
Mathematical 

and Computational 

Applications

Article

Towards Building the OP-Mapped WENO Schemes: A
General Methodology

Ruo Li 1,† and Wei Zhong 2,3,*,†

����������
�������

Citation: Li, R.; Zhong, W. Towards

Building the OP-Mapped WENO

Schemes: A General Methodology.

Math. Comput. Appl. 2021, 26, 67.

https://doi.org/10.3390/

mca26040067

Academic Editor: Zhenli Xu

Received: 9 August 2021

Accepted: 13 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CAPT, LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China;
rli@math.pku.edu.cn

2 School of Mathematical Sciences, Peking University, Beijing 100871, China
3 Northwest Institute of Nuclear Technology, Xi’an 710024, China
* Correspondence: zhongwei2016@pku.edu.cn or zhongwei@ac.nint.cn
† Both authors contributed equally to this work.

Abstract: A serious and ubiquitous issue in existing mapped WENO schemes is that most of them
can hardly preserve high resolutions, but in the meantime prevent spurious oscillations in the
solving of hyperbolic conservation laws with long output times. Our goal for this article was to
address this widely known problem. In our previous work, the order-preserving (OP) criterion was
originally introduced and carefully used to devise a new mapped WENO scheme that performs
satisfactorily in long simulations, and hence it was indicated that the OP criterion plays a critical
role in the maintenance of low-dissipation and robustness for mapped WENO schemes. Thus, in
our present work, we firstly defined the family of mapped WENO schemes, whose mappings meet
the OP criterion, as OP-Mapped WENO. Next, we attentively took a closer look at the mappings
of various existing mapped WENO schemes and devised a general formula for them. That helped
us to extend the OP criterion to the design of improved mappings. Then, we created a generalized
implementation of obtaining a group of OP-Mapped WENO schemes, named MOP-WENO-X, as they
are developed from the existing mapped WENO-X schemes, where the notation “X” is used to identify
the version of the existing mapped WENO scheme. Finally, extensive numerical experiments and
comparisons with competing schemes were conducted to demonstrate the enhanced performances of
the MOP-WENO-X schemes.

Keywords: order-preserving mapping; OP-Mapped WENO; hyperbolic conservation laws

1. Introduction

The essentially non-oscillatory (ENO) schemes [1–4] and the weighted ENO (WENO)
schemes [5–8] have been developed quite successfully in recent decades to solve the
hyperbolic conservation problems, especially those that may generate discontinuities and
smooth small-scale structures as time evolves in their solutions, even if the initial condition
is smooth. The main purpose of this study was to find a general method to introduce
the order-preserving (OP) mapping proposed in our previous work [9] for improving the
existing mapped WENO schemes for the approximation of the hyperbolic conservation
laws in the form

∂u
∂t

+∇ · F(u) = 0, (1)

where u = (u1, · · · , um) ∈ Rm is the vector of the conserved variables and F(u) is the vector
of the Cartesian components of flux. In recent years, there have been many works by Dumb-
ser [10], Boscheri [11–13], Tsoutsanis [14,15], Titarev and Toro [16–19], Semplice [20,21],
Puppo [22], Russo [23,24], and others on WENO approaches. These researches embraced
a wide range of issues, e.g., the ADER-WENO finite volume schemes, the Cool WENO
schemes, the unstructured WENO schemes, the Compact central WENO schemes, and so
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on. However, because of space limitations, it is very difficult to provide detailed descrip-
tions of them here, and we refer the reader to our references for more details. In the present
study, our main concern was to improve the performances of the (2r− 1)th-order mapped
WENO schemes, so we briefly review recent developments in this field in the following.

Harten et al. [1] introduced the ENO schemes. They used the smoothest stencil
from r possible candidate stencils based on the local smoothness to perform a polynomial
reconstruction such that it yielded high-order accuracy in smooth regions but avoided
spurious oscillations at or near discontinuities. Liu, Osher, and Chan [7] introduced the
first WENO scheme, an improved version of the ENO methodology with a cell-averaged
approach, by using a nonlinear convex combination of all the candidate stencils to achieve
a higher order of accuracy than the ENO schemes, while retaining the essential non-
oscillatory property at or near discontinuities. In other words, it achieves (r + 1)th-order
accuracy from the rth-order ENO schemes [1–3] in the smooth regions while behaving
similarly to the rth-order ENO schemes in regions including discontinuities. In [8], Jiang
and Shu proposed the classic WENO-JS scheme, along with a new measurement for the
smoothness of the numerical solutions on substencils (hereafter, denoted by smoothness
indicator), by using the sum of the normalized squares of the scaled L2-norms of all the
derivatives of r local interpolating polynomials, to obtain (2r− 1)th-order accuracy from
the rth-order ENO schemes.

The WENO-JS scheme has become a very popular and quite successful methodology
for solving compressible flows modeled through hyperbolic conservation laws in the form
of Equation (1). However, it was less than fifth-order for many cases, such as at or near
critical points of order ncp = 1 in the smooth regions. Here, we refer to ncp as the order
of the critical point; e.g., ncp = 1 corresponds to f ′ = 0, f ′′ 6= 0 and ncp = 2 corresponds
to f ′ = 0, f ′′ = 0, f ′′′ 6= 0. In particular, Henrick et al. [25] identified that the fifth-order
WENO-JS scheme fails to yield the optimal convergence order at or near critical points
where the first derivative vanishes but the third derivative does not. Then, in the same
article, they derived the necessary and sufficient conditions on the nonlinear weights for
optimality of the convergence rate of the fifth-order WENO schemes and these conditions
were reduced to a simpler sufficient condition [26] which could be easily extended to the
(2r− 1)th-order WENO schemes [27]. Moreover, also in [25], Henrick et al. devised the
original mapped WENO scheme, named WENO-M hereafter, by constructing a mapping
function that satisfies the sufficient condition to achieve the optimal order of accuracy.

