V|3)

h
dx

=
∫

Ω
U ·V dx +

ρg

3

∫
Ω

βg A lim
h→0

(|U + hV|3 − |V|3)
h

dx

=
∫

Ω
U ·V dx +

ρg

3

∫
Ω

βg A
d

dh
(|U + hV|3)|h=0 dx

=
∫

Ω
U ·V dx +

ρg

3

∫
Ω

βg A
d

dh
((U + hV) · |U + hV|3/2)|h=0 dx

=
∫

Ω
U ·V dx + ρg

∫
Ω

βg A|U|(U ·V) dx.

(39)

Equivalently, we have

F
′′
(U) · (W ·V) = lim

h→0

∫
Ω

F
′
(U + hW)V − F

′
(U)V

h
dx =

∫
Ω

W ·V dx

+ ρg

∫
Ω

βg A|U|(W ·V) dx

+ ρg

∫
Ω

βg A lim
h→0

(
|U + hW|(U ·V)− |U|

h

)
(U ·V) dx

=
∫

Ω
W ·V dx + ρg

∫
Ω

βg A|U|(W ·V) dx

+ ρg

∫
Ω

βg A
d

dh
[|U + hW|]h=0(U ·V) dx

=
∫

Ω
W ·V dx + ρg

∫
Ω

βg A|U|(W ·V) dx

+ ρg

∫
Ω

βg A
d

dh

[
(U + hW)|U + hW|1/2

]
h=0

(U ·V) dx.

(40)
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Thus,

F
′′
(U) · (W ·V) =

∫
Ω

W ·V dx + ρg

∫
Ω

βg A|U|(W ·V) dx

+ ρg

∫
Ω

βg A|U + hW|−1[(U + hW) ·W]h=0(U ·V) dx.
(41)

Setting U = 0, we infer

F
′′
(0) · (V ·W) =

∫
Ω

W ·V dx, ∀V, W ∈ X. (42)

Noticing that F
′′

is positive definite and symmetric, we have

F
′′
(U) · (V ·V) ≥ ||V||2X , ∀U, V ∈ X. (43)

Let U, V ∈ X, and set Û = U +Ug,w and V̂ = V +Ug,w with Ug,w ∈ X fixed. Therefore,
we have

(F
′
(Û)− F

′
(V̂)) · (Û − V̂) =

∫
Ω
(Û − V̂) · (Û − V̂) dx

+ ρg

∫
Ω

βg A
(
|Û|Û − |V̂|V̂

)
· (Û − V̂) dx.

(44)

Therefore,

(F
′
(Û)− F

′
(V̂)) · (Û − V̂) =

∫
Ω

(
A(Û)−A(V̂)

)
· (Û − V̂) dx. (45)

The mean value theorem allows for writing

(F
′
(Û)− F

′
(V̂)) · (Û − V̂) =

∫ 1

0
F
′′
(V̂ + s(Û − V̂)) · (Û − V̂) ds. (46)

Eventually, since Û − V̂ = U −V, we infer∫
Ω

(
A(Û)−A(V̂)

)
· (Û − V̂) dx ≥ ||U −V||2X . (47)

Lemma 4. The function U → A(U + Ug,w) in (32) is coercive in X, for any fixed Ug,w ∈ X.
Moreover,

lim
||U||X→∞

(
1

||U + Ug,w||X

∫
Ω
A(U + Ug,w) · (U + Ug,w) dx

)
= ∞. (48)

Proof. Let U ∈ X be arbitrarily chosen, and setting Û = U + Ug,w equivalent to (39), we have

F
′
(Û) · Û =

∫
Ω

Û · Û dx + ρg

∫
Ω

βg AÛ|(Û · Û) dx

=
∫

Ω

(
Û + ρgβg A|Û|Û

)
· Û dx =

∫
Ω
A(Û) · Û dx.

(49)

In addition, we have

F
′
(Û) · Û =

∫
Ω

Û · Û dx + ρg

∫
Ω

βg A|Û|(Û · Û) dx

=
∫

Ω
Û · Û dx + ρg

∫
Ω

βg A|Û|3 dx.
(50)
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Now, let λ1 = 0 be the least eigenvalue of the matrix A that leads to

AU ·U ≥ λ1 |U|2 = 0, for all U ∈ Rd. (51)

Thus,
F
′
(Û) · Û ≥ ||Û||2X + ρg|βg| ||A||||Û||3X

≥ ||Û||2X + λ1 ρg |βg| ||Û||3X

≥ ||Û||2X .

