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Abstract: In recent advances in distribution theory, the Weibull distribution has often been used
to generate new classes of univariate continuous distributions. They find many applications in
important disciplines such as medicine, biology, engineering, economics, informatics, and finance;
their usefulness is synonymous with success. In this study, a new Weibull-generated-type class is
presented, called the weighted odd Weibull generated class. Its definition is based on a cumulative
distribution function, which combines a specific weighted odd function with the cumulative distri-
bution function of the Weibull distribution. This weighted function was chosen to make the new
class a real alternative in the first-order stochastic sense to two of the most famous existing Weibull
generated classes: the Weibull-G and Weibull-H classes. Its mathematical properties are provided,
leading to the study of various probabilistic functions and measures of interest. In a consequent
part of the study, the focus is on a special three-parameter survival distribution of the new class
defined with the standard exponential distribution as a reference. The exploratory analysis reveals a
high level of adaptability of the corresponding probability density and hazard rate functions; the
curves of the probability density function can be decreasing, reversed N shaped, and unimodal
with heterogeneous skewness and tail weight properties, and the curves of the hazard rate function
demonstrate increasing, decreasing, almost constant, and bathtub shapes. These qualities are often
required for diverse data fitting purposes. In light of the above, the corresponding data fitting
methodology has been developed; we estimate the model parameters via the likelihood function
maximization method, the efficiency of which is proven by a detailed simulation study. Then, the
new model is applied to engineering and environmental data, surpassing several generalizations or
extensions of the exponential model, including some derived from established Weibull-generated
classes; the Weibull-G and Weibull-H classes are considered. Standard criteria give credit to the
proposed model; for the considered data, it is considered the best.

Keywords: Weibull distribution; general class of distributions; statistical model; stochastic ordering;
moments; real data analysis

1. Introduction

This section presents the background, motivations, contributions, and structure of
the study.

1.1. Background

General classes of univariate continuous distributions are involved in various facets
of statistical modeling. They offer solutions to practitioners who wish to understand and
best explain their subject of study from the data observed. In fact, most of these general
classes are based on well-known distributions serving as generators. Basic works and
recent developments on this topic are discussed in [1–3]. Among the most interesting
classes in terms of heterogeneous distributions, are the Weibull-generated-type classes
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based on the standard Weibull distribution. Formally, they are identified by a cumulative
distribution function (cdf) of the following form:

FH(x) = 1− exp
[
−αH(x)β

]
, x ∈ (a, b), (1)

FH(x) = 0 for x ≤ a, and FH(x) = 1 for x ≥ b, where α > 0 is a scale parameter,
β > 0 is a shape parameter, a ∈ R ∪ {−∞}, b ∈ (a,+∞) ∪ {+∞}, and H(x) is a non-
negative monotonically increasing function over (a, b) satisfying limx→a H(x) = 0 and
limx→b H(x) = +∞. One can notice that FH(x) = FW [H(x)], where FW(x) denotes the cdf
of the Weibull distribution with scale parameter α and shape parameter β, showing the role
of the Weibull distribution in the definition of the class. Clearly, for each function H(x), we
can define a Weibull-generated-type class; the choice of H(x) must be motivated by some
theoretical or practical interest. Among the existing Weibull-generated-type classes, there
is the Weibull-X class proposed by [4], the Weibull-G class studied by [5], the modified odd
Weibull-G (MOW-G) class established by [6], and the new Weibull-X class developed by [7].
On the other hand, more sophisticated extensions of Weibull-generated-type classes include
the extended Weibull-generated class proposed by [8], the odd flexible Weibull-H class
introduced by [9], the new Weibull-G class developed by [10], the transmuted Weibull-G
class established by [11], the generalized odd Weibull-G class constructed by [12], and the
flexible Weibull-G class proposed by [13]. Most of these extensions consider an extended
Weibull cdf as generator, or a mathematical transformations of the cdf of the Weibull-G
class, with the use of one or more parameters. For the use of the Weibull-G class for
bivariate modeling, we refer to [14]. A discrete analogue of the the odd Weibull-G class
was developed in [15].

The motivation for our study is connected with the classical Weibull-X, Weibull-G,
and modified odd Weibull-G classes. A retrospective on these classes is discussed below.
When H(x) is determined by the following logarithmic function:

H(x) = H1(x) = − ln(1− G(x)),

where G(x) denotes the cdf of an arbitrary or targeted reference continuous distribution
with support on (a, b), then the cdf given as Equation (2) defines the Weibull-X class
by [4]. By considering the logistic distribution as reference, it is proved in [16] that the
corresponding Weibull-X distribution is flexible enough to perfectly fit the glass fiber data
set of [17]. In particular, the fit of the proposed Weibull logistic model outperforms the
adjustment criteria of the logistic, skewed logistic, and skewed logistic “with location”
models. Further, when H(x) denotes the following “odd ratio” function:

H(x) = H2(x) =
G(x)

1− G(x)
,

the cdf given as Equation (2) characterizes the Weibull-G class by [5]. The foundational
work of [5] shows that the distributions of the Weibull-G class are applicable in various
settings. In particular, the Weibull-G models defined with the exponential, log-logistic, and
Burr XII models as references are appropriate for the adjustments of the glass fiber data set
of [17] and the fatigue time data set of [18]. As a valuable indicator of its usefulness, the
Weibull-G class has been cited in more than 400 references. On the other hand, when H(x)
denotes the following modified odd ratio function:

H(x) = H3(x) =
G(x)

1− G(x)(1 + G(x))/2
,

the cdf given as Equation (2) defines the MOW-G class by [6]. The MOW-G class is
illustrated with the reference distributions: gamma, Weibull, and Lindley distributions.
The related models are proved to be efficient for fitting the guinea pig data set by [19], the
fatigue time data set by [18], and the failure time data set by [20]. Thanks to their flexible



Math. Comput. Appl. 2021, 26, 62 3 of 22

properties, these models are preferable to several competitors based on the same reference
models. A deep relationship exists between the Weibull-X, Weibull-G, and MOW-G classes.
In particular, they are complementary in the following stochastic dominance sense: For
any x ∈ R, we have

FH1(x) ≤ FH3(x) ≤ FH2(x).

Thus, this hierarchical order indicates that, for a given reference distribution and data
set, the objectives of the corresponding estimated cdfs of the classes differ somewhat; one
estimated cdf may be more adequate than another relative to the empirical cdf of the data.

1.2. Motivations and Contributions

In this paper, we contribute to the subject by proposing a new motivated Weibull-
generated-type class, called the weighted odd Weibull-generated class (WOW-G class for
short), which has deep connections with the Weibull-X, Weibull-G, and modified odd
Weibull-G classes. It respects the definition of the cdf given as Equation (2) with the
following weighted odd ratio function:

H(x) = H4(x) =
G(x)

1− G(x)
w(x), w(x) = 1− 1

2
G(x).

Thus, H4(x) is a weighted version of H2(x); H4(x) = w(x)H2(x), precisely. The WOW-G
class is specified by the following cdf:

FH4(x) = 1− exp

{
−α

[
G(x)

1− G(x)

]β

w(x)β

}
, x ∈ (a, b), (2)

FH4(x) = 0 for x ≤ a, and FH4(x) = 1 for x ≥ b. Here, we note specific motivations for
considering the particular function H4(x):

(i) As a basic remark, in relation to H1(x), H2(x) and H3(x), the analytical complexity of
H4(x) is quite acceptable, with the weight function w(x) remaining simple.