Later, following the idea of incorporating a mapping procedure to keep the nonlinear
weights of the convex combination of stencils as near as possible to the ideal weights of
optimal order accuracy, various versions of mapped WENO schemes have been successfully
proposed. In [27], Feng et al. rewrote the mapping function of the WENO-M scheme in
a simple and more meaningful form and then extended it to a general class of improved
mapping functions, leading to the family of the WENO-IM(k, A) schemes, where k is
a positive even integer and A a positive real number. It was indicated that by taking
k = 2 and A = 0.1 in the WENO-IM(k, A) scheme, far better numerical solutions with less
dissipation and higher resolution could be obtained than that of the WENO-M scheme.
Unfortunately, the numerical experiments in [28] showed that the seventh and ninth-order
WENO-IM(2, 0.1) schemes generated evident spurious oscillations near discontinuities
when the output time was large. In addition, our numerical experiments, as shown in
Figures 10, 12 and 14, indicate that, even for the fifth-order WENO-IM(2, 0.1) scheme,
the spurious oscillations are also produced when the grid number increases or a different
initial condition is used. Recently, Feng et al. [29] pointed out that, when the WENO-
M scheme is used for solving the problems with discontinuities for long output times,
its mapping function may amplify the effect from the non-smooth stencils, leading to
a potential loss of accuracy near discontinuities. To amend this drawback, a piecewise
polynomial mapping function with two additional requirements, that is, g′(0) = 0 and
g′(1) = 0 (g(x) denotes the mapping function), to the original criteria in [25] was proposed.
The recommended WENO-PM6 scheme [29] achieved significantly higher resolution than
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the WENO-M scheme when computing the one-dimensional linear advection problem with
long output times. However, it may generate spurious oscillations near the discontinuities,
as shown in Figure 8 of [27] and Figures 3–8 of [28].

More mapped WENO schemes, such as the WENO-PPMn [30], WENO-RM(mn0) [28],
WENO-MAIMi [31], WENO-ACM [32] schemes, and others, have been successfully devel-
oped to enhance the performances of the classic WENO-JS scheme in some ways, such as
letting it achieve optimal convergence orders near critical points in smooth regions; having
less numerical dissipation; letting it achieve higher resolutions near discontinuities; or re-
ducing the computational costs. See the references for more details. However, as mentioned
in previously published literature [27,28], most of the existing improved mapped WENO
schemes could not prevent the spurious oscillations near discontinuities, especially for
long-output-time simulations. Moreover, when simulating the two-dimensional problems
with strong shock waves, the post-shock oscillations, which were systematically studied
for WENO schemes by Zhang et al. [33], become very severe in the solutions of most of the
existing improved mapped WENO schemes [32].

In our previous study [9], we studied the nonlinear weights of the existing mapped
WENO schemes by taking the ones developed in [9,27,29,31] as examples. It was found
that the order of the nonlinear weights for the substencils of the same global stencil has
been changed at many points in the mapping processes of all these considered mapped
WENO schemes. The order-change of nonlinear weights is caused by weight increasing of
non-smooth substencils and weight decreasing of smooth substencils. It was revealed that
this is the essential cause of the potential loss of accuracy of the WENO-M scheme and the
spurious oscillation generation of the existing improved mapped WENO schemes, through
theoretical analysis and extensive numerical tests. In the same article, the definition of the
order-preserving (OP) mapping was given and suggested as an additional criterion in the
design of the mapping function. Then a new mapped WENO scheme with its mapping
function satisfying the additional criterion was proposed. Extensive numerical experiments
showed that this scheme can achieve the optimal convergence order of accuracy, even at
critical points. It also can decrease the numerical dissipation and obtain high resolution,
but does not generate spurious oscillation near discontinuities, even if the output time is
large. Moreover, it was observed clearly that it exhibits a significant advantage in reducing
the post-shock oscillations when calculating the problems with strong shock waves in two
dimensions.

In this article, the idea of introducing the OP criterion into the design of the mapping
functions proposed in [9] is extended to various existing mapped WENO schemes. First of
all, we give the common name of OP-Mapped WENO to the family of the mapped WENO
schemes whose mappings are OP. A general formula for the mapping functions of various
existing mapped WENO schemes is presented, which allows the extension of the OP
criterion to all existing mapped WENO schemes. The notation MOP-WENO-X is used to
denote the improved mapped WENO scheme considering the OP criterion based on the
existing WENO-X scheme. A new function named minDist is defined (see Definition 4 in
Section 3.3 below). A general algorithm to construct OP mappings through the existing
mapping functions by using the minDist function is proposed.

Extensive numerical tests were conducted to demonstrate the performances of the
MOP-WENO-X schemes: (1) A series of accuracy tests show the abilities of the MOP-
WENO-X schemes to achieve optimal convergence order in smooth regions with first-order
critical points and their advantages in long-output-time simulations of problems with very
high-order critical points. (2) The one-dimensional linear advection equation with two
kinds of initial conditions for long output times are presented to demonstrate that the MOP-
WENO-X schemes can obtain high resolution, and meanwhile avoid spurious oscillation
near discontinuities. (3) Some benchmark tests with strong shock waves modeled via
the two-dimensional Euler equations were computed. It is clear that the MOP-WENO-X
schemes also enjoy a significant advantage in reducing the post-shock oscillations.
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The remainder of this paper is organized as follows. In Section 2, we briefly review the
preliminaries to understand the finite volume method and the procedures of the WENO-
JS [8], WENO-M [25], and other versions of mapped WENO schemes. Section 3 presents a
general method to introduce the OP mapping for improving the existing mapped WENO
schemes. Some numerical results are provided in Section 4 to illustrate the advantages of
the proposed WENO schemes. Finally, concluding remarks are given in Section 5 to close
this paper.

2. Brief Review of the WENO Schemes

For simplicity of presentation but without loss of generality, we denote our topic with
the following one-dimensional linear hyperbolic conservation equation:

∂u
∂t

+
∂ f (u)

∂x
= 0, xl < x < xr, t > 0, (2)

with the initial condition u(x, 0) = u0(x). We confine our attention to the uniform meshes
in this paper, and for the WENO method with non-uniform meshes, one can refer to [34,35].
Throughout this paper, we assume that the given domain [xl , xr] is discretized into the
set of uniform cells Ij := [xj−1/2, xj+1/2], j = 1, · · · , N with the cell size ∆x = xr−xl

N . The
associated cell centers and cell boundaries are denoted by xj = xl + (j − 1/2)∆x and

xj±1/2 = xj ± ∆x/2, respectively. The notation ū(xj, t) =
1

∆x
∫ xj+1/2

xj−1/2
u(ξ, t)dξ indicates

the cell average of Ij. The one-dimensional linear hyperbolic conservation equation in
Equation (2) can be approximated by a system of ordinary differential equations, yielding
the semi-discrete finite volume form:

dūj(t)
dt

≈ L(uj),

L(uj) = −
1

∆x

(
f̂ j+1/2 − f̂ j−1/2

)
,

(3)

where ūj(t) is the numerical approximation of the cell average ū(xj, t), and the numerical
flux f̂ j±1/2 is a replacement of the physical flux function f (u) at the cell boundaries xj±1/2

and it is defined by f̂ j±1/2 = f̂ (u−j±1/2, u+
j±1/2). u±j±1/2 refer to the limits of u, and their

values of u±j±1/2 can be obtained by reconstruction, for instance, the WENO reconstruction
procedures shown later. In this paper, we use the global Lax–Friedrichs flux:

f̂ (a, b) =
1
2
[

f (a) + f (b)− α(b− a)
]
,

where α = maxu| f ′(u)| is a constant and the maximum is taken over the whole range of u.