(52)

Proposition 3. Let Ug,w be fixed in X. Then, the function

S −→
∫

Ω
A(U + Ug,w + SV) ·W dx (53)

is continuous on R for all U, V, W ∈ X.

We refer to Proposition 4.1 in [24] for a proof. Indeed, summing-up and combining all
the previous results, using the inf-sup condition in Lemma 1, and taking into consideration
the linearity and continuity of the operator G, one establishes the existence of (U, P)
solution of the system (9).

3.2. Explicit Solutions

In this section, we provide a mathematical explicit expressions of the velocities solu-
tions to the coupled system (2). We assume that the reservoir is a horizontal linear reservoir
with a uniform cross-section A, and we consider only the x-direction components of the
velocities for the rest of this work. Thus, system (2) now reads

vg + βgρgk
krg

µg
v2

g = −k
krg

µg
∂x pg − k

krg,w

µg
∂x pw,

vw = −k
krw

µw
∂x pw − k

krw,g

µw
∂x pg.

(54)

The following lemma gives an explicit formulation of the velocity solutions of system
(54) in terms of the capillary pressure. We have

Lemma 5. Denote by (vw, pw) and by (vg, pg) the velocities and pressures of water and gas phases,
respectively, solutions of the coupled Forchheimer–Darcy’s system (54). Then, the velocity vg
is given

vg =
1

2βgρg

[
−
(
1 + mg,w

)
+
√

ξ∗
]
, (55)

with

ξ∗ =
(
1 + mg,w

)2
+ 4βgρg

(
Mw Mg −Mw,g Mg,w

Mw + Mw,g
∂x pc,g,w + mg,wvt

)
(56)

and
mg,w =

Mg + Mg,w

Mw + Mw,g
. (57)

To deduce the velocity of water vw, we apply the relation vt = vg + vw, where vt is the total
constant velocity (i.e., A vt = qt).
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Proof. Using the definition of the capillary pressure, we can write

vg + k βgρg Mgv2
g = −k Mg ∂x pc,g,w − k (Mg + Mg,w)∂x pw,

vw = −k (Mw + Mw,g)∂pw − kMw,g ∂x pc,g,w.
(58)

Replacing the terms in (58), we get(
1 + 2βgρgkMw,g∂x pc,g,w

)
ṽg + βgρg ṽ2

g = − k
(

Mg + Mw,g
)
∂x pc,g,w − βgρgk2 M2

w,g∂x p2
c,g,w

− k
(

Mg + Mg,w
)

∂x pw,
(59)

and
ṽw = −k

(
Mw + Mw,g

)
∂pw, (60)

where
ṽg = vg − k Mw,g∂x pc,g,w and ṽw = vw + k Mw,g∂x pc,g,w. (61)

Set the term

mg,w =
Mg + Mg,w

Mw + Mw,g
. (62)

and ξ is given by the relation (56). We get an equation on the pressure gradient ∂x pw, by
substituting the second equation in the first equation in (59),

∂x pw =
(2βgρgvtk + 1)(Mw + Mw,g) + k (Mg + Mg,w)

2βgρgk2 (Mw + Mw,g)2

−
√

ξ

2βgρgk2 (Mw + Mw,g)2 (63)

Plugging the expression of the capillary pressure gradient (63) into system (58), we
infer (55) when ξ∗ is given by (56).

Next, we introduce the concept of fractional flow as proposed in Willhite [26]. The
fractional flow is defined as the volumetric flux fraction of the water-phase flowing position
x and time t. For instance, the water-phase fractional flow is given by

fw :=
qw

qt
=

vw

vt
. (64)

To compute the fractional flow of gas-phase, we use the closure relation fg + fw = 1.
Thanks to Lemma 5, we infer

fw =
2βgρgvt +

(
1 + mg,w

)
−
√

ξ∗

2βgρgvt
. (65)

The water-phase fractional flow is a function of water saturation Sw and capillary
pressure gradient to x.

