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Abstract: The aim of the quay crane scheduling problem (QCSP) is to identify the best sequence
of discharging and loading operations for a set of quay cranes. This problem is solved with a
new hybrid estimation of distribution algorithm (EDA). The approach is proposed to tackle the
drawbacks of the EDAs, i.e., the lack of diversity of solutions and poor ability of exploitation. The
hybridization approach, used in this investigation, uses a distance based ranking model and the
moth-flame algorithm. The distance based ranking model is in charge of modelling the solution
space distribution, through an exponential function, by measuring the distance between solutions;
meanwhile, the heuristic moth-flame determines who would be the offspring, with a spiral function
that identifies the new locations for the new solutions. Based on the results, the proposed scheme,
called QCEDA, works to enhance the performance of those other EDAs that use complex probability
models. The dispersion results of the QCEDA scheme are less than the other algorithms used in
the comparison section. This means that the solutions found by the QCEDA are more concentrated
around the best value than other algorithms, i.e., the average of the solutions of the QCEDA converges
better than other approaches to the best found value. Finally, as a conclusion, the hybrid EDAs have
a better performance, or equal in effectiveness, than the so called pure EDAs.

Keywords: estimation of distribution algorithm; Mallows model; moth-flame algorithm; job shop
scheduling problem; quay crane scheduling problem

1. Introduction
1.1. Recent Research on Seaport Operations

Approximately 90% of products that are globally commercialized are transported
by sea, and in one decade, the average capacity of cargo ships has doubled, with ports
being the ones that allow the execution of exchanges. Seaports facilitate trading and make
logistics costs more competitive. They allow the transportation of products without several
checkpoints, making the process and the supply chain more efficient.

The geographic location of each seaport, combined with the quantity of active seaports,
provides significant advantages in this industry for any economy.

Seaports are geographical areas and economic units of the specific place where the
terminals may be found, the terminals are operating units of a seaport, which are actively
able to provide modal interchange and seaport services.

The connectivity among seaports must be constantly improved to facilitate the move-
ment of products by sea or land, and, within this connectivity, intermodal schemes must be
defined to establish, for example, the transportation of products by rail or carrier.

The International Seaport System has been constantly modernized with a vision to
improve logistics and multimodal connectivity, where the projects regarding seaport, road
and rail infrastructures are more integrated in order to respond to the increasing demand
of national and international trade. Currently, the capacity of seaports has been increased
by millions of tons per year.

As was previously mentioned, seaports have been, are and shall be, a great entry gate
to the different continents of the world. Supported by the great advantage of having access
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to the oceans, countries have an extensive growth potential regarding foreign trade; it is
only a matter of continuously improving governmental management and support.

One of the greatest challenges of trading by sea is the existence of the international
market, countries have reached the maximum uses of their seaports, the demand for
infrastructure and comprehensive logistic service offered at lower costs is still increasing.

Additionally, trained staff are required to put into operation the resources acquired in
an efficient and safe manner. Another significant challenge is environmental protection,
for example, in the Caribbean Sea, a Mesoamerican Reef System was designed, which is a
sensitive area for navigating and preventing pollution from ships.

There is still a gap to consider: cabotage routes must be reinforced and transport routes
must be developed; however, maritime transport is encouraged every year, the develop-
ment of the industry is increasing and governments are considering it as a significant matter.

Therefore, the role of international transportation, maritime shipping, and marine
container terminals in the economic development of numerous countries has been widely
studied using different approaches. Seaport problems continue to be attracted to develop-
ing new optimization techniques. Recently, important contributions have been published
in order to improve the performance of seaport operations. A representative example is
the study of [1]. This study details a tailored global optimization algorithm for deploying,
scheduling, and sequencing heterogeneous vessels in a container liner shipping route. The
key advantage is that the weekly dependent shipping demand is considered to incorporate
fluctuations in the planning horizon. In addition, the authors consider the distinct fuel
efficiencies, cost structures of the ships, and capacities. These conditions determine the
number of containers transported, the bunker fuel consumption, and the operating cost
of a shipping route. A mixed integer-programming model minimizes the total cost by
considering, from a set of candidate ships, the optimal ships. In addition, the proposed
model integrates the sequences, schedules, and sailing speeds of the shipping route.

Ref. [2] is a seaport study that considers emergent ship arrivals for building berth
schedules. The authors propose an optimization procedure to schedule ships by reducing
disturbances in the service and maximizing the number of emergent ships served. A case
study illustrates the aforementioned optimization procedure. The proposed procedure
provides key concerns to decision makers dealing with the berth scheduling issues of
emergent ship arrivals.

Ref. [3] attends to real world situations, such as water depth and tide conditions, in
seaport operations. An enriched particle swarm optimization procedure is depicted to
solve the continuous berth allocation, quay crane assignment and quay crane scheduling
problems. The authors incorporate, in the solution, safety operations between quay cranes.
Their results are compared with the results of the exact solution and the basic particle
swarm optimization procedure.

Ref. [4] concerns the increase in seaport operations in the last thirty years, and argues
that berth scheduling can improve the throughput of marine container terminals. The
authors detail an innovative evolutionary algorithm to minimize handling costs, waiting
costs, and the late departure costs of the vessels that are to be served at a marine container
terminal. The scheme of the authors relies on an augmented self adaptive parameter control
strategy, which changes algorithmic parameters throughout the search process.

Another important example is the research of [5]. The author develops a novel memetic
algorithm to help the marine container terminal operators to build proper schedules, and
to tackle congestion issues caused by the increasing number of large size vessels. Although
this study does not account for uncertainty in vessel arrivals, the proposed algorithm
serves as an efficient planning tool for marine container terminal operators and assists with
efficient the berth scheduling.

1.2. The Quay Crane Scheduling Problem

Based on the preliminary review, it is clear that the performance of seaport operations,
for the international supply chain, continues to be highly important. Solving problems,
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such as the quay crane scheduling problem (QCSP), a combinatorial problem, contributes
to improving the efficiency of any seaport. The QCSP is selected in this research due to its
complex nature.