2.1. The WENO-JS Reconstruction

Firstly, we review the process of the classic fifth-order WENO-JS reconstruction [8].
For brevity, we describe only the reconstruction procedure of the left-biased u−j+1/2, and the

right-biased one u+
j+1/2 can trivially be computed by mirror symmetry with respect to the

location xj+1/2 of u−j+1/2. We drop the subscript “-” below just for simplicity of notation.
To construct the values of uj+1/2 from known cell average values uj, a 5-point global

stencil S5 = {Ij−2, Ij−1, Ij, Ij+1, Ij+2} is used in the fifth-order WENO-JS scheme. It is
subdivided into three 3-point substencils Ss = {Ij+s−2, Ij+s−1, Ij+s} with s = 0, 1, 2. It is
known that the third-order approximations of u(xj+1/2, t) associated with these substencils
are explicitly given by
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u0
j+1/2 =

1
6
(2ūj−2 − 7ūj−1 + 11ūj),

u1
j+1/2 =

1
6
(−ūj−1 + 5ūj + 2ūj+1),

u2
j+1/2 =

1
6
(2ūj + 5ūj+1 − ūj+2).

(4)

Then the uj+1/2 of global stencil S5 is computed by a weighted average of those third-order
approximations of substencils, taking the form

uj+1/2 =
2

∑
s=0

ωsus
j+1/2. (5)

The nonlinear weights ωs in the classic WENO-JS scheme are defined as

ωJS
s =

αJS
s

∑2
l=0 αJS

l

, αJS
s =

ds

(ε + βs)2 , s = 0, 1, 2, (6)

where d0, d1, d2 are called the ideal weights of ωs since they generate the central upstream
fifth-order scheme for the global stencil S5. It is known that d0 = 0.1, d1 = 0.6, d2 = 0.3 and

in smooth regions we can get
2
∑

s=0
dsus

j+1/2 = u(xj+1/2, t) + O(∆x5). ε is a small positive

number introduced to prevent the denominator from becoming zero. The parameters βs
are the smoothness indicators for the third-order approximations us

j+1/2 and their explicit
formulas can be obtained from [8], taking the form

β0 =
13
12
(
ūj−2 − 2ūj−1 + ūj

)2
+

1
4
(
ūj−2 − 4ūj−1 + 3ūj

)2,

β1 =
13
12
(
ūj−1 − 2ūj + ūj+1

)2
+

1
4
(
ūj−1 − ūj+1

)2,

β2 =
13
12
(
ūj − 2ūj+1 + ūj+2

)2
+

1
4
(
3ūj − 4ūj+1 + ūj+2

)2.

In general, the fifth-order WENO-JS scheme is able to recover the optimal convergence
rate of accuracy in smooth regions. However, when at or near critical points where the first
derivative vanishes but the third derivative does not simultaneously, it loses accuracy and
its convergence rate of accuracy decreases to third-order or even less. We refer to [25] for
more details.

2.2. The Mapped WENO Reconstructions

To address the issue of the WENO-JS scheme mentioned above, Henrick et al. [25]
made a systematic truncation error analysis of Equation (3) in its corresponding finite
difference version by using the Taylor series expansions of the Equation (4), and hence they
derived the necessary and sufficient conditions on the weights for the fifth-order WENO
scheme to achieve the formal fifth-order of convergence at smooth regions of the solution,
taking the form

2

∑
s=0

(ω±s − ds) = O(∆x6),
2

∑
s=0

As(ω
+
s −ω−s ) = O(∆x3), ω±s − ds = O(∆x2), (7)

where the superscripts “+” and “−” on ωs correspond to their use in either us
j+1/2 and

us
j−1/2 stencils respectively, and the parameter As is independent of ∆x and it is given

explicitly in Equation (16) in [25] for the fifth-order version WENO-JS scheme. Since the
first equation in Equation (7) always holds due to the normalization, a simpler sufficient
condition for the fifth-order convergence is given as [26]

ω±s − ds = O(∆x3), s = 0, 1, 2. (8)
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The conditions Equation (7) or Equation (8) may not hold in the case of smooth extrema
or at critical points when the fifth-order WENO-JS scheme is used. An innovative idea
of fixing this deficiency, originally proposed by Henrick in [25], is to design a mapping
function to make ωs approximating the ideal weights ds at critical points to the required
third order O(∆x3). The first mapping function devised by Henrick et al. in [25] is given as

(
gM)

s(ω) =
ω
(
ds + d2

s − 3dsω + ω2)
d2

s + (1− 2ds)ω
, s = 0, 1, 2. (9)

In Equation (9), ω = ωJS is recommended according to the theoretical analysis of WENO-M
by Henrick in [25] where the good properties of ωJS to guarantee the success of the mapped
function have been analyzed very carefully. Actually, ω = ωJS is commonly used in almost
all maping functions [9,27–32] although some other kind of nonlinear weights may also be
available.

We can verify that
(

gM)
s(ω) meets the conditions in Equation (8) as it is a non-

decreasing monotone function on [0, 1] with finite slopes and satisfies the following properties.

Lemma 1. The mapping function
(

gM)
s(ω) defined by Equation (9) satisfies:

C1. 0 ≤
(

gM)
s(ω) ≤ 1,

(
gM)

s(0) = 0,
(

gM)
s(1) = 1;

C2.
(

gM)
s(ds) = ds;

C3.
(

gM)′
s(ds) =

(
gM)′′

s (ds) = 0.