4. Numerical Simulation

This section is dedicated to the presentation of numerical simulations for comparison
purposes. Indeed, we compare the water saturation and the fractional flow profiles, and
the front position in several scenarios including the non-coupled situation. In addition, we
analyze numerically the impact of a variation of the Forchheimer coefficient on the water
saturation profile and the waterfront position. Eventually, as an application of our model,
we provide estimates of the breakthrough time and compare it to the classical case among
other cases.
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4.1. Numerical Scheme

To study the water-phase saturation profile, we introduce the Buckley–Leverett equa-
tion [27] (also referred as the front advance equation)

dx
dt

∣∣∣∣
Sw

=
qt

Aφ

∂ fw

∂Sw

∣∣∣∣
t
. (66)

where qt is the total constant injection rate of the water-phase.
Equation (66) is discretized in a one-dimensional space of length L through a finite

volume method. We consider a mesh of N + 1 cells xi, of length ∆x = L/N (see Figure 1).
First, we integrate the Buckley–Leverett Equation (66) over a grid cell xi, and rearranging
the derivation terms, we obtain∫ x

i+ 1
2

x
i− 1

2

∂Sw

∂t
dx = − qt

Aφ

∫ x
i+ 1

2

x
i− 1

2

∂ fw

∂x
dx. (67)

Denoting Sw,i the average water-phase saturation in a single cell xi, (67) leads to

d
dt
(∆x Sw,i) = −

qt

Aφ

(
fw,i+ 1

2
− fw,i− 1

2

)
. (68)

Figure 1. Discretized domain using N + 1 grid cells.

The term on the left-hand-side in (68) is discretized using the 1st order accurate Euler
forward method:

∆x

(
Sn+1

w,i − Sn
w,i

∆t

)
= − qt

Aφ

(
fw,i+ 1

2
− fw,i− 1

2

)
, (69)

with ∆t being the time step. Equation (69) is then cast to

Sn+1
w,i = Sn

w,i −
qt

Aφ

∆t
∆x

(
fw,i+ 1

2
− fw,i− 1

2

)
. (70)

For the first order upwind, the terms fw,i+ 1
2
, and fw,i− 1

2
are chosen as

fw,i+ 1
2
= fw,i, and fw,i− 1

2
= fw,i−1. (71)

Equation (70) takes the form

Sn+1
w,i = Sn

w,i −
qt

Aφ

∆t
∆x

( fw,i − fw,i−1). (72)

The matrix form of Equation (72) reads

Sn+1
w = Sn

w, −
qt

Aφ

∆t
∆x

(Fw fn
w − fn

1 ), (73)
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where

Sn
w =


Sn

w,1
.
.
.

Sn
w,N

, fn
w =


f n
w,1
.
.
.

f n
w,N

, and fn
1 =


fw,0

.
0
.
0

 =


1
.
0
.
0

, (74)

and Fw is a N × N matrix defined by

Fw =


1
−1 1

. .
. .

−1 1

, (75)

where fw,0 corresponds to the flow at the virtual cell, which is at distance ∆x to the first
grid cell x1 (see Figure 1), and extrapolated and equals fw,0 = 1. From the numerical point
of view, the results of the first-order upwind present some small oscillations, which is not
satisfactory. An alternative modified Euler method (cf. e.g., Koenig [28]) is used. This
method explores both water-phase saturation and fractional flow of water at the end of
each time step. Specifically,

Sn+1
w = Sn

w −
qt

Aφ

∆t
∆x

(
Fw fn

w − fn
1 + Fw f̃n+1

w − fn
1

2

)
, (76)

where f̃n+1
w (S̃n+1

w ) is computed using the first order upwind given by Equation (73)
as follows:

S̃n+1
w = Sn

w, −
qt

Aφ

∆t
∆x

(Fw fn
w − fn

1 ). (77)

The numerical scheme in (76) is stable under the following CFL condition:

∆t ≤ Aφ∆x

qt max
(

∂ fw

∂Sw

) . (78)

The convergence of our scheme can be seen on the graphs of the water saturation error
curves in Figures 2, 6c and 7c.

Figure 2. One-dimensional linear water saturation Sw in terms of time t.
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4.2. Model Parameters

In this short paragraph, we present the numerical parameters we shall use for the
numerical simulations below. These numerical values are extracted from the book [10]
dedicated to the analysis and numerical simulation of similar models describing the same
physical context but without coupling. The initial saturation S0