Quay cranes are very important resources at container terminals. They are used to
load containers onto, and discharge containers from vessels at, the quayside of terminals.
Quay cranes along the same berth operate on a common set of rails.

Jobs represent container unloading/loading work, and arise at specific locations along
the quayside. The collection of jobs may represent work for a single ship, or multiple ships.

Normally, an optimization formulation for the QCSP considers reducing the makespan,
i.e., the total completion time. Any proposed solution should consider scheduling opera-
tions restrictions, such as

- A minimum distance being left between quay cranes to avoid boom collision.
- Each quay crane should work when it will not be busy.
- Like a traditional shop environment, precedence between operations may exist.

A mathematical formulation considers

• pi the processing time of task i.
• rk the release time of quay crane k.
• tij the travel time of a quay crane from the bay position of task i to the bay position of

task j.
• M a sufficient large constant.
• Ω a set of all tasks.
• Φ a set of ordered pairs of tasks between which there is a precedence relationship.
• xijk = 1 if task j immediately follows task i on quay crane k; 0, otherwise. Tasks 0 and

T will be considered the initial and final states of each quay crane, respectively. Thus,
when task j is the first task of quay crane k, x0jk = 1. In addition, when task j is the
last of quay crane k, xjTk = 1.

• Qk the completion time of quay crane k.
• Ci the completion time of task i.
• Cmax makespan.

Therefore, the QCSP can be formulated as follows

Minimize ∑i Ci
Ω

(1)

subject to
Ci ≤ Cmax ∀k = 1, . . . , K (2)

∑j∈Ω x0jk = 1 ∀k = 1, . . . , K (3)

∑i∈Ω xjTk = 1 ∀k = 1, . . . , K (4)

∑k ∑i∈Ω xijk = 1 ∀j ∈ Ω (5)

Ci + tij + pj − Cj ≤ M
(

1− xijk

)
∀i, j ∈ Ω, ∀k = 1, . . . , K (6)

Ci + pj ≤ Cj ∀i, j ∈ Φ (7)

Cj + tjTk + Qk ≤ M
(

1− xjTk

)
∀i ∈ Ω, ∀k = 1, . . . , K (8)

rk + Cj + t0jk + pj ≤ M
(

1− x0jk

)
∀i ∈ Ω, ∀k = 1, . . . , K (9)

xijk = 0 or 1 ∀i, j ∈ Ω, ∀k = 1, . . . , K (10)

Qk, Ci ≥ 0 ∀i ∈ Ω, ∀k = 1, . . . , K (11)

The objective function (1) minimizes the average waiting time. Constraint (2) deter-
mines the makespan, which corresponds to the completion time of all tasks. Constraints (3)
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and (4) define the first and the last tasks for each quay crane, respectively. Constraint (5)
ensures that every task must be completed by exactly one crane. Constraints (6) and (7)
determine the completion time for each task. Constraint (8) defines the completion time of
each quay crane. Constraint (9) ensures that the first task of a crane is not started before
the crane is ready. Finally, (10) and (11) define the domains of the decision variables.

The objective of our study is to identify the best schedule to minimize the quays’
overall average waiting time. The methodology used in this research details how a solution
can be built by two decisions, i.e., operation scheduling and crane assignment.

1.3. Solving Combinatorial Problems through Evolutionary Algorithms

In a wide set of studies, evolutionary algorithms have been proposed to offer useful
solutions for high scale optimization problems. The solutions are required in different engi-
neering fields. Particularly, evolutionary algorithms are competitive in the combinatorial
optimization field. Some relevant studies of evolutionary algorithms can be appreciated
in the research of [6], for job shop operations and process integration. The authors use
and apply the concept of interaction between different species to tackle the problem. This
interaction is not considered in any traditional genetic algorithm. The study of [7] is rep-
resentative of the evolutionary algorithms family for tackling job shop problems. In this
applied case, an ant colony optimisation based approach is proposed to address flexible
job shop scheduling with routing flexibility and setup times problems. Recent publications
are found in [8]. This research group employs a genetic algorithm with the Pareto front
technique. The approach is applied on a mail-order pharmacy system. Ref. [9] utilizes a
bee colony method with the Pareto front technique for solving the single machine group-
scheduling problem with sequence dependent setup times. Ref. [10] uses an enriched
discrete particle swarm optimization method to solve a flexible job shop scheduling prob-
lem. Ref. [11] detail a bat based approach to tackle a dual flexible job shop scheduling
problem. Moreover, recently, the use of hybrid evolutionary algorithms is remarkable.
The aim is to offer more efficient methods, or better solutions, to those previously found.
The work of [12] falls into this category for solving the vehicle routing problem. The
author employs a genetic algorithm and local search. The research of [13] also utilizes a
genetic technique with a variable neighborhood descent method to address flexible job
shop scheduling problems. The study of [14] integrates a genetic algorithm with a neural
network to improve container-loading sequences in seaports. The practical implementation
of their algorithm is confirmed by using a simulation in the research. The work of [15]
uses a genetic technique with a minimum cost flow network model to solve a dispatching
problem for vehicles in a transshipment hub scenario. Their experiments show that the
proposal is more effective than a neighborhood search algorithm. The research of [16]
details an efficient parameter free greedy randomized adaptive search method, plus a
variable neighborhood descent technique, to tackle a school bus routing problem with bus
stop selection. The study of [17] proposes a genetic technique with a tabu search to address
more than 200 flexible job shop scheduling open problems. Following the previous review,
we can appreciate that there exist different types of evolutionary algorithms for solving
different combinatorial problems.

1.4. Estimation of Distribution Algorithms

This article focuses on the use of estimation of distribution algorithms (EDAs) as
a section of the classification of evolutionary algorithms. There exists a vast literature
about EDAs. Studies, such as [18], designed for solving permutation flowshop scheduling
problems. The research of [19] contributes guidelines for developing effective EDAs for
single machine scheduling problems. Furthermore, the work of [20] proposes an EDA for
solving lot-streaming flowshop problems with setup times. These investigations are robust
in the solution of combinatorial problems using EDAs.