Following Henrick’s idea, a great many improved mapping functions were success-
fully proposed [9,27–32]. To clarify our major concern and provide convenience to readers
but for brevity in the description, we only state some mapping functions in the following
context, and we refer to references for properties similar to Lemma 1 and more details of
these mapping functions.

� WENO-IM(k, A) [27]

(
gIM)

s(ω; k, A) = ds +

(
ω− ds

)k+1 A(
ω− ds

)k A + ω(1−ω)
, A > 0, k = 2n, n ∈ N+. (10)

� WENO-PMk [29](
gPM)

s(ω) = c1(ω− ds)
k+1(ω + c2) + ds, k ≥ 2, (11)

where c1, c2 are constants with specified parameters k and ds, taking the following forms

c1 =


(−1)k k + 1

dk+1
s

, 0 ≤ ω ≤ ds,

− k + 1
(1− ds)k+1 , ds < ω ≤ 1,

c2 =


ds

k + 1
, 0 ≤ ω ≤ ds,

ds − (k + 2)
k + 1

, ds < ω ≤ 1.

� WENO-PPMn [30]

(
gPPMn

s
)

s(ω) =

{ (
gPPMn

s,L
)

s(ω), ω ∈ [0, ds](
gPPMn

s,R
)

s(ω), ω ∈ (ds, 1],
(12)

and for n = 5,(
gPPM5

s,L
)

s(ω) = ds
(
1 + (a− 1)5), (

gPPM5
s,R

)
s(ω) = ds + b4(ω− ds

)5. (13)

where a = ω/ds, b = 1/(ds − 1).
� WENO-RM(mn0) [28]
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(
gRM)

s(ω) = ds +
(ω− ds)n+1

a0 + a1ω + · · ·+ am+1ωm+1 , m ≤ n ≤ 8, (14)

where 
ai = Ci

n+1(−ds)
n−i, i = 0, 1, · · · , m,

am+1 = (1− ds)
n −

m

∑
i=0

ai.
(15)

Furthermore, m = 2, n = 6 is recommended in [28], then

(
gRM)

s(ω) = ds +
(ω− ds)7

a0 + a1ω + a2ω2 + a3ω3 , ω ∈ [0, 1] (16)

where

a0 = d6
s , a1 = −7d5

s , a2 = 21d4
s , a3 = (1− ds)

6 −
2

∑
i=0

ai. (17)

� WENO-MAIM1 [31]

(
gMAIM1)

s

(
ω
)
= ds +

f FIM · (ω− ds)k+1

f FIM · (ω− ds)k + ω
ds

msω+εA (1−ω)
1−ds

ms(1−ω)+εA

, (18)

with

f FIM = A
(

1 + (−1)k

2
+

1 + (−1)k+1

2
· sgm

(
ω− ds, δ, 1, k

))
, (19)

and

sgm
(

x, δ, B, k
)
=


x
|x| , |x| ≥ δ,

x(
B
(
δ2 − x2

))k+3
+ |x|

, |x| < δ. (20)

In Equations (18)–(20), k ∈ N+, A > 0, δ > 0 with δ→ 0, εA is a very small positive number

to prevent the denominator from becoming zero, and ms ∈
[

αs
k+1 , M

)
with M being a finite

positive constant real number and αs a positive constant that only depends on s in the
fifth-order WENO-MAIM1 scheme. In Equation (20), the positive parameter B is a scale
transformation factor introduced to adjust the shape of the mapping function and it is set
to be 1 in WENO-MAIM1 while to be other values in the following WENO-ACM schemes.

� WENO-ACM [32]

(
gACM)

s(ω) =


ds

2
sgm(ω−CFSs, δs, B, k) +

ds

2
, ω ≤ ds,

1− ds

2
sgm(ω−CFSs, δs, B, k) +

1 + ds

2
, ω > ds,

(21)

where CFSs ∈ (0, ds), CFSs = 1− 1−ds
ds
× CFSs with CFSs ∈ (ds, 1), and δs < min

{
CFSs,

ds −CFSs, (1− ds)
(

1− CFSs
ds

)
, 1−ds

ds
CFSs

}
.

� MIP-WENO-ACMk [9]

(
gMIP−ACMk)

s(ω) =


ksω, ω ∈ [0, CFSs),
ds, ω ∈ [CFSs, CFSs],
1− ks(1−ω), ω ∈ (CFSs, 1],

(22)

where CFSs ∈ (0, ds), CFSs = 1− 1−ds
ds
×CFSs with CFSs ∈ (ds, 1), and ks ∈

[
0, ds

CFSs

]
.
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By using the mapping function
(

gX)
s(ω) , where the superscript “X” corresponds to

“M,” “PM6,” or “IM,” etc., the nonlinear weights of the associated WENO-X scheme are
defined as

ωX
s =

αX
s

∑2
l=0 αX

l

, αX
s =

(
gX)

s(ω
JS
s ), s = 0, 1, 2,

where ωJS
s are calculated by Equation (6).

In other studies, it has been analyzed and proved in detail that the WENO-X schemes
can retain the optimal order of accuracy in smooth regions even at or near critical points.

3. A General Method to Introduce Order-Preserving Mapping for Mapped
WENO Schemes
3.1. The OP-Mapped WENO

Before giving Definition 3 below, to maintain coherence and for the readers’ conve-
nience, we state the definition of order-preserving/non-order-preserving mapping and OP/non-
OP point proposed in [9].

Definition 1 (order-preserving/non-order-preserving mapping). Suppose that
(

gX)
s(ω), s =

0, · · · , r− 1 is a monotone increasing piecewise mapping function of the (2r− 1)th-order mapped
WENO-X scheme. If for ∀m, n ∈ {0, · · · , r− 1}, when ωm > ωn, we have(

gX)
m(ωm) ≥

(
gX)

n(ωn). (23)

and when ωm = ωn, we have
(

gX)
m(ωm) =

(
gX)

n(ωn), then we say the set of mapping functions{(
gX)

s(ω), s = 0, · · · , r− 1
}

is order-preserving (OP). Otherwise, we say the set of mapping

functions
{(

gX)
s(ω), s = 0, · · · , r− 1

}
is non-order-preserving (non-OP).