(ii) Let us now underline the mathematical connections behind the functions H1(x), H2(x),
H3(x), and H4(x). By virtue of the result in [21], the following logarithmic holds:
ln(1− y) ≥ −y(1− y/2)/(1− y) for y ∈ [0, 1), which implies that H1(x) ≤ H4(x).
On the other side, for any y ∈ [0, 1], we have 1− y2/4 < 1, which is equivalent to
1− y/2 < 2/(2 + y); so,

H4(x) =
G(x)

1− G(x)
w(x) ≤ G(x)

1− G(x)
2

2 + G(x)
=

G(x)
1− G(x)(1 + G(x))/2

= H3(x).

Therefore, the following chain of inequalities holds: H1(x) ≤ H4(x) ≤ H3(x) ≤ H2(x),
implying the following first stochastic dominance result:

FH1(x) ≤ FH4(x) ≤ FH3(x) ≤ FH2(x).

In this sense, the proposed WOW-G class can be seen as an alternative to the Weibull-X,
Weibull-G, and MOW-G classes. This information is important enough to warrant an
investigation of the WOW-G class.

(iii) In relation to the literature on distribution theory, we notice that H4(x) can be ex-
pressed as

H4(x) = c[H2(x) + γG(x)],

with c = 1/2 and γ = 1. Therefore, the WOW-G class appears to be a subclass of the
extended odd-G class championed by [22].
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(iv) Last but not least, the inverse function of H4(x) is quite manageable; after some
operations, we find

H−1
4 (y) = G−1

(
y + 1−

√
y2 + 1

)
, y > 0, (3)

where G−1(y) denotes the quantile function (qf) of the reference distribution. This
implies that the qf of the WOW-G class has an analytical expression, which will be
provided later.

In this study, we derive the theoretical and practical properties of the proposed
WOW-G class. We emphasize a special distribution of the class based on the standard
exponential distribution as a reference. Among its features, it possesses the following
simple cumulative hazard rate function: R(x) = α[sinh(φx)]β for x > 0, with α > 0,
φ > 0 and β > 0, where sinh(x) denotes the standard hyperbolic sine function: sinh(x) =
(ex − e−x)/2. Thus defined, it constitutes a special three-parameter survival distribution
that takes advantage of the structure of the WOW-G class to achieve a high level of
flexibility. In particular, its probability density function (pdf) exhibits all the asymmetric
qualities; the triplet “left skewed-almost symmetrical-right skewed” is observed, as well
as various monotonic decreasing shapes and reversed N shapes. Its sister function in
terms of modeling, the hazard rate function (hrf), presents increasing concave and convex
shapes, decreasing, or almost constant shapes. This flexibility is also observed in diverse
moment measures, such as the mean, variance, moment skewness, and moment kurtosis.
This new survival distribution is thus adapted for the adjustment of versatile data sets.
We illustrate this claim by considering engineering and environmental data, estimating
the model parameters using the maximum likelihood (ML) method. By following the
standards, we use established statistical tools to prove that the fit of the proposed model
surpasses those of several extended exponential models. Statistical comparisons with those
derived from the Weibull-X, Weibull-G, and MOW-G classes are discussed. Numerical
tables and graphics support the findings.

1.3. Structure of the Paper

Section 2 formally presents the most useful functions of the WOW-G class, as well as
the mentioned special distribution. In Section 3, we describe some relevant properties of
the class. Statistical considerations are given in Section 4. The application to two practical
data sets is given in Section 5. Summary and further research are posed in Section 6.

2. The WOW-G Class

Here, we refine the presentation of the WOW-G class and show what we can call its
”distributional richness“.

2.1. Presentation

We recall that the WOW-G class is defined by the cdf given as Equation (2), which will
be denoted in the next section as F(x) = FH4(x), to simplify the notations. From F(x), we
derive the pdf by differentiation according to x in the almost everywhere sense; the pdf of
the WOW-G class is given as

f (x) = αβ
2 g(x)

[
1 + 1

(1−G(x))2

][
G(x)

1−G(x)

]β−1
w(x)β−1 exp

{
−α
[

G(x)
1−G(x)

]β
w(x)β

}
,

x ∈ (a, b),
(4)
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where f (x) = 0 for x 6∈ (a, b). We recall that g(x) refers to the pdf of the reference
distribution. As an important reliability function, the survival function (sf) of the WOW-G
class is given as

S(x) = 1− F(x) = exp

{
−α

[
G(x)

1− G(x)

]β

w(x)β

}
, x ∈ (a, b),

S(x) = 1 for x ≤ a, and S(x) = 0 for x ≥ b.
We can also express the main hazard functions of the WOW-G class, defined by the

cumulative hrf and hrf. Thus, the cumulative hrf is expressed as

R(x) = − ln[1− F(x)] = α

[
G(x)

1− G(x)

]β

w(x)β, x ∈ (a, b),

where R(x) = 0 for x ≤ a, and R(x) = +∞ for x ≥ b, and the hrf is obtained by
differentiation of R(x) according to x in the almost everywhere sense:

r(x) =
αβ

2
g(x)

[
1 +

1
(1− G(x))2

][
G(x)

1− G(x)

]β−1

w(x)β−1, x ∈ (a, b),

and r(x) = 0 for x 6∈ (a, b).

2.2. Some Examples

Based on the WOW-G class, diverse distributions can be defined for specific purposes.
By considering reference distributions, some relevant ones are listed in Table 1.

Table 1. Special distributions of the WOW-G class defined from important distributions as reference.

WOW-G Reference Domain G(x) Num. of Par. S(x)

WOWU Uniform (0, b)
x
b

3 exp

[
− α

2βbβ

(
x(2b− x)

b− x

)β
]

WOWTP Topp–Leone (0, 1) xb(2− x)b 3 exp

− α

2β

(
xb(2− x)b[2− xb(2− x)b]

1− xb(2− x)b

)β


WOWE Exponential (0,+∞) 1− e−φx 3 exp
[
−α[sinh(φx)]β

]
WOWIE Inverse exp. (0,+∞) e−θ/x 3 exp

− α

2β

(
2− e−θ/x

eθ/x − 1

)β


WOWW Weibull (0,+∞) 1− e−φxλ
4 exp

[
−α[sinh(φxλ)]β

]
WOWLom Lomax (0,+∞) 1−

(
1 +

x
ρ

)−θ

4 exp

− α

2β

(
1 +

x
ρ

)−θβ
[(

1 +
x
ρ

)2θ

− 1

]β


WOWGu Gumbel R exp(−e−bx) 3 exp

− α

2β

(
2− exp(−e−bx)

exp(e−bx)− 1

)β


WOWLog Logistic R (1 + e−bx)−1 3 exp

− α

2β

(
ebx(ebx + 2)

ebx + 1

)β

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All the distributions presented in Table 1 deserve an in-depth mathematical treatment
to reveal their capacities in a modeling context. In this study, we focus on the WOWE
distribution—on the one hand, because of the simplicity and originality of this sf, and on
the other hand, because of the beautiful results observed in various statistical analyses,
which will be presented later.