wr is set to 0.2, and the
outlet pressure denoted by pout

w is set to pout
w = 80.105 Pa. We assume that our reservoir

is horizontal to neglect the gravity for simplicity (our model is applicable in case of a
non horizontal reservoir) with length L = 3280 ft and cross section A = 10.764× 104 ft2.
The absolute permeability is set to 300 mD. The viscosity of water-phase and gas phase
are equal to µw = 1 cP, and µg = 5 cP respectively. The density of water phase, and gas
phase are equal to ρw = 22.653 kg/ft3, and ρg = 28.316 kg/ft3, respectively. We set the
initial injection rate to qt = 1259.96 bll/s. The Forchheimer coefficient of gas phase is set to
Cg = 3.2× 10−6 m3/2 (other values will be considered below for comparison purposes).
The porosity is equal to φ = 0.25. The connate saturation and the residual saturation of
gas-phase are equal to Swr = 0.20 and Snr = 0.30, respectively. The maximum of the relative
permeability of water-phase is assumed to be krmax

w = 0.5. The maximum of the relative
permeability of gas-phase is set to krmax

w = 0.8. The parameters ng, nw, ng,1, ng,2, nw,1, nw,2

are set to 2, and the displacement pressure τ is equal to 106 Pa. Eventually, the real m is set
to 0.5.

4.3. Numerical Results

This section is dedicated to the presentation of numerical simulations of our model
in several scenarios, using the numerical parameters given above. In particular, we shall
consider different values of the coupling cross-terms amplitudes to track their impact on the
immiscible fluid displacement and the waterfront position. More precisely, the following
scenarios will be investigated: first, we compare the solution of the coupled system (54) to
the solution of the classical system (1) in the particular setting of krg,w = krw,g. Next, we
consider equal amplitudes of coupling cross-terms, that is, Mg,w = Mw,g. In addition, we
shall introduce a tolerance parameter denoted ε and defined as krw,g = ε krg,w allowing for
relative variation of the coupling cross-terms, and we shall consider the particular values
ε ∈ [1/2, 3/2, 5/2]. Eventually, the impact of variations of the Forchheimer coefficient on
the solutions will be shown numerically. Moreover, we shall estimate the breakthrough
time for all these scenarios as an application of our model.

4.3.1. Particular Coupling Cross-Terms

We consider the particular case of the coupled system (54) with equal coupling cross-
terms, which is krg,w = krw,g, where

krg,w = krw,g = (Sw − Swr)
2(1− Sw − Snr)

2. (79)

Our simulations show that, at the initial stage, there is no notable difference in the
water saturation profile solution of the coupled Forchheimer–Darcy one (54) compared to
the solution of the classical Forchheimer–Darcy system (1) (see Figure 3b), the difference
becomes important at the front where the position of the waterfront is different by about
5.66% (see the zoom in Figure 3d). This observation is confirmed by the water fractional
flow graph corresponding to both systems, where we see a clear difference in the value of
the water saturation at the front, Sw f (see Figure 3a). The graphs of the different velocities
are given in Figure 3d, showing in particular that the total velocity remains absolutely
constant, which is the case theoretically. The water and gas pressure graphs are given in
Figure 4a,b, presenting an expected linear behavior of water-phase and gas-phase pressures
after the front. The pressure before the front depends on the water saturation nature, which
justifies its curved profile.

Next, we consider a second particular case, namely the case of equal coupling cross-

terms amplitudes. More precisely, we assume that Mg,w = Mw,g, thus krw,g =
µg

µw
krg,w
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and we refer to (79) for detailed expressions (observe that this case is different from
the case presented above since µg 6= µw). We recall that the coupling terms are given
by the expression (79). In this scenario, we observe that the impact of the coupling is
rather negligible, as it can be seen in the graphs of the fractional water flow and the
water saturation profiles (see Figure 5). Indeed, from Figure 5d, one can estimate that the
waterfront positions are different by only 0.05%.

(a) (b)

(c) (d)

Figure 3. One-dimensional linear: (a) water fractional flow fw; (b,d) water saturation Sw at front; and
(c) water velocity vw, gas velocity vg, the total constant velocity vt; and water-phase pressure and
gas-phase pressure after 1000 days.

(a) (b)

Figure 4. One-dimensional linear water pressure flow pw and gas pressure pg after 1000 days.
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(a) (b)

(c) (d)

Figure 5. One-dimensional linear: (a) water fractional flow fw; (b,d) water saturation Sw at front; and
(c) water velocity vw, gas velocity vg, the total constant velocity vt; and water-phase pressure and
gas-phase pressure after 1000 days.