Definition 2 (OP/non-OP point). Let S2r−1 denote the (2r− 1)-point global stencil centered
around xj. Assume that S2r−1 is subdivided into r-point substencils {S0, · · · , Sr−1} and ωs are
the nonlinear weights corresponding to the substencils Ss with s = 0, · · · , r− 1, which are used
as the independent variables by the mapping function. Suppose that

(
gX)

s(ω), s = 0, · · · , r− 1
is the mapping function of the mapped WENO-X scheme; then we say that a non-OP mapping
process occurs at xj, if ∃m, n ∈ {0, · · · , r− 1}, s.t.

(
ωm −ωn

)((
gX)

m(ωm)−
(

gX)
n(ωn)

)
< 0, if ωm 6= ωn,(

gX)
m(ωm) 6=

(
gX)

n(ωn), if ωm = ωn.
(24)

In addition, we say xj is a non-OP point. Otherwise, we say xj is an OP point.

Definition 3 (OP-Mapped WENO). The family of the mapped WENO schemes with OP map-
pings is collectively referred to as OP-Mapped WENO in our study.

3.2. A General Formula for the Existing Mapping Functions

We rewrite the mapping function of the WENO-X scheme, that is,
(

gX)
s(ω), s =

0, 1, · · · , r− 1, to be a general formula, given as

gX(ω; mP, Ps,1, · · · , Ps,mP

)
=
(

gX)
s(ω), (25)

where mP is the number of the parameters related with s indicating the substencil, and
Ps,1, · · · , Ps,mP are these parameters. Taking the WENO-IM(k, A) scheme as an example,
besides the independent variable ω, there are the other three parameters in its mapping
function (see Equation (10)), namely, ds, k and A. It is easy to know that ds is related to the
substencil Ss, and k and A are not. Thus, for the WENO-IM(k, A) scheme, we have mP = 1
and Ps,1 = ds. We can also determine the value of mP and the corresponding Ps,1, · · · , Ps,mP
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of other WENO schemes. Clearly, we have mP = 0 for the WENO-JS scheme and mP ≥ 1
for other mapped WENO schemes. In Table 1, taking nine different WENO schemes as
examples, we have presented their parameters of mP and Ps,1, · · · , Ps,mP . Let nX denote
the order of the specified critical point, namely, ω = ds, of the mapping function of the

WENO-X scheme, that is,
(

gX)′
s(ds) = · · · =

(
gX)(nX)

s (ds) = 0,
(

gX)(nX+1)
s (ds) 6= 0 . To

simplify the description of Theorem 2 below, we present nX of the WENO-X scheme in the
sixth column of Table 1.

Table 1. The parameters mP and Ps,1, · · · , Ps,mP for the WENO-JS scheme and some existing mapped WENO schemes whose
mapping functions are non-OP.

No. Scheme, WENO-X mP Ps,1, · · ·, Ps,mP Parameters nX Ref.

1 WENO-JS 0 None None None See [8]
2 WENO-M 1 Ps,1 = ds None 2 See [25]
3 WENO-IM(k, A) 1 Ps,1 = ds k = 2.0, A = 0.1 k See [27]
4 WENO-PMk 1 Ps,1 = ds k = 6 k See [29]
5 WENO-PPMn 1 Ps,1 = ds n = 5 4 See [30]
6 WENO-RM(mn0) 1 Ps,1 = ds m = 2, n = 6 3, 4 See [28]
7 WENO-MAIM1 2 Ps,1 = ds, Ps,2 = ms k = 10, A = 1.0e−6, ms = 0.06 k, k + 1 See [31]
8 WENO-ACM 2 Ps,1 = ds, Ps,2 = CFSs A = 20, k = 2, µ = 1e−6, CFSs = ds/10 ∞ See [32]
9 MIP-WENO-ACMk 3 Ps,1 = ds, Ps,2 = CFSs, Ps,3 = ks ks = 0.0, CFSs = ds/10 ∞ See [9]

Lemma 2. For the WENO-X scheme shown in Table 1, the mapping function
(

gX)
s(ω), s =

0, 1, · · · , r− 1 is monotonically increasing over [0, 1].

Proof. See the corresponding references given in the last column of Table 1.

3.3. The New Mapping Functions

Firstly, we give the minDist function by the following definition.

Definition 4 (minDist function). Define the minDist function as follows:
minDist

(
x0, · · · , xr−1; d0, · · · , dr−1; ω

)
= xk∗ ,

k∗ = min

(
IndexOf

(
min

{
|ω− d0|, |ω− d1|, · · · , |ω− dr−1|

}))
,

(26)

where ds, s = 0, · · · , r− 1 is the optimal weight; ω is the nonlinear weight, being the independent
variable of the mapping function; and the function IndexOf(·) returns a set of the subscripts of

“·”—that is, if min
{
|ω − d0|, |ω − d1|, · · · , |ω − dr−1|

}
= |ω − dm1 | = |ω − dm2 | = · · · =

|ω− dmM |, then

IndexOf
(

min
{
|ω− d0|, |ω− d1|, · · · , |ω− dr−1|

})
=
{

m1, m2, · · · , mM

}
. (27)

Let D =
{

d0, d1, · · · , dr−1

}
be an array of all the ideal weights of the (2r− 1)th-order

WENO schemes. We build a new array by sorting the elements of D in ascending order—

that is, D̃ =
{

d̃0, d̃1, · · · , d̃r−1

}
. In other words, the arraysD and D̃ have the same elements

with different arrangements, and the elements of D̃ satisfy

0 < d̃0 < d̃1 < · · · < d̃r−1 < 1. (28)

Definition 5. Let G =
{(

gX)
0(ω),

(
gX)

1(ω), · · · ,
(

gX)
r−1(ω)

}
be an array of all the mapping

functions of the (2r − 1)th-order mapped WENO-X scheme. We define a new array by sorting
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the elements of G in a new order—that is, G̃ =
{(̃

gX
)

0(ω),
(̃

gX
)

1(ω), · · · ,
(̃

gX
)

r−1(ω)
}

, where(̃
gX
)

s(ω) is the mapping function associated with d̃s .

Lemma 3. Denote d̃−1 = 0, d̃r = 1. Let d̊−1 = d̃−1, d̊0 = d̃0+d̃1
2 , · · · , d̊r−2 = d̃r−2+d̃r−1

2 , d̊r−1

= d̃r. For ∀i = 0, 1, · · · , r− 1, if ω ∈ (d̊i−1, d̊i], then

min

(
IndexOf

(
min

{
|ω− d̃0|, |ω− d̃1|, · · · , |ω− d̃r−1|

}))
= i.