2.3. The WOWE Distribution

As a basis, the WOWE distribution is derived from the WOW-G class by choosing
the exponential distribution as a reference. Here, the exponential distribution is specified
by the following cdf and pdf: G(x) = 1− e−φx for x > 0 and G(x) = 0 for x ≤ 0, and
g(x) = φe−φx for x > 0, and g(x) = 0 for x ≤ 0, respectively, where φ > 0 is a scale
parameter. Let us now discuss the cdf of the WOWE distribution. Noticing that

H4(x) =
G(x)

1− G(x)
w(x) =

1
2

(
1− [1− G(x)]2

1− G(x)

)
=

1
2

(
1− e−2φx

e−φx

)
= sinh(φx),

it follows from Equation (2) that

F(x) = 1− exp
{
−α[sinh(φx)]β

}
, x > 0, (5)

and F(x) = 0 for x ≤ 0. From this expression, one can remark that the WOWE distribution
is also the distribution of the random Y = arsinh(X)/φ, where X denotes a random
variable following the Weibull distribution with scale parameter α and shape parameter β,
and arsinh(x) denotes the area hyperbolic sine function, defined as the inverse of sinh(x)—
that is, arsinh(x) = ln(x +

√
x2 + 1).

By differentiating F(x) according to x, the pdf of the WOWE distribution follows
immediately:

f (x) = αβφ cosh(φx)[sinh(φx)]β−1 exp
{
−α[sinh(φx)]β

}
, x > 0, (6)

f (x) = 0 for x ≤ 0. We now illustrate the flexibility of f (x) in terms of curvature in
Figure 1; the values of the parameters are selected to show specific shapes for f (x).

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

x

p
d
f

φ = 0.5  α = 1.5  β = 3.5

φ = 10  α = 0.2  β = 0.2

φ = 0.5  α = 1.5  β = 2

φ = 0.5  α = 4  β = 2

φ = 2  α = 0.6  β = 0.8

Figure 1. Panels of curves of f (x) for diverse values of the parameters.

Figure 1 displays 5 different types of curves for f (x). The light blue curve shows
a decreasing function with small variations; the navy blue curve shows a right-skewed
function; the green curve refers to an almost symmetric function; the black curve represents
a left-skewed function; and finally, the red curve presents a perfect reversed N shape.
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We observe two (local) maxima, one is attained at x = 0 and another is attained in the
neighborhood of x = 1. This panel of curvatures is a strong argument for recommending
the WOWE model for the fit of various survival data.

The corresponding sf and cumulative hrf of the WOWE distribution are given as

S(x) = exp
{
−α[sinh(φx)]β

}
, x > 0,

and S(x) = 1 for x ≤ 0, and

R(x) = α[sinh(φx)]β, x > 0,

and R(x) = 0 for x ≤ 0, respectively. The simplicity and originality of these functions are
features of the WOWE distribution. By differentiating R(x) according to x, the hrf of the
WOWE distribution is obtained by

r(x) = αβφ cosh(φx)[sinh(φx)]β−1, x > 0, (7)

and r(x) = 0 for x ≤ 0. The possible curves of r(x) is informative of the data fitting ability
of the WOWE model (see [23]). In this regard, Figure 2 presents various curves for r(x);
the values of the parameters for r(x) are chosen to depict specific forms.

0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

2
.0

x

h
rf

φ = 0.5  α = 1.5  β = 1.5

φ = 0.5  α = 1.5  β = 0.97

φ = 0.5  α = 1.5  β = 0.5

φ = 1.2  α = 0.8  β = 0.8

φ = 0.8  α = 0.5  β = 3

Figure 2. Panels of curves of r(x) for diverse values of the parameters.

Figure 2 reveals 5 different types of curves for r(x). The light blue curve shows an
increasing and convex function, the navy blue curve represents a clear bathtub shape,
the green curve refers to a decreasing function, the black curve shows an increasing and
concave function, and the red curve presents a near-constant shape. These observations
support the WOWE model for data fitting purposes.

Other properties of the WOWE distribution will be presented throughout the study.

3. Theoretical Aspects

This section affords some theoretical aspects and properties of the WOW-G class, with
applications to the WOWE distribution when possible.

3.1. First-Order Stochastic Dominance

By construction, as already developed in the introductory section, we have FH1(x) ≤
FH4(x) ≤ FH3(x) ≤ FH2(x). Hence, by using the concept of first-order stochastic (FOS)
dominance as presented in [24], the Weibull-X class FOS-dominates the WOW-G class,
which itself FOS-dominates the MOW-G class, which itself FOS-dominates the Weibull-G
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class. In addition, an intrinsic FOS dominance property of the WOW-G class is developed
in the next proposition.

Proposition 1. Let F(x; α, β) = F(x). Then, the following inequalities hold:

• For α1 ≤ α2, we have F(x; α1, β) ≤ F(x; α2, β); the WOW-G class with parameter α = α1
FOS dominates the WOW-G class with the parameter α = α2.

• There is no FOS property for the WOW-G class according to β.

Proof.

• For any α > 0, β > 0 and x ∈ R, we have

∂

∂α
F(x; α, β) =

[
G(x)

1− G(x)

]β

w(x)β exp

{
−α

[
G(x)

1− G(x)

]β

w(x)β

}
≥ 0,

implying the first result.
• For any α > 0, β > 0 and x ∈ R, we have

∂

∂β
F(x; α, β) = α ln

{
G(x)

1− G(x)
w(x)

}[
G(x)

1− G(x)

]β

w(x)β exp

{
−α

[
G(x)

1− G(x)

]β

w(x)β

}
.

The sign of this function depends on the sign of the logarithmic term. The function is
negative for x such that G(x) < [1− G(x)]w(x) and positive for x such that G(x) >
[1− G(x)]w(x); the function F(x; α, β) is nonmonotonic with respect to β for varying
x; the FOS dominance property does not hold.

This ends the proof of Proposition 1. �

Naturally, further FOS dominances can be established based on the parameter(s) of the
reference distribution. For instance, a result of this aspect regarding the WOWE distribution
is presented below.

Proposition 2. In the context of the WOWE distribution, let F(x; φ) = F(x). Then, for φ1 ≤ φ2,
we have F(x; φ1) ≤ F(x; φ2); the WOWE distribution with parameter φ = φ1 FOS dominates the
WOWE distribution with parameter φ = φ2.