When using EDAs, as with other evolutionary algorithms, the main task is to produce
a population of solutions through some generations. However, with EDAs, a probability
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model, i.e., a distribution, is built based on a set of solutions to the problem, to produce
new solutions. Traditionally, the performance of EDAs lies in how efficient the probability
distribution is. The probability distribution is built using the members of the population to
obtain better solutions. It has been widely documented, in papers such as [21,22], that the
probability model should consider the structure of a problem with more precision. The aim
of EDAs is to consider high order interactions between the variables of the problem. Thus,
complex probability models are employed to improve the efficiency of EDAs. Nonetheless,
one of the drawback of EDAs is the lack of the diversity of the solutions and the poor
ability of exploitation [22]. There is more than one way to counter the drawbacks of EDAs.
Nevertheless, most studies suggest hybridization. In the literature review section, some of
the studies are listed.

In this paper, we can visualize the importance of the effective estimation of the solution
space distribution to build a competitive EDA. In addition, if we analyze the results shown
in the corresponding results and comparison section, we are going to reach the conclusion
that the hybridization of EDAs with other methods should practically always be considered
in the design and development of such algorithms. According to the results of this research,
hybridization is not only a reason for publication, it also avoids the necessity of requiring
building complex probability models. If this occurs, the algorithm could be difficult
to understand.

The main reason for performing this research was to determine what is most useful, i.e.,
the development of complex probability models or the hybridization of the EDA with other
methods to obtain the same or better solutions. Most published articles, related to EDAs
and to solve optimization problems, have a lack of diversity in the process of the generation
of solutions. The aforementioned drawback can be tackled through the hybridization of an
EDA and other methods. However, there exists a wide field of development to determine
which methods are more suitable to obtain the better performance of an EDA. This research
aims to use bioinspired techniques to help to reduce the deficiencies of an EDA. In addition,
it is preferable that the methods used, in the hybridization process, should contain some
well defined math expressions. This helps to understand how the solutions are generated.
Therefore, the aim is to use new methods and to establish the search process of explicitly
new solutions.

The hybridization approach used for this investigation considers a distance based
ranking model coupled with a moth-flame algorithm, a novel nature inspired heuristic
paradigm [23]. Therefore, the QCSP is solved by the proposed approach in order to show
how hybridization helps to enhance the performance of the EDA. Distance based ranking
models appear sparingly in the literature to tackle the drawback of the EDAs. There are few
papers available about it. For example, Ref. [24] introduces an EDA based on a distance
based ranking model for the flowshop scheduling problem. The distance based ranking
model is used as a probability model in the permutations field.

1.5. The Proposed Hybrid Approach, a Brief Explanation

In this research, the members of the population are considered as rankings. Table 1
shows a ranking of five items or elements as an example.

Table 1. A ranking example.

Rank 1st 2nd 3rd 4th 5th

Element Π B α ∞ µ

In this sense, the members of the population are permutations of elements. A ranking
defines a solution for the problem to solve. Table 2 depicts some rankings as flowshop-
scheduling solutions, where each item represents a job, and then a processing sequence is
executed according to each ranking.
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Table 2. Rankings for the flowshop as an example.

Processing Sequence 1st 2nd 3rd 4th 5th

Rank 1 J5 J3 J1 J4 J2
Rank 2 J5 J1 J4 J3 J2
Rank 3 J3 J1 J2 J4 J5

Then, a distance metric is computed between rankings, by the algebra of permuta-
tions. After that, a distribution probability is built, i.e., an exponential distribution. The
aforementioned exponential distribution occupies, as an input parameter, the distance
between each of the permutations and a reference permutation. A known distance based
ranking model is the model of [25]. In general terms, it concerns assigning a probability
to each permutation that declines exponentially based on its distance from a reference
permutation. It is then said that such a permutation is more (or less) likely to be chosen as
a good solution, according to the [25]’s model. Figure 1 illustrates such a distribution, with
five rankings.
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However, [25]’s model is not able to generate offspring by itself. The reason is because
there can be many permutations with the same distance to the reference permutation. This
causes confusion regarding which permutation is the offspring. It is solved by the factor-
ization (decomposition) of the distance previously obtained. The factorization is computed
by a procedure called GMD (the Generalized Mallows Model), proposed by [26,27]. Such
authors propose how to factorize in n− 1 elements, the distance between two rankings
where n is the size of the rankings. With that factorization, it is possible to obtain the
offspring. Table 3 details such factorization.

Table 3. Factorization of the distance between rankings.

Rankings Reference Ranking Distance Factorization Based on
Fligner & Verducci [26]

4, 2, 5, 3, 1
1, 2, 3, 4, 5

7 [3, 1, 2, 1]
5, 4, 1, 2, 3 7 [4, 3, 0, 0]
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Then, such factorization (decomposition) serves as input parameter in the moth-flame
heuristic to generate new offspring. Based on the results obtained in this study, it is more
efficient to produce new and better offspring through such hybridization. The novelty of
this study is to show how this hybridization is better than the direct use of a distance based
ranking model.

Roughly, the factorization (decomposition) obtained in the previous step is used to
determine where a moth is located in the solution space. That is, the decomposition of
the distance between rankings (permutations) is seen as a moth’s location coordinate in
the feasible space of solutions. Figure 2 shows such factorized rankings, and the moths´
location coordinates.
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A moth is a search agent that moves in a feasible space, whereas a flame is located at the
best position obtained so far [23]. A spiral-flying path, using a defined mathematical model,
of moths around flames is the way to execute the movement of the moths to new locations.
Thus, the GMD is in charge of modelling the solution space distribution; meanwhile the
heuristic moth-flame is in charge of determining who would be the offspring. That is how
this proposed algorithm works to enhance the results obtained from those algorithms that
use complex probability models.

The rest of the paper is organized as follows. Section 2 reviews the literature of EDAs
and different approaches to tackle the problem. Section 3 presents the inspiration of this
work and proposes the quay crane estimation of distribution algorithm, with the Mallows
model and a moth-flame structure, called QCEDA. The experimental setup and results are
provided in Section 4. Section 5 concludes the work and suggests several directions for
future studies.