Proof. (1) We first prove the cases of i = 1, · · · , r − 2. When d̃i ≤ ω ≤ d̃i+d̃i+1
2 , as

Equation (28) holds, we get{
0 ≤ ω− d̃i ≤ d̃i+1 −ω < · · · < d̃r−1 −ω,
0 ≤ ω− d̃i < ω− d̃i−1 < · · · < ω− d̃0.

(29)

Similarly, when d̃i−1+d̃i
2 < ω < d̃i, we get{

0 < d̃i −ω < ω− d̃i−1 < · · · < ω− d̃0,
0 < d̃i −ω < d̃i+1 −ω < · · · < d̃r−1 −ω.

(30)

Then, according to Equations (29) and (30), we obtain

min
{
|ω− d̃0|, · · · , |ω− d̃i−1|, |ω− d̃i|, |ω− d̃i+1|, · · · , |ω− d̃r−1|

}
=|ω− d̃i| = |ω− d̃i+1|,

(31)

where i = 1, · · · , r− 2 and the last equality holds if and only if ω− d̃i = d̃i+1 −ω.

(2) For the case of i = 0, we know that ω ∈ (d̊−1, d̊0] =
(

0, d̃0+d̃1
2

]
. When d̃0 ≤ ω ≤

d̃0+d̃1
2 , we have

0 ≤ ω− d̃0 ≤ d̃1 −ω < · · · < d̃r−1 −ω. (32)

Additionally, when 0 < ω < d̃0, we have

0 < d̃0 −ω < d̃1 −ω < · · · < d̃r−1 −ω. (33)

Then, according to Equations (32) and (33), we obtain

min
{
|ω− d̃0|, · · · , |ω− d̃i−1|, |ω− d̃i|, |ω− d̃i+1|, · · · , |ω− d̃r−1|

}
=|ω− d̃0| = |ω− d̃1|,

(34)

where the last equality holds if and only if ω− d̃0 = d̃1 −ω.
(3) As the proof of the case of i = r− 1 is very similar to that of the case i = 0, we do

not state it here for simplicity. Additionally, we can get that, if ω ∈ (d̊r−2, d̊r−1], then

min
{
|ω− d̃0|, · · · , |ω− d̃i−1|, |ω− d̃i|, |ω− d̃i+1|, · · · , |ω− d̃r−1|

}
= |ω− d̃r−1|. (35)

(4) Thus, according to Equation (4) and Equations (31), (34), and (35), we obtain
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min

(
IndexOf

(
min

{
|ω− d̃0|, · · · , |ω− d̃i−1|, |ω− d̃i|,

|ω− d̃i+1|, · · · , |ω− d̃r−1|
}))

= i.

Now, we have finished the proof of Lemma 3.

For simplicity of description and according to Lemma 3, we introduce intervals Ωi
defined as follows.

Ωi =
{

ω|minDist(d̃0, d̃1, · · · , d̃r−1; d̃0, d̃1, · · · , d̃r−1; ω) = d̃i

}
= (d̊i−1, d̊i], (36)

where i = 0, 1, · · · , r− 1.
If ω ∈ Ω = (0, 1], it is trivial to verify that: (1) Ω = Ω0

⋃
Ω1

⋃ · · ·⋃Ωr−1; (2) for
∀i, j = 0, 1, · · · , r− 1 and i 6= j, Ωi

⋂
Ωj = ∅.

Lemma 4. Let a, b ∈ {0, 1, · · · , r− 1} and WENO-X be the scheme shown in Table 1. For ∀a ≥ b
and ωα ∈ Ωa, ωβ ∈ Ωb, we have the following properties: C1. If a = b and ωα > ωβ, then(̃

gX
)

a(ωα) ≥
(̃

gX
)

b(ωβ); C2. If a = b and ωα = ωβ, then
(̃

gX
)

a(ωα) =
(̃

gX
)

b(ωβ); C3. If

a > b, then ωα > ωβ,
(̃

gX
)

a(ωα) >
(̃

gX
)

b(ωβ).

Proof. (1) We can directly get properties C1 and C2 from Lemma 2. (2) As a > b, according
to Equations (28) and (36), we know that the interval Ωa must be on the right side of the
interval Ωb, and ωα ∈ Ωa, ωβ ∈ Ωb is given, then we get ωα > ωβ. Trivially, according to

Definition 5, or by intuitively observing the curves of the mapping function
(̃

gX
)

s(ω) as

shown in Figure 1, we can obtain
(̃

gX
)

a(ωα) >
(̃

gX
)

b(ωβ). Thus, C3 is proved.

By employing the minDist function, we built a general method to introduce the
OP criterion into the existing mappings which are non-OP. The general method is stated
in Algorithm 1. It is worthy to note that Algorithm 1 actually does some sorting of
the parameters of Ps,1, · · · , Ps,mP in Equation (25), and this plays an important role in
constructing the OP mappings from the existing non-OP mappings.

Theorem 1. The set of mapping functions
{(

gMOP−X)
s(ω

JS
s ), s = 0, 1, · · · , r − 1

}
obtained

through Algorithm 1 is OP.

Proof. Let ωJS
m , ωJS

n ∈ [0, 1] and ∀m, n ∈ {0, 1, · · · , r− 1}. According to Algorithm 1 and
without loss of generality, we can assume that ωJS

m ∈ Ωk∗m , ωJS
n ∈ Ωk∗n , and then we get

(
gMOP−X)

m(ω
JS
m ) = gX

(
ωJS

m ; mP, Pk∗m ,1, · · · , Pk∗m ,mP

)
,(

gMOP−X)
n(ω

JS
n ) = gX

(
ωJS

n ; mP, Pk∗n ,1, · · · , Pk∗n ,mP

)
.

It is easy to verify that gX
(

ωJS
m ; mP, Pk∗m ,1, · · · , Pk∗m ,mP

)
=
(̃

gX
)

k∗m
(ωJS

m ),

gX
(

ωJS
n ; mP, Pk∗n ,1, · · · , Pk∗n ,mP

)
=
(̃

gX
)

k∗n
(ωJS

n ).

Therefore, according to Lemma 4, we can finish the proof trivially.