Proof. We have

∂

∂φ
F(x; φ) = αβx cosh(φx)[sinh(φx)]β−1 exp

{
−α[sinh(φx)]β

}
≥ 0.

The desired result follows. �

3.2. Quantile Function

In full generality, the qfs are involved in many statistical applications and simulation
techniques. The following result determines the qf of the WOW-G class.

Proposition 3. The qf of the WOW-G class is obtained by inverting F(x). That is,

Q(u) = G−1

(− 1
α

ln(1− u)
)1/β

+ 1−

√(
− 1

α
ln(1− u)

)2/β

+ 1

, u ∈ (0, 1),

where G−1(u) denotes the proper qf of the reference distribution.
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Proof. In order to determine Q(u), let us investigate the equation F(x) = u. Then, the
following chain of equivalences holds:

F(x) = u ⇔ H4(x) =
(
− 1

α
ln(1− u)

)1/β

⇔ u = H−1
4

[(
− 1

α
ln(1− u)

)1/β
]

.

The desired result follows immediately from Equation (3). �

From Proposition 3, it follows that the median of the WOW-G class is given by

M = Q
(

1
2

)
= G−1

( 1
α

ln 2
)1/β

+ 1−

√(
1
α

ln 2
)2/β

+ 1

.

Further, by considering a random variable U with a uniform distribution over (0, 1), Q(U)
becomes a random variable with the cdf of the WOW-G class. This distributional property
is at the basis of the inverse transform sampling technique, which allows the generation
of numerical values from Q(U). In addition, the established qf enables the definitions
of various asymmetry and plateness measures, such as the Galton skewness and Moors
kurtosis. These aspects are described in detail in [25].

As a concrete example of application, the qf of the WOWE distribution follows from
Proposition 3 with G−1(u) = − ln(1− u)/φ. That is, after some algebra, we obtain

Q(u) =
1
φ

arsinh

[(
− 1

α
ln(1− u)

)1/β
]

, u ∈ (0, 1).

The median of the WOWE distribution is given by

M =
1
φ

arsinh

[(
1
α

ln 2
)1/β

]
.

The other quartiles, as well as Galton skewness and Moors kurtosis, can be expressed in a
similar manner.

3.3. Asymptotic and Form Analysis

Let us now examine the asymptotic behavior and form analysis of f (x) and r(x), as
already sketched graphically in Figures 1 and 2. Such asymptotic analysis is useful to
highlight the roles of the parameters on the possible explosion or not of these functions. In
the case of G(x)→ 0, the following equivalences hold:

f (x) ∼ αβg(x)G(x)β−1, r(x) ∼ αβg(x)G(x)β−1.

Moreover, in the case of G(x)→ 1, it follows

f (x) ∼ αβ

2β
g(x)[1− G(x)]−β−1 exp

{
−α

[
G(x)

1− G(x)

]β

w(x)β

}
, r(x) ∼ αβ

2β
g(x)[1− G(x)]−β−1.

We see that α and β have a strong impact on the asymptotic behavior of the functions,
especially in the case of G(x) → 1. These asymptotic results can be completed by an
analytical study. First, the local maximum(a) of f (x) are of modeling interest, representing
possible “peak(s) of values” behind an observed phenomenon. Further, a local maximum
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corresponds to a mode of the WOW-G class. Such a local maxima—e.g., xm—satisfies the
following equation: d f (x)/dx |x=xm= 0, or equivalently, d ln[ f (x)]/dx |x=xm= 0, where

d
dx

ln[ f (x)] =
dg(x)/dx

g(x)
+ 2

g(x)
(1− G(x))[(1− G(x))2 + 1]

+ (β− 1)
g(x)
G(x)

+ (β− 1)
g(x)

1− G(x)
− (β− 1)

g(x)
2w(x)

− αβ

2
g(x)

[
1 +

1
(1− G(x))2

][
G(x)

1− G(x)

]β−1

w(x)β−1.

In addition, as a local maximum, xm satisfies d ln[ f (x)]/dx > 0 for x < xm and d ln[ f (x)]/dx < 0
for x > xm. Clearly, the definition and number of modes depend on g(x) and the parameters α
and β.

Similarly, a critical point for r(x) satisfies dr(x)/dx = 0, or equivalently, d ln[r(x)]/dx = 0,
where

d
dx

ln[r(x)] =
dg(x)/dx

g(x)
+ 2

g(x)
(1− G(x))[(1− G(x))2 + 1]

+ (β− 1)
g(x)
G(x)

+ (β− 1)
g(x)

1− G(x)
− (β− 1)

g(x)
2w(x)

.

The sign of this function at a solution point can indicate its nature. Nevertheless, from the
general equations above, the expressions of the solutions are difficult to exhibit.

As a more concrete study, let us now investigate the asymptotics, modes, and shapes
of the pdf and hrf of the WOWE distribution. In the case of x → 0, we have

f (x) ∼ αβφβxβ−1, r(x) ∼ αβφβxβ−1.

Both of f (x) and r(x) explode to +∞ when β < 1, are equal to αβφβ when β = 1, and tend
to 0 when β > 1. Further, in the case of x → +∞, it follows that

f (x) ∼ αβφ

2β
eφβx exp

{
−α[sinh(φx)]β

}
, r(x) ∼ αβφ

2β
eφβx.

Thus, for all the values of the parameters, f (x) tends to 0 whereas r(x) explodes to
+∞. Now, the derivative of the logarithmic transformation of the corresponding pdf
is obtained as

d
dx

ln[ f (x)] = φ coth(φx)
(
−αβ[sinh(φx)]β + β + [tanh(φx)]2 − 1

)
.

We already know that x = 0 is a local maximum for f (x) when β < 1. In this case or for
β ≥ 1, another possible mode—e.g., xm—satisfies −αβ[sinh(φxm)]

β + β + [tanh(φxm)]
2 −

1 = 0. Further, we have

d
dx

ln[r(x)] = φ coth(φx)
(
[tanh(φx)]2 + β− 1

)
.

If β > 1, this function is positive, implying that ln[r(x)] and r(x) are increasing. If β < 1,
a critical point is given as the solution of the following equation: x = atanh(

√
1− β)/φ.

These mathematical facts confirm some observations made in Figures 1 and 2.

3.4. Mixture Representation

Following the approach of [5], mixture representations of the main functions of the
WOW-G class are proved in the next proposition.
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Proposition 4. The cdf and pdf of the WOW-G class can be expanded in the following manner:

F(x) =
+∞

∑
k=1,`,m=0

βk+`+m

∑
p=0

θk,`,m,pK(x)p,

where K(x) = 1− G(x) and

θk,`,m,p =
1
k!
(−1)k+`+m+p+1αk2−`

(
βk
`

)(
−βk

m

)(
βk + `+ m

p

)
.

Similarly, assuming that the interchange of the derivative and sum signs is valid in the mathematical
sense, we have

f (x) =
+∞

∑
k=1,`,m=0

βk+`+m

∑
p=1

ηk,`,m,p{pg(x)K(x)p−1},

where ηk,`,m,p = −θk,`,m,p.