2. Literature Review

It is of particular interest to present current research of the use of EDAs to solve com-
binatorial problems. Thus, the first part of the literature review is focused in that direction.

2.1. Complex Problems, Complex Probability Models

An important direction in the development of EDAs focuses on building complex
probability models. Such models consider high order interactions between the variables of a
problem. The challenge, in this group of EDAs, is how well such interactions are estimated
and how to produce better results. We can start with the case where there exists no interaction
between variables. Algorithms such as the univariate marginal distribution algorithm
(UMDA), detailed in [28], fall into this category. If there exists interaction between a pair of
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variables, an algorithm with a good performance is the mutual information maximization
for input clustering (MIMIC), presented in [29]. If we try to model high order interactions
between variables, probability models become more complex to understand and compute.
Moreover, a large number of solutions might be required to estimate, in the best way, such
interactions. Some important algorithms in this category are the combining optimizers
with mutual information trees (COMIT), published by [30], and the Bayesian optimization
algorithm (BOA) proposed by [31]; to mention these as the most frequent and cited.

The development of EDAs, which considers high order interactions between variables,
does not finish here. Conversely, different combinations of complex probability models
have been used for solving combinatorial problems, such as in [32]. The authors compute
more than one complex model to address a flexible job shop scheduling problem.

Ref. [33] offer a clear revision of the use of the complex models used in EDAs to
solve combinatorial problems. In such a revision, we can appreciate that the complex-
ity of the probability model there exists when we estimate higher order interactions
between variables.

2.2. The Hybridization Approach

As discussed in the introduction section, hybridization is an efficient way to counter
the weakness of EDAs. Practically, hybrid EDAs include some improvement components.
The support method used to improve the performance of EDAs differs between authors,
but the most common are heuristics or other evolutionary algorithms. Some studies that
use hybrid evolutionary algorithms to solve optimization problems are found in [34]. The
author presents a hybrid genetic algorithm coupled with a gravitational search algorithm,
called the GA-GSA algorithm, to optimize the metrics of a real industrial case, employing
uncertain data. The application of the proposed algorithm can save manpower, budget,
and time, and improve the metrics of the company. In addition, Ref. [35] presents a hybrid
technique. It uses a particle based swarm method and a genetic algorithm, named PSO-GA,
to tackle the constrained optimization problems. The particle based swarm method focuses
on enhancing the solution vector, while the genetic technique is employed to modify the
offspring. Furthermore, Ref. [36] proposes a hybrid gravitational search algorithm coupled
with a genetic algorithm, labeled as the GSA-GA algorithm. The aforementioned algorithm
is developed to solve nonlinear optimization problems, and it includes mixed variables.
Similarly, each solution is generated through a gravitational search approach, and then
each offspring is updated by the genetic technique.

Other studies try to integrate the concept of hybridization between evolutionary
algorithms and EDAs. The most representative studies are found in [37]. The authors
present a hybrid algorithm through genetics and the estimation of distribution algorithms.
A key point is taking advantages from both procedures. The authors apply the hybrid
EDA for solving synthetic optimizations problems and two real world cases. Ref. [38] uses
an EDA with a 2-opt local search, in a hybridization phase, for addressing a quadratic
assignment problem. Ref. [39] considers a permutation flowshop scheduling problem
using a particle swarm optimization method with an EDA. Ref. [22] confronts a flexible
job shop scheduling problem through the hybridization of an EDA and a local search
approach to improve the exploitation process of the EDA. Ref. [40] proposes an EDA to
tackle a stochastic resource constrained project-scheduling problem. The hybridization
phase uses a permutation based local search. Ref. [41] presents a fuzzy logic based hybrid
EDA for addressing distributed permutation flowshop scheduling problems with machine
breakdown. The hybridization phase uses genetic variation operators to create offspring.
The articles mentioned above are current and representative of this group of hybrid EDAs.

2.3. Distance Based Ranking Models

Another approach for the development of EDAs is to search and use already defined
probability models for the permutations field. These models should be able to adapt them-
selves to the structure of the representation of the members of the population. The main
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goal is to model the solution space from another perspective. Examples include the EDAs
proposed by [24], for a flowshop scheduling problem; Ref. [42], detailing the school bus
routing problem with bus stop selection; Ref. [43], depicting a flexible job shop scheduling
problem with process plan flexibility; and [44], illustrating the vehicle routing problem with
time windows. For the aforementioned papers, an interaction estimation between variables
is not required. A distance based ranking model is preferable; specifically, the GMD.

2.4. Quay Crane Scheduling, Recent Literature

Ref. [45] offers an exact and computationally fast solution technique to solve the QCSP.
The technique combines a partitioning heuristic with a branch and price algorithm. Finally,
a traveling salesman formulation is utilized to minimize crane repositioning movements.

Ref. [46] describes a mathematical model for the QCSP. The authors tackle the non-
crossing constraints by addressing the structure of workload assignments. The proposed
mathematical formulation is based on the logic based Benders decomposition.

Ref. [47] finds a compact mathematical formulation of the unidirectional cluster based
quay crane scheduling problem that can be easily solved by a standard optimization solver.

Ref. [48] presents a revised optimization model for the scheduling of quay cranes
and proposes a heuristic solution procedure. The authors propose a branch and bound
algorithm, which searches a subset of above average quality schedules; meanwhile, the
heuristic considers the impact of crane interference.

Ref. [49] details a genetic algorithm that it is built through a novel workload balancing
heuristic, and the loading conditions of different quay cranes during the reassignment
of task to quay crane are considered. The idea is modelled as a fuzzy logic controller to
guide the mutation rate and mutation mechanism of the genetic algorithm. As a result,
the proposed algorithm does not require any predefined mutation rate. Meanwhile, the
genetic algorithm can more adequately reassign tasks to quay cranes according to the quay
cranes’ loading conditions throughout the evolution.