We now define the modified weights which are OP as follows:
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ωMOP−X
s =

αMOP−X
s

∑r−1
l=0 αMOP−X

l

, αMOP−X
s =

(
gMOP−X)

s(ω
JS
s ), s = 0, · · · , r− 1, (37)

where
(

gMOP−X)
s(ω

JS
s ) is obtained from Algorithm 1. The associated scheme will be

referred to as MOP-WENO-X.
The mapping functions of the WENO-X schemes presented in Table 1 and those

of the associated MOP-WENO-X schemes are shown in Figure 1. We can find that, for
the mapping functions of the MOP-WENO-X schemes: (1) the monotonicity over the
whole domain (0, 1) is maintained; (2) the differentiability is reduced and limited to the
neighborhood of the optimal weights ds; (3) the OP property is obtained. We summarize
these properties as follows.

Algorithm 1: A general method to construct OP mappings.
input : s, index indicating the substencil Ss and s = 0, 1, · · · , r− 1

ds, optimal weights
ωJS

s , nonlinear weights computed by the WENO-JS scheme
mP, the number of the parameters related with s
Ps,j, parameters related with s and j = 1, · · · , mP

output :
{(

gMOP−X)
s(ω

JS
s ), s = 0, 1, · · · , r− 1

}
, the new set of mapping functions

that is OP

1
(

gX)
s(ω), s = 0, 1, · · · , r− 1 is a monotonically increasing mapping function over [0, 1],

and the set of mapping functions
{(

gX)
s(ω), s = 0, 1, · · · , r− 1

}
is non-OP;

2 // implementation of the “minDist” function in Definition 4
3 for s = 0; s ≤ r− 1; s ++ do
4 // get k∗ in Equation (26)
5 set dmin = |ωJS

s − d0|, k∗s = 0;
6 for i = 1; i ≤ r− 1; i ++ do
7 if |ωJS

s − di| < dmin then
8 dmin = |ωJS

s − di|,
9 k∗s = i;

10 end
11 end
12 // remark: the for loop above indicates that ωJS

s ∈ Ωk∗s
13 // get xk∗ in Equation (26)
14 for j = 1; j ≤ mP; j ++ do
15 Ps,j = Pk∗s ,j;
16 end
17 end
18 // get

(
gMOP−X)

s(ω
JS
s )

19 for s = 0; s ≤ r− 1; s ++ do

20
(

gMOP−X)
s(ω

JS
s ) = gX

(
ωJS

s ; mP, Ps,1, · · · , Ps,mP

)
.

21 end
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Figure 1. A comparison of the mapping functions for WENO-X (shown in Table 1) and MOP-WENO-X.

Theorem 2. Let Ωi =
{

ω ∈ Ωi ∩ ω 6= ∂Ωi

}
, i = 0, 1, · · · , r − 1. The mapping function(

gMOP−X)
s(ω) obtained from Althorithm 1 satisfies the following properties:

C1. For ∀ω ∈ Ωi, i = 0, 1, · · · , r− 1,
(

gMOP−X)′
s(ω) ≥ 0;

C2. For ∀ω ∈ Ω, 0 ≤
(

gMOP−X)
s(ω) ≤ 1, and

(
gMOP−X)

s(0) = 0,
(

gMOP−X)
s(1) = 1;

C3. For ∀s ∈
{

0, 1, · · · , r − 1
}

, d̃s ∈ Ωs, and
(

gMOP−X)
s(d̃s) = d̃s,

(
gMOP−X)′

s(d̃s) =

· · · =
(

gMOP−X)(nX)

s (d̃s) = 0 where nX is given in Table 1;
C4.

(
gMOP−X)′

s(0) =
(

gX)′
s(0),

(
gMOP−X)′

s(1) =
(

gX)′
s(1);

C5. For ∀m, n ∈
{

0, · · · , r− 1
}

, if ωm > ωn, then
(

gMOP−X)
m(ωm) ≥

(
gMOP−X)

n(ωn),

and if ωm = ωn, then
(

gMOP−X)
m(ωm) =

(
gMOP−X)

n(ωn).

Remark 1. (1) The properties C1–C3 are designed to recover the optimal convergence rate of
accuracy in a smooth region even in the presence of critical points, and the detailed theoretical
analysis has been proposed in Section 5 of [25], Section 3.2 of [27], Section 3.1 of [29], etc. (2) The
property C4 is designed to decrease the effect from non-smooth stencils, and we refer to Sections 3.1
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and 3.2 of [29], Remark 1 of [28], Section 2.2 of [30], and Section 3.3 of [31] for more details. (3)
The property C5 is designed to enhance the performance for long-output-time simulations and to
remove or reduce post-shock numerical oscillations, and we have analyzed this in [9] systematically
and carefully.

3.4. Convergence Properties

According to Theorem 2, we get the convergence properties for the (2r− 1)th-order
MOP-WENO-X schemes as given in Theorem 3. The proof is almost identical to that of the
associated WENO-X schemes in the references presented in Table 1.

Theorem 3. The requirements for the (2r− 1)th-order MOP-WENO-X schemes to achieve the
optimal order of accuracy are identical to that of the associated (2r− 1)th-order WENO-X schemes.

For the integrity of this paper and the benefit of the reader, we concisely express the
following Corollaries of Theorem 3.

Corollary 1. If n mapping is used in the (2r− 1)th-order MOP-WENO-M scheme, then for dif-
ferent values of ncp, the weights ωMOP−M

s in the (2r− 1)th-order MOP-WENO-M scheme satisfy

ωMOP−M
s − ds = O

(
(∆x)3n×(r−1−ncp)

)
, r = 2, 3, · · · , 9, ncp = 0, 1, · · · , r− 1,

and the rate of convergence is

rc =


2r− 1, if ncp = 0, · · · ,

⌊
3n − 1

3n r− 1

⌋
,

(3n + 1)(r− 1)− 3n × ncp, if ncp =

⌊
3n − 1

3n r− 1

⌋
+ 1, · · · , r− 1,

where bxc is a floor function of x.

Proof. The proof is almost identical to that of Lemma 6 in [31].

Corollary 2. When ncp = 1, the (2r− 1)th-order MOP-WENO-IM(k, A) schemes can achieve
the optimal order of accuracy if the mapping function

(
gMOP−IM)

s(ω) is applied to the original
weights in the (2r− 1)th-order WENO-JS schemes with the requirement of k ≥ 2 (except for the
case of r = 2).