Proof. Based on the standard exponential series expansion, we obtain

F(x) =
+∞

∑
k=1

1
k!
(−1)k+1αk

[
G(x)

1− G(x)

]βk
w(x)βk.

Moreover, by applying the generalized binomial formula twice, we obtain

F(x) =
+∞

∑
k=1

1
k!
(−1)k+1αkG(x)βk

+∞

∑
`=0

(
βk
`

)
(−1)`2−`G(x)`

+∞

∑
m=0

(
−βk

m

)
(−1)mG(x)m

=
+∞

∑
k=1,`,m=0

1
k!
(−1)k+`+m+1αk2−`

(
βk
`

)(
−βk

m

)
G(x)βk+`+m.

By expressing G(x) as G(x) = 1− K(x) and using the standard binomial formula, it results
as follows:

F(x) =
+∞

∑
k=1,`,m=0

βk+`+m

∑
p=0

1
k!
(−1)k+`+m+p+1αk2−`

(
βk
`

)(
−βk

m

)(
βk + `+ m

p

)
K(x)p,

which corresponds to the announced result. When differentiating with respect to x, the
expansion of f (x) follows. �

One can remark that K(x) is literally the sf of the reference distribution. Thus, Proposi-
tion 4 shows that the cdf and pdf of the WOW-G class can be expressed in terms of crucial
functions of the exponentiated reference distribution. This relationship can be used for
further mathematical developments.

For the WOWE distribution, based on this proposition, the corresponding cdf and pdf
become expressed in terms of inverse exponential functions as follows:

F(x) =
+∞

∑
k=1,`,m=0

βk+`+m

∑
p=0

θk,`,m,pe−φpx, f (x) =
+∞

∑
k=1,`,m=0

βk+`+m

∑
p=0

ηk,`,m,pφpe−φpx.
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Under some integrability conditions, one infers that, for a function h(x) defined on (0,+∞),
we have

∫ +∞

0
h(x) f (x)dx =

+∞

∑
k=1,`,m=0

βk+`+m

∑
p=0

ηk,`,m,pφpT (h)(φp),

where T (h)(t) =
∫ +∞

0 h(x)e−txdx denotes the Laplace transform of h(x). This expansion
can serve for computational purposes for various probabilistic measures.

3.5. Moments

We now work with a random variable X whose distribution belongs to the WOW-G
class. Let us denote by E the standard expectation. Then, if the rth order moment about the
origin of X converges in the mathematical sense, it is given by

mr = E(Xr) =
∫ ∞

−∞
xr f (x)dx

=
αβ

2

∫ ∞

−∞
xrg(x)

[
1 +

1
(1− G(x))2

][
G(x)

1− G(x)

]β−1

w(x)β−1 exp

{
−α

[
G(x)

1− G(x)

]β

w(x)β

}
dx.

After some changes of variable based on the involved qfs, it can be re-expressed as

mr =
αβ

2

∫ 1

0
[G−1(u)]r

[
1 +

1
(1− u)2

][
u(1− u/2)

1− u

]β−1

exp

{
−α

[
u(1− u/2)

1− u

]β
}

du,

or, based on Proposition 3,

mr =
∫ 1

0
[Q(u)]rdu =

∫ 1

0

G−1

(− 1
α

ln(1− u)
)1/β

+ 1−

√(
− 1

α
ln(1− u)

)2/β

+ 1


r

du.

In all cases, these integrals are not simply developable; if the reference distribution is
known, along with the parameters α and β, numerical treatments of them are possible via
mathematical software such as Matlab, Mathematica, R, Python, etc. Alternatively, one can
use the expansion of f (x) in Proposition 4 for deriving an expansion of mr, as in [5].

In the setting of the WOWE distribution, the rth-order moment about the origin of
X converges in the mathematical sense and the above integrals can be applied. As a
remark, by introducing a random variable W following the Weibull distribution with
scale parameter α and shape parameter β, we have mr = E{[arsinh(W)]r}/φr. From
these moments about the origin, one can derive the moments about the mean, vari-
ance, moment skewness, and moment kurtosis of X. They are defined by, respectively,
mc

r = E[(X −m1)
r] = ∑r

k=0 (
r
k)(−1)kmk

1mr−k, σ2 = mc
2, S = mc

3/σ3 and K = mc
4/σ4. The

mean is a central measure, the variance is a dispersion measure, the moment skewness is
an asymmetry measure, and the moment kurtosis is a peakedness/flatness measure.

The behavior of the WOWE distribution regarding these measures is illustrated in
Table 2. The values of the parameters are chosen in such a way as to illustrate the overall
moment versatility phenomenon.
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Table 2. Moments, variance, skewness, and kurtosis of the WOWE distribution for some
parameter values.

(φ, α, β) m1 m2 m3 m4 σ2 S K

(0.1, 0.1, 0.1) 7.7459 545.4638 42424.6700 3478367 22.0332 2.8681 9.3350
(0.1, 0.5, 0.1) 18.12071 1206.8810 90740.4800 7265826 29.6398 1.4221 1.4814
(0.1, 0.5, 0.5) 16.6674 481.3052 16555.54 630853.9 14.2654 0.6027 4.6662
(0.1, 2.5, 0.5) 2.5418 23.3260 328.6222 5764.03 4.1067 2.6507 10.2090
(0.2, 2.5, 0.5) 1.2709 5.8315 41.0777 360.2519 2.0533 2.6507 11.45969
(0.2, 2.5, 2.5) 2.8451 9.2991 33.4134 128.8816 1.0974 0.0775 71.6438
(0.3, 3, 3) 1.9195 4.0841 9.3549 22.6830 0.6319 −0.0721 242.1780
(0.3, 6, 6) 6.3961 42.1459 284.6251 1962.7610 1.1113 −0.5442 864.7704

From Table 2, we see that m1 and σ2 can vary a lot; for the considered values of the
parameters, we have m1 ∈ [1.2709, 18.12071] and σ2 ∈ [0.6319, 29.6398]. Furthermore, S
can be negative as for (φ, α, β) = (0.3, 3, 3), almost equal to 0 as for (φ, α, β) = (0.2, 2.5, 2.5),
and positive as for (φ, α, β) = (0.1, 0.1, 0.1); the WOWE distribution is confirmed to be
possibly left-skewed, almost symmetric, and right-skewed. For the moment kurtosis, all the
possible cases are here: K can be inferior to 3 as for (φ, α, β) = (0.1, 0.5, 0.1), near equal to 3
as for (φ, α, β) = (0.1, 0.5, 0.5), and superior to 3 as for (φ, α, β) = (0.3, 6, 6). Consequently,
the WOWE distribution can be of the three following regimes: platykurtic, mesokurtic,
and leptokurtic. These observations are in favor of the use of the WOWE model for data
fitting aims.

4. Inferential Aspect

In this section, we briefly outline the ML method, which allows for efficient estimation
of the model parameters. A simulation study illustrates this efficiency.