Ref. [50] improves the efficiency of a genetic algorithm by (1) using an initial solution
based on a heuristics rule, (2) using a new approach for defining chromosomes (i.e., solution
representation) to reduce the number of decision variables, and (3) using new procedures
for calculating tighter lower and upper bounds for the decision variables.

Ref. [51] tackles the issue of the interference among cranes by a modified genetic
algorithm to deal with the QCSP.

Ref. [52] develops a two quay-crane schedule with noninterference constraints for
the port container terminal of Narvik. First, a mathematical formulation of the prob-
lem is provided, and, then, a genetic algorithm approach is developed to obtain near
optimal solutions.

It is clear, from this review, that the QCSP has been studied intensively in a recent
stream of research. In addition, based on the current research, it is important to handle
the correct treatment of crane interference constraints. In addition, there is still a gap to
improve the performance of EDAs, and the hybridization approach continues to be a useful
way to enhance EDAs. In addition, from the exposed review, it is of interest to know how
much better hybrid EDAs can be, than other pure EDAs and recent algorithms.

The contributions of this article are

- To propose a hybrid EDA, not only a reason for publication, this also avoids the
necessity of requiring building complex probability models.

- To determine what is most useful, i.e., the development of complex probability
models or the hybridization of an EDA with other methods to obtain the same or
better solutions.

- As a reason for doing this research, there exists a wide field of development to
determine which methods are more suitable to obtain the better performance of
an EDA.

- The research motivation is to show how bioinspired techniques help to reduce the
deficiencies of an EDA.
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- Based on the results obtained in this study, it is more efficient to produce new and
better offspring through such hybridization.

3. The QCEDA Approach

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Initial Population

A representation of solutions to the QCSP is detailed through the processing sequence
of containers on the available quay cranes and the establishment of containers for the
quay cranes.

For the processing sequence of containers, a first vector is proposed, i.e., the containers
sequence vector. It has a length that equals the number of containers moving through the
quay cranes. Thus, any vector of this type is simply a sequence of n containers.

An example is depicted in Table 4, with five containers indexed from 1 to 5.

Table 4. A task sequence vector example.

Ranking 1st 2nd 3rd 4th 5th

Task(container) 3 1 4 2 5

Where container number three should be executed (moved) at the beginning, after that,
container number one, container number four, and so on. Each element in the containers
sequence vector shown above might be in any place on the representation, or as any
permutation based solution, i.e., as any ranking.

As in other EDAs, the aforementioned representation is suitable for using in the
set of combinatorial problems used in the comparison section. With this representation,
for the solution vectors, the GMD can be directly applied in the distance-based ranking
model phase. The initial population contains 1000 members. Each member has a length, n,
where n is the number of elements in the permutation, i.e., containers. All this is in each
generation. The number of members is a fixed parameter.

For the assignment of containers, a second vector is built, i.e., the quay crane assign-
ment vector. It also has a length that equals the number of containers. Every element
represents the selected quay crane for every container. An example is depicted in Table 5.

Table 5. A quay crane assignment vector.

Ranking 1st 2nd 3rd 4th 5th

Quay crane 2 2 1 1 3

The first container, based on the containers sequence vector shown in Table 4 and
labeled with (3), is moved by the crane labeled with the number two, according to the crane
assignment solution vector. The second container, labeled with (1), is moved by the same
crane, the third container, labeled with (4), is moved by the crane labeled with the number
one, and so on.

3.2. Fitness

The average waiting time that is required to move all the tasks (containers) is the fitness
for the QCSP in this research. The fitness is computed for each member of the population.
Once the completion time for each task is obtained, all the times are accumulated and
divided by the number of tasks to obtain the average waiting time, i.e., the fitness.

To ensure compliance with the quay crane constraints for each crane and avoid any
collision between cranes, the Delmia-Quest® simulation language is preferred in this
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research. Delmia-Quest® avoids any collisions between cranes in each simulation run.
A controller establishes the order of movements, in each simulation run, to satisfy the
aforementioned constraints. Using the Delmia-Quest® simulation language, the main
constraints related to the cranes are satisfied. Furthermore, considering Delmia-Quest®,
the fitness is obtained directly from the simulation model and the QCEDA is in charge of
modelling the solution space distribution.

For each solution, the corresponding values are obtained from the simulation model,
built on Delmia Quest®. The main details of the simulation model are outlined below

- A crane system is used to move containers through the ship.
- The crane system is multidirectional.
- Different cranes can service any container according to a predefined sequence.
- Containers can receive service from different cranes based on the predefined sequence.
- The movement of containers is only possible by cranes.

With all these features, the simulation model is able to integrate operation times and
workflows. Finally, the fitness is used by the QCEDA to obtain the best solution at the end
of execution.

3.3. Probability Model for the Quay Crane Assignment Vectors

A matrix, q, is built to describe the probability model for the quay crane assignment
vectors. That is, each qi value in the matrix mentioned details the number of times the quay
crane, i, is elected with a container. Again, the vectors depicted below are utilized to create
a probability matrix, q, for the first position in the sequences, i.e., qi. In this example, six
vectors (as a population), with a length that equals five containers, are shown in Table 6.

Table 6. Quay crane assignment vectors.

Ranking 1st 2nd 3rd 4th 5th

V1 2 2 1 1 3
V2 3 2 1 1 1
V3 1 2 2 2 1
V4 3 1 3 3 2
V5 2 2 1 2 2
V6 2 3 2 3 3

q1 matrix
Quay crane p(X1 = x)

1 1/6
2 3/6
3 2/6

New quay crane assignment vectors are constructed as follows: in each position on
the new individual, the quay crane i is elected by the cumulative probability of qi. Each qi
cumulative value considers the opportunity of the quay crane, i, be elected for the place, j,
in the offspring.

Firstly, a random value should be generated in every place on the offspring. Then,
every random value is interpolated in the cumulative probability of qi, to identify which
quay crane should be selected. Figure 3 depicts an illustration of this process.