4.3.2. Different Coupling Cross-Terms’ Amplitudes

In this scenario, we would like to emphasize the impact of a relative variation of the
coupling cross-terms amplitudes that is when a notable difference of their amplitudes is
chosen, on the waterfront position and the solution of system (54). For this purpose, we
assume that the pseudo-permeabilities krg,w and krw,g are linked via a tolerance parameter
ε that is krw,g = ε krg,w, and we shall vary the tolerance ε as follows:

ε = {1/2, 3/2, 5/2} such that krw,g = ε krg,w, (80)

and we remind readers that krg,w given by (79). Figure 6b, and particularly the zoom in
Figure 6d, shows numerically that the larger the tolerance parameter, the more advanced
the waterfront position in the reservoir. It can be computed that the waterfront position is
in advance of about 4.95%, 5.35% and 5.73% after 1000 days for tolerance ε values 1/2, 3/2
and 5/2, respectively.
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(a) (b)

(c) (d)

Figure 6. One-dimensional linear: (a) water fractional flow fw; (b,d) water saturation Sw at front; and
(c) the water saturation error curve showing the convergence after 1000 days.

4.3.3. Variation of the Forchheimer Coefficient

The aim of this section is to numerically investigate the behavior of the solution of
the coupled system with respect to variation of the Forchheimer coefficient. From the
theoretical point of view, we believe one can exhibit continuous dependence of the solution
on the Forchheimer coefficient. Thus, we vary the values of the coefficient Cg and plot the
associated fractional flow and the water saturation profiles describing the two-phase flow
displacement in the reservoir. We shall consider the following values (we refer to [10] for
more details):

Cg = [3.23× 10−6, 3.43× 10−6, 3.54× 10−6]. (81)

From Figure 7a, one can see that a change of the Forchheimer coefficient induces a
slight change in the fractional flow values in terms of the water saturation. Indeed, it can
be computed that the value of Sw f changes by about 10−3. From Figure 7b, particularly
from Figure 7d, the waterfront is in advance of approximately 4.18%, 6.19%, and 7.42%
after 1000 days varying according to the chosen values of the Forchheimer coefficient
suggesting that the higher the Forchheimer coefficient is, the more advanced the waterfront
in the reservoir.
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(a) (b)

(c) (d)

Figure 7. One-dimensional linear water fractional flow and water saturation, and the zoom on the
front of water saturation profiles after 1000 days.

As an application of the previous results, one can compute the breakthrough time
associated with the previous considered scenarios using the following formula and compare
them to the classical system:

tL =
AφxL

qt
∂ fw

∂Sw

∣∣∣∣
Sw f

. (82)

For the first scenario, the breakthrough in terms of days:

1. For the first scenario of krg,w = krw,g, we obtain

Nature of the system Breakthrough tL
Classical system tL = 1224.5 days
Coupled system tL = 1163.8 days

2. For the second scenario Mg,w = Mw,g

Nature of the system Breakthrough tL
Classical system tL = 1224.5 days
Coupled system tL = 1166.2 days

3. For the third scenario, where variations of the Forchheimer coefficient are considered:

Tolerance ε Breakthrough tL
ε = 0.5 tL = 1164.5 days
ε = 1.5 tL = 1169.1 days
ε = 2.5 tL = 1178.5 days

4. For the fourth scenario
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Coefficient Cg Breakthrough tL

Cg = 3.23× 10−6 tL = 1167.4 days
Cg = 3.43× 10−6 tL = 1135.6 days
Cg = 3.54× 10−6 tL = 1104.9 days

5. Post-Processing: Solution of Coupled Forchheimer–Darcy’s System via a
Decoupled System

In this section, we develop a post-processing algorithm for solving the physical
coupled Forchheimer–Darcy system (54) using a decoupled non-physical system since
the idea is based on the introduction of modified mobilities, that is, by solving first a
classical Forchheimer–Darcy system (1) with modified mobilities and next post-processing
the solution to obtain the solution of the coupled system (54). The advantage of this post-
processing algorithm is that it allows for solving coupled systems (and therefore taking into
account the phases coupling) using any existing code or industrial software designed to
solve only classical (that is not coupled, i.e., (1)) without any technical modification. More
precisely, with the post-processing algorithm, there is no need to change the software’s
source code that solves classical systems, but one only solves a classical system with the
modified mobilities and then post-processes the solution to take into account the coupling.
The modified mobilities are given by

1. For the water phase,

M̄w,g = Mw + Mw,g, M̃w,g = Mw + Mg,w. (83)

2. For the gas phase, we define the following terms M̄g,w and M̃g,w such as

M̄g,w = Mg + Mg,w, M̃g,w = Mg + Mw,g. (84)

In addition, we introduce the pressures p̄g and p̄w related to the pressure pg and pw
through the following expressions:

∂x p̄g = ∂x pg −
Mw,g −Mg,w

2M̄g,w
∂x pc,g,w,

∂x p̄w = ∂x pw −
Mw,g −Mg,w

2M̄w,g
∂x pc,g,w.