4.1. Parameter Estimation

Suppose that we deal with n observations x1, . . . , xn from a characteristic that can be
modeled by a random variable with a distribution belonging to the WOW-G class. Then,
by denoting (α, β, ζ) the vector of the unknown model parameters, including those of the
reference model denoted by ζ, a ML estimate (MLE) of (α, β, ζ) is given as

(α̂, β̂, ζ̂) = argmax(α̂,β̂,ζ̂) L(α, β, ζ),

where L(α, β, ζ) denotes the likelihood function defined by

L(α, β, ζ) =
n

∏
i=1

f (xi)

=
n

∏
i=1

{
αβ

2
g(xi)

[
1 +

1
(1− G(xi))2

][
G(xi)

1− G(xi)

]β−1

w(xi)
β−1 exp

{
−α

[
G(xi)

1− G(xi)

]β

w(xi)
β

}}
.
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Here, we assume that the MLE exists and is unique. A component of (α̂, β̂, ζ̂) is called the
MLE of the corresponding component of (α, β, ζ). Under some configurations, it is easier to
find the MLE of (α, β, ζ) through the maximization of the log-likelihood function given as

`(α, ζ) = ln[L(α, β, ζ)] =
n

∑
i=1

ln[ f (xi)]

= n ln
(

αβ

2

)
+

n

∑
i=1

ln[g(xi)] +
n

∑
i=1

ln
[

1 +
1

(1− G(xi))2

]
+ (β− 1)

n

∑
i=1

ln[G(xi)]

− (β− 1)
n

∑
i=1

ln[1− G(xi)] + (β− 1)
n

∑
i=1

ln[w(xi)]− α
n

∑
i=1

[
G(xi)

1− G(xi)

]β

w(xi)
β.

If the log-likelihood function is differentiable, the desired MLEs are solutions of the follow-
ing system of equations:

∂

∂α
`(α, β, ζ) =

n
α
−

n

∑
i=1

[
G(xi)

1− G(xi)

]β

w(xi)
β = 0,

∂

∂β
`(α, β, ζ) =

n
β
+

n

∑
i=1

ln[G(xi)]−
n

∑
i=1

ln[1− G(xi)] +
n

∑
i=1

ln[w(xi)]

− α
n

∑
i=1

[
G(xi)

1− G(xi)

]β

w(xi)
β ln
{[

G(xi)

1− G(xi)

]
w(xi)

}
= 0,

and, by denoting ζ = (ζ1, . . . , ζp), for j = 1, . . . , p,

∂

ζ j
`(α, β, ζ) =

n

∑
i=1

∂g(xi)/∂ζ j

g(xi)
+ 2

n

∑
i=1

∂G(xi)/∂ζ j

(1− G(xi))[(1− G(xi))2 + 1]
+ (β− 1)

n

∑
i=1

∂G(xi)/∂ζ j

G(xi)

+ (β− 1)
n

∑
i=1

∂G(xi)/∂ζ j

1− G(xi)
− (β− 1)

n

∑
i=1

∂G(xi)/∂ζ j

2w(xi)

− αβ

2

n

∑
i=1

∂G(xi)

∂ζ j

[
1 +

1
(1− G(xi))2

][
G(xi)

1− G(xi)

]β−1

w(xi)
β−1 = 0.

Due to the analytical complexity of these equations, in most cases, closed form expressions
for the MLEs are not possible. We can solve them numerically by using iterative procedures
such as the Newton–Raphson-type algorithms. The standard errors (SEs) of the MLEs
can be determined by the diagonal elements of J−1, where J denotes the (p + 2)× (p + 2)
matrix defined by

J =
{
− ∂2

∂u∂v
`(α, β, ζ)

}
(u,v)∈{α,β,ζ1,...,ζp}2

∣∣∣∣∣
(α,β,ζ)=(α̂,β̂,ζ̂)

,

whose elements can be evaluated numerically. The setting above can be applied directly to
the WOWE distribution, as illustrated in the next section. The background on the general
theory and practice of the ML method can be found in [26].

4.2. Simulation

Here, based on the WOWE model, a simulation study is performed in order to in-
vestigate the behavior of the ML estimation. We start by generating N = 10,000 samples
from the model, each of sample size n ∈ {35, 50, 100, 200, 300, 400, 500}, for some selected
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parameter values. The assessment considers the average value of the ML estimates (AE)
and the root-mean-square error (RMSE) defined by

AE(ψ) =
1
N

N

∑
i=1

ψ̂i, RMSE(ψ) =

√
1
N

n

∑
i=1

(ψ̂i − ψ)2,

respectively, where ψ = α, β, or φ. We employ the package named AdequacyModel and
developed in [27] of the R software (see [28]). The results are given in Table 3.

Table 3. Actual values, AEs, and RMSEs of the simulated data from the WOWE distribution for
the following parameter configurations with order (φ, α, β): (1.3, 3.2, 2.4), (1.1, 2.0, 0.8), (1.0, 1.0, 1.0),
(1.5, 1.1, 0.2), (0.5, 1.5, 0.5), and (0.6, 0.8, 0.4).

Sample Size Actual Values Average Estimate Root-Mean-Square Error

n φ α β φ̂ α̂ β̂ RMSE(φ̂) RMSE(α̂) RMSE(β̂)

35 1.3 3.2 2.4 1.2811 4.4673 2.6784 5.1833 3.9974 0.8393
50 1.2842 4.1085 2.5299 4.4961 3.8963 0.7740

100 1.1629 3.3056 2.4306 0.6595 1.0978 0.6055
200 1.2056 3.2039 2.3994 0.5860 0.7956 0.5456
300 1.2439 3.1723 2.3765 0.5324 0.6722 0.5382
400 1.2819 3.1295 2.3384 0.5148 0.5818 0.5072
500 1.2917 3.1314 2.3424 0.4666 0.5356 0.4764

35 1.1 2.0 0.8 1.84938 2.9949 0.9004 0.8098 1.7134 0.2838
50 0.9228 2.4632 0.8454 0.7457 1.5873 0.2459

100 0.9688 2.0734 0.8018 0.6778 0.5467 0.1942
200 0.9901 2.0240 0.7975 0.6095 0.4079 0.1718
300 1.0162 2.0047 0.7929 0.5681 0.3475 0.1584
400 1.0364 1.9872 0.7880 0.5364 0.3013 0.1510
500 1.0421 1.9859 0.7904 0.4932 0.2768 0.1396

35 1.0 1.0 1.0 1.0292 1.6786 1.2355 0.9120 0.656O 0.4432
50 0.7724 1.1494 1.0896 0.7139 0.4497 0.3299

100 0.8465 1.0294 1.0152 0.6871 0.2006 0.2584
200 0.8718 1.0119 1.0045 0.6354 0.1536 0.2312
300 0.9051 1.0022 0.9937 0.6097 0.1295 0.2182
400 0.9298 0.9955 0.9852 0.5828 0.1119 0.2096
500 0.9328 0.9945 0.9876 0.5453 0.1029 0.1957