Therefore, the offspring, i.e., the new quay crane assignment vectors, are sampled
according the cumulative probability of qi.
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3.4. Probability Model for the Task Sequence Vectors
3.4.1. The Distance Based Ranking Model Phase

• Central ranking computing

With all members of the population, i.e., the task sequence vectors, the central (refer-
ence) permutation is computed. The central permutation is a parameter inside of the GMD
process. In this research, the procedure based on [53] is used to compute the reference
permutation. Firstly, the mean for each position, considering the members of the popu-
lation, is computed. Secondly, the smallest mean, from the all the positions, is identified
and the smallest element of the reference permutation is assigned in the smallest mean
position, identified previously. This continues when the second smallest mean, from all
the positions, is identified and the second smallest element of the reference permutation is
assigned in the second smallest mean position identified previously, and so on until the
procedure finishes. This procedure is widely used to define a consensus of the all rankings.
Figure 4 presents a simple example with seven vectors of length five, the corresponding
means and the result, i.e., the central permutation.
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With the consensus ranking (central permutation), it is possible to compute the dis-
tance between each member of the population and the consensus ranking. The procedure
defined by [26,27] compute the distance. Firstly, the composition (product) between the
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inverse of each permutation and the consensus ranking should be computed. Figure 5
details an example of the composition mentioned between two vectors with length four.
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For further details, the reader is referred to the algebra of permutations literature.
With the composition previously detailed, it is possible to decompose in n− 1 items, i.e., to
factorize such composition (see Figure 6).
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3.4.2. The Moth-Flame Phase

• Initialization of moths in the feasible space

The factorization obtained in the previous step now represent coordinates where a
moth is located in an initial search phase. Then, there are M members, i.e., M solution
vectors, in the initial population and M moths for the moth-flame phase. Figure 7 shows
an allocation of a moth. Based on this idea, the members of the population each contain
n elements, and the moth-flame phase uses n− 1 elements for each moth. Therefore, the
search space is stablished in dimension Rn−1.

• Fitness of the moths

In this study, the fitness, obtained for each individual, is the same fitness for every
moth in the moth-flame phase.

• Moths sorting

The population of moths is sorted in descending order, according to the fitness.

• Flames amount computing

The equation published in the work of [23] is used to determine the number of flames
in each generation. The equation is below

number of flames = round
(

N − l · N − 1
T

)
(12)
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where l is the current generation, N is the maximum number of flames, and T expresses
the maximum number of generations. The number of flames gradually decreases when
Equation (12) is implemented. This permits the right exploration and exploitation of
solutions [23]. Figure 8 shows how the number of flames gradually decreases when the
number of generations increases.
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• Flames setting

The coordinates of the moths, already sorted, are considered to determine the locations
of the flames. Table 7 shows an example in R3, with three flames and nine moths.

• Flames’ fitness setting

The fitness for the flames is initialized with the fitness of the corresponding moth.

• Moth-flame assignment

Before generating offspring, i.e., the movements of the moths in the search space, each
moth should move only with respect to a specific flame. That is, each moth should be
assigned to a specific flame in each generation. Table 8 depicts an example in R3, with three
flames and nine moths.
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Table 7. Flames allocation example.

Flames Flame Coordinates Sorted Moths Moth Coordinates

1 (0, 0, 1) 1 (0, 0, 1) *
2 (3, 1, 0) 2 (3, 1, 0) *
3 (2, 1, 2) 3 (2, 1, 2) *

4 (0, 1, 0)
5 (1, 1, 1)
6 (3, 0, 0)
7 (2, 2, 0)
8 (2, 3, 0)
9 (1, 0, 0)

* the best moths.

Table 8. Moth-flame assignment example.

Moths Flame

1 1
2 1
3 1
4 2
5 2
6 2
7 3
8 3
9 3

• Moth movement

Each moth achieves a new location in the search space by the logarithmic function
defined in [23].

Spiral function = Di · e
bt · cos(2πt)+Fj (13)

where Di indicates the distance between the i-th moth and the j-th flame, i.e., Di =
∣∣Mi − Fj

∣∣,
b is a value that depicts the shape of the function, t is a random value between [–1, 1].
Figure 9 depicts an example, in R2, for a moth after computation of the spiral movement.
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3.4.3. Offspring Computing

The new locations of the moths are used as the representation of the distance between
permutations. That is, now the new coordinates of the moths represent the decomposition
(factorization) of the distance between permutations. That is how, in this research, both
approaches hybridize to improve the performance of the proposed algorithm.
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The way that the distances between permutations return to the original dimension,
i.e., n, is used in the algorithm of [54]. Through some steps, explained with an example
below, the research of these authors offers the possibility of finding the permutation that
corresponds to each offspring.

Pseudocode 1. [54]’s Procedure Example
n ← number of positions (permutation length)
Let a sample moth location vector V = (2, 0, 1)
therefore n := 4
insert n in 0 → Inverse permutation vector = (4 , __, __, __)
for j:=n − 1 to 1
insert j := 3 in V3·1 → Inverse permutation vector = (4, 3, __, __,)
insert j := 2 in V2·0 → Inverse permutation vector = (2, 4, 3, __,)
insert j := 1 in V1·2 → Inverse permutation vector = (2, 4, 1, 3 )

According to the sample moth location vector shown above, the corresponding inverse
permutation vector is (2, 4, 1, 3). Finally, each permutation vector is obtained by inverting
and composing the consensus ranking. An inverse permutation exists when every number
and the number of the place that it occupies are exchanged. Thus, the inverse of the inverse
permutation vector is (3, 1, 4, 2). If we take as the central ranking (1, 2, 3, 4) as example,
then, the composition of the previous result with the central ranking is (3, 1, 4, 2) as the
final vector.

3.5. Replacement

The offspring should be evaluated to obtain their fitness. Finally, the replacement
process used in this study is a binary tournament between the parents and the offspring.