(85)

Let us mention that, given the numerical values of the mobilities, modified mobilities,
and the capillary pressure, p̄g and p̄w can be obtained by integrating the previous expres-
sions with respect to x. In addition, observe that the new capillary pressure is now related
to the original capillary pressure as follows:

∂x p̄c,g,o = ∂x p̄g − ∂x p̄w,

=
M̄g,w M̃g,w + M̄w,g M̃w,g

2M̄g,w M̄w,g
∂x pc,g,w.

Regarding the post-processing approach, we have the following:

Lemma 6. Let us assume Mw,g = Mg,w, and let (vg, p̄g) and (vw, p̄w) be solutions of the
modified system:

vg + k βg ρg Mg v2
g = − k M̄g,w∂x p̄g,

vw = − k M̄w,g∂x p̄w.
(86)

Then, (vg, pg) and (vw, pw) are solutions of system (54).
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Proof. Using the pressures’ definition (85), system (86) reads

vg + k βg ρg Mg|vg|vg = − k Mg∂x pg − kMg,w∂x pg + k
Mw,g + Mg,w

2
∂x pc,g,w,

vw = − k Mw∂x pw − k Mw,g∂x pw + k
Mw,g + Mg,w

2
∂x pc,g,w.

Using the capillary pressure definition, we infer

vg + k βg ρg Mg |vg|vg = −k Mg∂x pg − k Mg,w∂x pw + k
Mw,g −Mg,w

2
∂x pc,g,w,

vw = − k Mw∂x pw − k Mw,g∂x pg + k
Mg,w −Mw,g

2
∂x pc,g,w.

Now, using the fact that Mg,w = Mw,g, we infer that (vg, pg) and (vw, pw) are solutions
of the coupled Forchheimer–Darcy system (54).

Let us mention that Lemma 6 shows the equivalence of both systems in the very
specific case of Mg,w = Mw,g, which is clearly restrictive in terms of applications. This is
obviously due to the fact that we were not able to prove theoretically the equivalence of
both systems theoretically in more general cases. However, we believe that a more involved
post-processing approach might be possible for the general case, at least if applied at the
level of the numerical scheme and not the mathematical systems.

6. Conclusions

In this paper, we introduced a mathematical model for two-phase non-Darcian flow
where the phases interaction is modeled through coupling pressure cross-terms depending
on pseudo-permeabilities and the fluids’ viscosities, namely a coupled Darcy–Forchheimer
model. The model being new to the literature (the novelty resides in the modeling of the
coupling), a rigorous mathematical analysis of the coupled system of differential equations
was provided leading to the existence and uniqueness of solutions. In addition, we devel-
oped the associated Buckley–Leverett theory by providing explicit expression of the phases’
velocities and the fractional flows depending only on the gradient of the capillary pressure
and the water saturation. We provided numerical simulations solving the front advance
Equation (66) using a finite volume method. Several scenarios were considered: first, we
considered the case of equal pseudo permeabilities, krg,w = krw,g, where we observed a
clear difference in the water saturation profiles compared to the classical (non coupled)
system; the difference is about 5.66%. In the second scenario, we set equal amplitudes for
the coupling pressure cross-terms, that is, we set Mg,w = Mw,g. In this situation, we showed
numerically that the impact of the coupling is rather negligible; indeed, the difference
of the waterfront positions of the coupled system and the non coupled one differ only
by 0.05%. In addition, we analyzed numerically the change in the front position when a
relative variation of the coupling cross-terms amplitudes is introduced. We observed a
higher tolerance (and therefore difference between the amplitudes), the more advanced
the waterfront position is. Eventually, we provided numerical illustrations of the impact
of variation of the Forchheimer coefficient and observed a clear impact on the waterfront
position. Eventually, as application of our model, we computed the breakthrough time
for all previous scenarios. In particular, we observe a rather important gain compared to
the classical (non coupled) system. Eventually, a post-processing algorithm for solving the
coupled Forchheimer–Darcy system was introduced. The idea is to use existing codes and
industrial software designed for solving non coupled systems without any technical change
to solve our model, and therefore take into account the phase coupling we proposed. Our
method is based on the introduction of modified mobilities.
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