35 1.5 1.1 0.2 1.3456 1.4467 0.3359 0.9688 0.7997 0.1097
50 0.9736 1.2720 0.2660 0.7394 0.5391 0.0915

100 1.1755 1.1355 0.2354 0.6736 0.2359 0.0721
200 1.2573 1.1111 0.2260 0.6151 0.1775 0.0650
300 1.3222 1.1011 0.2193 0.5559 0.1498 0.0602
400 1.3628 1.0966 0.2150 0.5105 0.1309 0.0560
500 1.3763 1.0953 0.2142 0.4779 0.1193 0.0534

35 0.5 1.5 0.5 0.8998 2.2134 0.5577 0.9878 1.9899 0.1567
50 0.6828 1.9401 0.4873 0.7175 1.0610 0.1288

100 0.6177 1.6527 0.4755 0.6509 0.3950 0.0963
200 0.5693 1.6051 0.4789 0.5981 0.2950 0.0822
300 0.5485 1.5815 0.4816 0.5581 0.2481 0.0717
400 0.5330 1.5633 0.4823 0.5341 0.2136 0.0664
500 0.5187 1.5555 0.4845 0.5035 0.1932 0.0592

35 0.6 0.8 0.4 0.8890 1.0999 0.5656 0.7868 0.6857 0.1200
50 0.6169 0.9284 0.4049 0.6858 0.3288 0.1163

100 0.6166 0.8408 0.3855 0.6614 0.1521 0.0877
200 0.5963 0.8261 0.3857 0.6169 0.1163 0.0773
300 0.6008 0.8178 0.3837 0.5953 0.0977 0.0713
400 0.5989 0.8118 0.3837 0.5840 0.0841 0.0685
500 0.5824 0.8096 0.3862 0.5504 0.0768 0.0629

It can be seen from Table 3 that the performance of the ML estimation shows consis-
tency and is quite satisfactory; the AEs converge to the corresponding actual values and
the RMSEs decrease as the sample size increases.

5. Data Analysis

In this section, we attempt to apply the WOWE model to two real data sets, comparing
its fit behavior with those of famous extended exponential models of the literature.

5.1. Method

The following eight models are considered:

(i) the proposed WOWE model as described by the cdf and pdf given in Equations (5)
and (6), respectively;
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(ii) modified odd Weibull exponential (MOWE) model by [6];
(iii) Weibull exponential (WE) model by [5];
(iv) Weibull-X exponential (WXE) model by [4,16];
(v) Lomax exponential (LxE) model by [29];
(vi) beta exponential (BeE) model by [30];
(vii) length bias exponential (LbE) model by [31];
(viii) exponential (E) model.

We discriminate these models by considering the following standard statistical measures:

(i) Akaike information criterion (AIC);
(ii) Bayesian information criterion (BIC);
(iii) consistent AIC (CAIC);
(iv) Hannan–Quinn information criterion (HQIC);
(v) Cramér-von Mises (W) statistic;
(vi) Anderson–Darling (A) statistic;
(vii) Kolmogorov–Smirnov (KS);
(viii) p-value of the KS test.

Conventionally, the best model is the one with the smallest value for AIC, BIC, W,
CAIC, HQIC, A, KS and the largest value for the p-value related to the KS test. It is worth
mentioning that the AIC, BIC, CAIC, and HQIC depend on the minus maximal estimated
log-likelihood that we denote as − ˆ̀. Further details on these measures, including their
mathematical definitions, can be found in [32]. As for the simulation study, the results are
obtained by employing the AdequacyModel package of the R software.

5.2. Fit of the Drilling Machine Data

The first data set named ”drilling machine data“ refers to the 50 observations with
holes and sheets of a certain thickness. It is extracted from [33]. The data are presented as
follows: 0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08, 0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26,
0.32, 0.28, 0.14, 0.16, 0.24, 0.22, 0.12, 0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24, 0.16, 0.32, 0.18,
0.24, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16.

For these data, the MLEs of the model parameters and the related SEs are presented in
Table 4.

Table 4. MLEs and SEs of the parameters of the considered models for the drilling machine data.

Models MLEs with Related SEs in (.)

WOWE 6.6212 0.4624 1.5122
(φ, α, β) (3.0716) (0.4375) (0.4013)
MOWE 0.2663 179.1942 1.7132
(φ, λ, θ) (0.1012) (6.7116) (0.1830)
WE 1.1042 18.6634 1.9670
(φ, α, β) (0.2272) (0.2837) (0.1928)
WXE 0.8830 2.1191 0.1622
(φ, γ, c) (4.2139) (0.2462) (0.7741)
LxE 139.3275 20.4673 10.6675
(a, k, s) (2.0930) (6.9044) (2.6622)
BeE 3.0295 67.1880 0.2722
(a, b, λ) (0.5757) (8.9695) (2.2320)
LbE 67.5728 0.9904 -
(α, θ) (4.4556) (0.7415) -
E 6.1274 - -
(φ) (0.8665) - -
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In particular, for the WOWE model, we note that the MLEs of φ, α, and β are
φ̂ = 6.6212, α̂ = 0.4624, and β̂ = 1.5122, respectively. Based on Equations (5) and (6)
and the plug-in technique, the corresponding estimated cdf and pdf are given as

F̂(x) = 1− exp
{
−α̂
[
sinh(φ̂x)

]β̂
}

, x > 0,

and

f̂ (x) = α̂β̂φ̂ cosh(φ̂x)
[
sinh(φ̂x)

]β̂−1 exp
{
−α̂
[
sinh(φ̂x)

]β̂
}

,

respectively. Other estimated functions and measures of the WOWE model can be presented
in a similar manner.

The values of the − ˆ̀, AIC, BIC, CAIC, HQIC, W, A, KS, and p-value of the KS test of
all the models are given in Table 5.

Table 5. Fit measures for the drilling machine data.

Models − ˆ̀ AIC BIC CAIC HQIC W A KS p-Value

WOWE −57.5115 −109.0230 −103.2869 −108.5013 −106.8387 0.0723 0.4303 0.0953 0.7542
MOWE −50.6530 −95.2832 −89.5471 −94.7844 −93.12181 0.1259 0.7675 0.1529 0.1928

WE −56.4905 −106.7723 −101.0362 −106.4593 −104.7967 0.0922 0.5626 0.1106 0.5733
WXE −55.8918 −105.7836 −100.0476 −105.2619 −103.5993 0.1052 0.6435 0.1099 0.5811
LxE −57.0479 −108.0958 −102.3598 −107.5741 −105.9115 0.0770 0.4609 0.1008 0.6888
BeE −53.3708 −100.7417 −95.0056 −100.2200 −98.5574 0.1816 1.0902 0.1540 0.1864
LbE −55.1966 −106.4177 −102.5936 −106.1380 −104.9371 0.1232 0.7526 0.1407 0.2753

E −40.6389 −79.2778 −77.3658 −79.1945 −78.5497 0.1831 1.0985 0.2806 0.00075

In Table 5, according to the considered criteria, the best results are obtained for the
proposed WOWE model. The main challenger is the LxE model. Figure 3 displays four
different plots illustrating the nice fit of the WOWE model, which are the probability–
probability (P–P) plot, the estimated pdf f̂ (x) superposed to the histogram of the data, the
estimated cdf F̂(x) superposed to the empirical cdf of the data, and the quantile–quantile
(Q–Q) plot.