All the stages of the proposed algorithm have been defined. The loop is performed
going back to step–quay crane matrix computing. In addition, the central ranking should
be updated with the new population after the replacement process. All of this is within
a number of the generations. In this research, 100 generations were used. This is a fixed
parameter. Then, the QCEDA framework is provided below

Pseudocode 2. QCEDA Framework
D0 ← Generate M individuals
t := 1
Do

FitDt−1 ← Evaluate individuals (fitness)
qt−1 ← q matrix computing from Dt−1
Dqt ← Sampling from qt−1
σ0 ← Central ranking computing from Dt−1
Kt−1 ← Distance computing from Dt−1 and σ0
Mt−1 ← Set moths from Kt−1
FitMt−1 ← Set fitness from FitDt−1
Mt−1 ← Sorting moths
f ← Flames computing
Ft−1 ← Set flames from Mt−1
FitFt−1 ← Set fitness from FitMt−1
Mt ← Moth movement computing (genotype)
Dst ← Offspring computing from Mt
FitDt ← Evaluate individuals from Dst and Dqt
Dt ← Replacement by binary tournament
t := t + 1

Until (stopping criterion is met)

Additionally, a flow chart is detailed in Figure 10 to illustrate the overall process.
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4. Results and Comparison
4.1. Comparison with Standard Benchmarking Datasets

The set of instances of [55] are utilized in the comparison between different EDAs.
The input data (instances) were already generated by [55], and these instances are available
online. Ninety instances were used in the comparison. The comparison mentioned helps to
determine the importance of hybridization for the performance of the proposed EDA. All
the details of the instances are depicted below.

Basics of the Input Data
Headings present general information, such as

The safety margin between the quay cranes is two ship bays
The travel time of a QC between two adjacent bays is one

The body of the instance includes
The number of containers (tasks)
The starting position of each quay crane
The problem number
For each task

The location of the task,
The type of the task, i.e., deck or hold
The time required to perform the task
The type of operation, i.e., loading or discharging

All the trails were performed in a Lenovo™ ideapad 330, AMD A9-9425 Radeon R5,
3.10 GHz, 8 GB of RAM, Windows® 10 for 64 bits. C++ language is preferred to make all
the comparisons. A total of 30 trials were run for all the dataset. The relative percentage
increase (RPI) details how to compare the performance of the algorithms. This is the metric
used for comparison in this research.

RPI(c i) = (c i − c+)/c+ (14)

where ci is the average wait time executed in the ith replication, and c+ is the best average
wait time found for each instance used in this study. The reason to utilize the RPI is to
compare two quantities while taking into account the “sizes” of the things being compared.
The comparison is expressed as a ratio and is a unitless number. By multiplying these
ratios by 100, they can be expressed as percentages [56].

The performance of the QCEDA, through the experimental results, is presented in
Table 9. The results of the QCEDA scheme are concentrated between [0, 0.03], over the best
result found for all the instances. Therefore, the QCEDA is an outstanding technique to
address the quay crane scheduling problem.

Table 9. Performance of the QCEDA using [55]’s instances.

Intervals

Layouts Trials [0, 0.03) [0.03, 0.06) [0.06, or more)
90 2700 1933 713 54

71% 26% 3%

4.2. Comparison with Pure EDAs

The EDAs considered in the comparison are the MIMIC, the COMIT and the BOA.
These EDAs are considered as pure EDAs. These EDAs utilize complex probability mod-
els and their performance is based on such models. Finally, the QCEDA, the proposed
approach, is a hybrid EDA.

The experimental results distribution, for each interval, is shown in Table 10. The
QCEDA results are comparatively concentrated, in the range of [0, 0.03], whereas the other
algorithms results are concentrated in the range of [0.06, or more].



Math. Comput. Appl. 2021, 26, 64 19 of 26

Table 10. Distribution of the results between pure EDAs and the QCEDA approach.

Intervals

Algorithms [0, 0.03) [0.03, 0.06) [0.06, or more)
MIMIC 0 0 2700
COMIT 0 0 2700

BOA 0 0 2700
QCEDA for the QCSP 1933 713 54

Figure 11 indicates the results obtained by the algorithms for the QCSP. Through box
and whisper charts, the dispersion of the values obtained, for the RPI, is appreciated. As
the complexity of the probability model increases in the pure EDAs, the results improve.
However, the QCEDA scheme outperforms all the previous results. The dispersion results
of the QCEDA scheme is less than the other algorithms after all the trails were run, i.e., no
matter how many times we run the instances, the performance of the QCEDA achieved the
best value more times than the other algorithms. This means that the solutions found by the
QCEDA are more concentrated around the best value than those by the other algorithms.
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4.3. Comparison with Multi-Objective Algorithms

The QCEDA is evaluated against other multi-objective algorithms to enhance its
novelty. Two benchmark algorithms are used in the comparative, the algorithm from [57],
named NSGA, and from [58], named NSGA-II. These algorithms are well known in the
literature related to the multi-objective approach. The code of these algorithms is available
in the Kanpur genetic algorithms laboratory web. For the multi-objective approach, two
antagonistic objectives are analyzed: the average waiting time and the makespan. This
means that both fitnesses are computed for each solution. The objectives were utilized as
input parameters for finding the area obtained from the nondominated solutions, located
in the first layer of the Pareto-front, i.e., the best Pareto-front from each algorithm. This is
the new dependent variable for the experiment. All the details are depicted below.
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The Best Pareto-Front Process
Generate initial population
t :=1
Do
For each member of population

Get the average waiting time
Get the makespan

Identify the nondominated solutions from the initial population
Compute the area from the nondominated solutions from the initial population
Continue with the rest of the QCEDA steps to get offspring
For each offspring

Get the average waiting time
Get the makespan

Identify the nondominated solutions from the offspring
Compute the area from the nondominated solutions from the offspring
Save the best Pareto-front area between parents and offspring
t :=t + 1
Until (stopping criterion is met)

Then, the RPI is adapted to use the same Equation (14), where c∗ is the best area
found by any of the algorithm configurations, and ci is the area obtained from the best
Pareto-front obtained in the i-th replication by a given algorithm configuration.

Although the probability model, the GMD proposed, has been competitive for find-
ing suitable offspring, the best Pareto-front contributes to enhance the results when the
nondominated solutions are coupled with the GMD process.