In each of these plots, we see that the empirical object is well-adjusted by the estimated
object. In particular, on the plot of the estimated pdf, we see that the kurtosis flexibility
of the WOWE model is determinant; the round shape of the histogram of the data is
perfectly fitted.

We complete this data analysis by comparing some descriptive statistics with the
estimated ones obtained from the WOWE model. The results are presented in Table 6.

Table 6. Descriptive versus estimated statistics results for the drilling machine data.

Nature Mean Standard Deviation Skewness Kurtosis

Empirical 0.1632 0.0810 0.0701 −0.8711
Estimated 0.1629 0.0821 0.0712 −0.8392
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Figure 3. Plots of four estimated objects for the drilling machine data.

As expected, from Table 6, we see that the estimated statistics are close to the empirical
ones. This is one more evidence of the high performance of the WOWE model.

5.3. Fit of the Daily Precipitation Data

The second data set, named ”daily precipitation“, is the average of the maximum
daily precipitation for 30 years at 35 stations in central and western Peninsular Malaysia.
It is extracted by [34]. The data are presented as follows: 1.134, 1.196, 1.181, 1.178, 1.048,
1.077, 0.835, 1.163, 0.880, 1.056, 1.164, 0.914, 1.141, 1.068, 1.007, 1.027, 1.298, 0.842, 0.991,
0.955, 0.703, 0.953, 1.018, 1.003, 1.106, 1.110, 1.249, 1.092, 1.187, 1.047, 0.989, 0.955, 1.234,
0.937, 0.933.

For these data, the MLEs of the model parameters and the associated SEs are indicated
in Table 7.
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Table 7. MLEs and SEs of the parameters of the considered models for the daily precipitation data.

Models MLEs with Related SEs in (.)

WOWE 0.5808 22.7414 8.3177
(φ, α, β) (0.4112) (3.1489) (1.6592)
MOWE 0.1314 101.6124 2.4243
(φ, λ, θ) (0.0311) (3.7921) (0.2997)
WE 0.4535 24.2825 7.4265
(φ, α, β) (0.4394) (9.1518) (1.8564)
WXE 1.4962 9.4037 1.6514
(φ, γ, c) (2.7011) (1.2307) (2.8471)
LxE 320.8721 1.8285 5.0865
(a, k, s) (8.8329) (0.8373) (0.6011)
BeE 65.1220 67.3550 0.6490
(a, b, λ) (9.7973) (10.2652) (1.4117)
LbE 81.3686 6.4630 -
(α, θ) (7.2559) (3.2448) -
E 0.9544 - -
(φ) (0.1613) - -

In particular, for the WOWE model, we note that the MLEs of φ, α, and β are
φ̂ = 0.5808, α̂ = 22.7414, and β̂ = 8.3177, respectively. The corresponding estimated
cdf and pdf follow from Equations (5) and (6), respectively, combined with the plug-in
estimation technique.

The values of the − ˆ̀ , AIC, BIC, W, CAIC, HQIC, A, KS, and p-value of the considered
models are given in Table 8.

Table 8. Fit measures for the daily precipitation data.

Models − ˆ̀ AIC BIC CAIC HQIC W A KS p-Value

WOWE −22.2542 −38.5084 −33.8424 −37.7342 −36.8977 0.0301 0.1839 0.0635 0.9989
MOWE 18.6300 42.9953 47.6614 44.0342 44.8707 0.1200 0.4728 0.3556 0.0003

WE −22.2442 −38.4885 −33.8222 −37.7143 −36.8778 0.0304 0.1853 0.0639 0.9978
WXE −22.3357 −38.6715 −34.0054 −37.8973 −37.0608 0.0269 0.1666 0.0624 0.9992
LxE −9.3234 −12.5441 −7.8780 −11.8727 −11.0362 0.1790 0.4377 0.2859 0.0065
BeE −21.2628 −36.5216 −31.8556 −35.7514 −34.9149 0.0276 0.2375 0.0685 0.9866
LbE 14.7886 33.5091 36.6198 33.9523 34.6511 0.2290 0.8986 0.4365 3.21× 10−6

E 36.6323 75.2646 76.8200 75.3858 75.8015 0.2720 0.9343 0.5207 1.42× 10−8

Table 8 indicates that the WXE model is the best, followed by the proposed WOWE
model. The WOWE model is not the best, but remains a solid alternative, as it surpasses
the six other models. Figure 4 displays four different plots, allowing the visual illustration
of the fit of the WOWE model.
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Figure 4. Plots of four estimated objects for the daily precipitation data.

From Figure 4, the observed adjustments are quite satisfactory. In particular, on the
plot of the estimated pdf, we see that the left-skewed property of the WOWE model has
played an important role in capturing the form of the histogram.

We finish up our data analysis by comparing some descriptive statistics to the esti-
mated ones based on the WOWE model. Table 9 shows the results.

Table 9. Descriptive versus estimated statistics results for the daily precipitation data.

Nature Mean Standard Deviation Skewness Kurtosis

Empirical 1.0477 0.1309 −0.3355 −0.2406
Estimated 1.0411 0.1391 −0.3400 −0.2394

Table 9 shows that the predicted statistics are very close to the empirical ones, as
expected. This is just another example of the strong performance of the WOWE model.

6. Conclusions

We have presented a new motivated Weibull-generated-type class of univariate con-
tinuous distribution, called the weighted odd Weibull-generated class. Thanks to the use
of a coherent weighted version of the odd transformation, it offers a solid alternative to
the Weibull-X, Weibull-G, and MOW-G classes. We have explored its main theoretical and
practical facets, with a focus on a special distribution based on the exponential distribution.
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The faculties of the proposed class make this special distribution particularly flexible in the
modeling sense, with pdf and hrf demonstrating heterogeneous skewness and tail weights.
We exploit this advantage in a data fitting scenario.

By estimating the model parameters with the maximum likelihood method, we show
that our model is efficient enough to fit two data sets of importance: one with engineering
data and the other with environmental data. It is proved to outclass several models also
based on the exponential model.

The classical Weibull-G class has been successfully applied to several significant disci-
plines in recent years, including medical, biology, engineering, dependability, economics,
computer science, and finance. Detailed examples can be found in [5,35,36], among oth-
ers. Our new Weibull-generated class can be used in similar scenarios. It may provide a
more accurate model owing to its exceptional analytical versatility. As a result, it must be
considered for purposes of testing beside the former Weibull-G class.

As a future potential work, we may consider extension of the new Weibull class,
including its bivariate extension based on the same approach as [14], or its discrete analogue
following the spirit of [15].
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