The experimental results distribution is depicted in Table 11. From the table, it is
possible to identify that the overall results of the QCEDA approach are competitive. Based
on the results, the QCEDA approach can efficiently find the closest solutions to the best
solution, 2008 times in the first interval, whereas the other algorithms results are far from
this amount.

Table 11. Distribution of the results between multi-objective algorithms and the QCEDA approach.

Intervals

Algorithms [0, 0.03) [0.03, 0.06) [0.06, or more)
NSGA 160 21 3029

NSGA-II 159 25 3026
QCEDA for the QCSP 2008 791 411
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In addition, the Pareto-fronts obtained from each algorithm are shown at the bottom
of the Table 11, for the instance k13.

Figure 12 includes the performances of the NSGA, the NSGA-II, and the QCEDA
schemes. The QCEDA is efficient to find the best solutions. The dispersion of the QCEDA
is almost the same as the other algorithms. However, the solutions found by the QCEDA
are more concentrated around the best value than other algorithms, i.e., the average of the
solutions of the QCEDA converge better than other approaches to the best-found value.
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4.4. Comparison with Recent Algorithms

Four current schemes are used against the QCEDA. The [51] algorithm, the [50]
algorithm, the [52] algorithm, and the [49] algorithm. The author has implemented all the
recent evolutionary algorithms used in the comparison section. The implementation was
made by following the indications of the respective papers, and the objective function is
the same for all the comparison process, i.e., the average waiting time.

The experimental results distribution is detailed in Table 12. From the table, it is
possible to identify that the overall results of the QCEDA scheme is, again, competitive.
According to the results, the QCEDA algorithm can efficiently find the closest solutions
to the optimal, more times in the range of [0, 0.03], than any another algorithm used in
the comparison.

Although there are no optimal results reported in the literature regarding the average
waiting time, it is possible to show the optimality gap for the makespan. These results are
provided in the bottom of the Table 12 for the all instances used in the comparison.

Figure 13 depicts the results of the algorithms. All the results were outperformed by
the QCEDA. Again, the dispersion of the QCEDA is less than other algorithms (between
0.01 and 0.05); this means that the solutions found by the QCEDA are more concentrated
around the best value than other algorithms, i.e., the average of solutions of the QCEDA
converges better than other approaches to the best found value. Furthermore, based on
the results, it is possible to justify the proposal of a hybrid EDA, not only as a reason for
publication; it also avoids the necessity of requiring building complex probability models.
In addition, results help to determine what is most useful, i.e., the development of complex
probability models or the hybridization of an EDA with other methods to obtain the same
or better solutions. This justifies the reason for performing this research; there exists a wide
field of development to determine which methods are more suitable to obtain the better
performance of an EDA. Based on the results obtained in this study, it is more efficient to
produce new and better offspring through such hybridization.
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Table 12. Distribution of the results between recent algorithms and the QCEDA approach.

Intervals

Algorithms [0, 0.03) [0.03, 0.06) [0.06, or more)
Chung & Choy [51] 0 0 2700
Kaveshgar et al. [50] 0 0 2700

Wang et al. [52] 0 0 2700
Chung & Chan [49] 0 0 2700

QCEDA for the QCSP 155 55 2490

Optimality Gap

Chung & Choy [51] Kaveshgar et al. [50] Wang et al. [52] Chung & Chan [49] QCEDA for the
QCSP

2.73% 2.68% 2.76% 2.63% 2.48%
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4.5. Computational Cost Results

Finally, Figure 14 details the computational cost results of the QCEDA scheme. As we
can see, it is competitive with the other algorithms used in the comparison.
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4.6. Convergence Patterns

Figure 15 presents the convergence patterns of the QCEDA scheme.
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5. Discussion, Conclusions and Future Research

The contributions of this article are

- To propose a hybrid EDA, not only a reason for publication; this also avoids the
necessity of requiring building complex probability models.

- To determine what is most useful, i.e., the development of complex probability models
or the hybridization of an EDA with other methods to obtain the same or better
solutions.

- As a reason for doing this research, there exists a wide field of development to
determine which methods are more suitable to obtain a better performance of the
EDA.

- The research motivation is to show how the bioinspired techniques help to reduce the
deficiencies of an EDA.

- Based on the results obtained in this study, it is more efficient to produce new and
better offspring through such hybridization.

Based on the results detailed above, it is possible to conclude that the hybrid EDAs
have a better performance, or equal in effectiveness, than the pure EDAs. It can be
established that, for combinatorial problems, the estimation of the high order interactions
can be omitted if developing a competitive algorithm is the objective. The proposed
hybridization, with the Mallows—Moth-flame approach, is more useful to obtain the same
or better solutions. The dispersion results of the QCEDA scheme is always less than the
other algorithms used in the comparison section. This means that the solutions found
by the QCEDA are more concentrated around the best value than other algorithms, i.e.,
the average of the solutions of the QCEDA converge better to the best found value than
other approaches.

Furthermore, based on the results, a viable alternative to build better hybrid EDAs
is to use already defined probability models for the permutations field. In this research,
the proposed model is able to adapt itself to the structure of the representation of the
members of the population. The main goal is achieved, i.e., to model the solution space
from another perspective. The Mallows distribution falls in this approach, but there could
be more distributions for this purpose.
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Disadvantages of the proposed scheme

- The main disadvantage of the proposed QCEDA is to learn and program different
procedures to obtain the distance, and factorization of distance, between solutions
using a permutation based representation.

- Only the nondominated solutions located in the first layer of the Pareto-front are
used in this research to make comparisons between algorithms. Other metrics
should be considered in order to show the weaknesses and/or drawbacks of the
proposed scheme.

As future research.

- New and more comparisons should be considered, using the QCEDA, in future work.
- Other combinatorial problems should be considered.
- In addition, a substitution for the Mallows distribution and/or to hybridize with other

methods, should be considered to enhance the proposed scheme.
- Furthermore, diversity mechanisms should be considered to improve the proposed scheme.
- Finally, the application of the proposed scheme should consider the solution of real

world problems in future work.
- The QCEDA should attend to more and different restrictions.
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