Proof. The proof is almost identical to that of Theorem 2 in [27].

Corollary 3. The (2r− 1)th-order MOP-WENO-PMk schemes can achieve the optimal order of
accuracy if the mapping function

(
gMOP−PM)

s(ω) is applied to the original weights in the (2r− 1)
th-order WENO-JS schemes with specific requirements for k in following different cases: (I) require
k ≥ 1 for ncp = 0; (II) require k ≥ 1 for ncp = 1; (III) require k ≥ 3 for ncp = 2.

Proof. The proof is almost identical to that of Proposition 1 in [29].

Corollary 4. The (2r − 1)th-order MOP-WENO-RM(mn0) schemes can recover the optimal
order of accuracy if the mapping function

(
gMOP−RM)

s(ω) is applied to the original weights in the

(2r− 1)th-order WENO-JS schemes with requirement of n ≥ 1+ncp
r−1−ncp

for different values of ncp

with 1 ≤ ncp < r− 1.

Proof. The proof is almost identical to that of Theorem 3 in [28].
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Corollary 5. Let dxe be a ceiling function of x. For ncp < r − 1, the (2r − 1)th-order MOP-
WENO-MAIM1 schemes can achieve the optimal order of accuracy if the mapping function
(gMOP−MAIM1)s(ω) is applied to the original weights in the (2r− 1)th-order WENO-JS schemes
with requirement of k ≥ kMAIM, where

kMAIM =

⌈
r

r− 1− ncp
− 2

⌉
+

1 +
(
− 1
)
⌈

r
r− 1− ncp

−2

⌉

2
.

Proof. The proof is almost identical to that of Theorem 2 in [31].

Corollary 6. For ncp < r − 1, the (2r − 1)th-order MOP-WENO-ACM schemes can achieve
the optimal order of accuracy if the mapping function (gMOP−ACM)s(ω) is applied to the original
weights in the (2r− 1)th-order WENO-JS schemes.

Proof. The proof is almost identical to that of Theorem 2 in [32].

Corollary 7. When CFSs � d̃0, for ncp < r − 1, the (2r − 1)th-order MOP-WENO-ACMk
schemes can achieve the optimal order of accuracy if the mapping function (gMOP−ACMk)s(ω) is
applied to the original weights in the (2r− 1)th-order WENO-JS schemes.

Proof. The proof is almost identical to that of Theorem 2 in [9].

4. Numerical Results

In this section, we compare the numerical performances of the MOP-WENO-X schemes with
the associated existing mapped WENO-X schemes shown in Table 1, and the classic WENO-JS
scheme. To further demonstrate the superiority of the MOP-WENO-X schemes, some comparisons
with other WENO type reconstructions, e.g., WENO-Z [26] (in Sections 4.1 and 4.2) and the central
WENO schemes of WENO-NW6 [36], WENO-CU6 [37], and WENO-θ6 [38] (in Section 4.3),
have also been performed. As the performances of the WENO-ACM scheme and the MOP-
WENO-ACM scheme are almost identical to those of the MIP-WENO-ACMk scheme
and the MOP-WENO-ACMk scheme, respectively, we do not present the solutions of the
WENO-ACM scheme and the MOP-WENO-ACM scheme below for simplicity. It should
be noted that although we mainly provide the solutions of the fifth-order WENO methods
(WENO5) in present study, the methodology proposed in this paper can be successfully
extended to higher order WENO methods, such as WENO-7 or WENO-9, and because of
the space limitations, we do not show their solutions here.

Typical one-dimensional linear advection equation and two-dimensional Euler equa-
tions, with different initial conditions, are used to test the considered schemes. The
presentation of these numerical tests in this section starts with the accuracy test of one-
dimensional linear advection equation with four different initial conditions, followed
by the long-output-time simulations of it with two different initial conditions, including
discontinuities, and finishes with two-dimensional simulations on the shock-vortex inter-
action and the 2D Riemann problem. In all calculations below, ε is taken to be 10−40 for all
schemes following the recommendations in [25,27].

In the following numerical tests, the ODEs resulting from the semi-discretized PDEs
are marched in time using the following explicit, third-order, strong stability preserving
(SSP) Runge–Kutta method [5,39,40]:

−→
U ∗ =

−→
U n + ∆tL(−→U n),

−→
U ∗∗ =

3
4
−→
U n +

1
4
−→
U ∗ +

1
4

∆tL(−→U ∗),
−→
U n+1 =

1
3
−→
U n +

2
3
−→
U ∗∗ +

2
3

∆tL(−→U ∗∗),
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where
−→
U ∗,
−→
U ∗∗ are the intermediate stages,

−→
U n is the value of

−→
U at time level tn = n∆t,

and ∆t is the time step satisfying some proper CFL condition. The spatial operator L is
defined as in Equation (3), and the WENO reconstructions will be applied to obtain it.

4.1. Accuracy Test

In this subsection, we solve the following one-dimensional linear advection equation:

∂u
∂t

+
∂u
∂x

= 0, −1 ≤ x ≤ 1, (38)

with different initial conditions to test the accuracy of the considered WENO schemes. In
all accuracy tests, the L1, L2, L∞ norms of the error are given as

L1 = h ·∑
j

∣∣uexact
j − (uh)j

∣∣,
L2 =

√
h ·∑

j
(uexact

j − (uh)j)
2,

L∞ = max
j

∣∣uexact
j − (uh)j

∣∣,
where h = ∆x is the uniform spatial step size, (uh)j is the numerical solution, and uexact

j is
the exact solution.

Example 1. We calculate Equation (38) with the periodic boundary condition using the following
initial condition [27]:

u(x, 0) = sin(πx). (39)

It is trivial to verify that although the initial condition in Equation (39) has two first-
order critical points, their first and third derivatives vanish simultaneously. It is known
that the rate of the temporal convergence is O(∆t3) for the third-order Runge–Kutta
method [5,39,40] and the CFL number is defined by CFL = |α|∆t

∆x leading to ∆t = CFL · ∆x
|α|

where |α| = 1 here. Therefore, note that we consider only the fifth-order methods here, and
to ensure that the error for the overall scheme is a measure of the spatial convergence only,
we set the CFL number to be (∆x)2/3. The calculation was run until a time of t = 2.0.

In Table 2, we show the L1, L2, L∞ errors and corresponding convergence orders of
various considered WENO schemes. Unsurprisingly, the MOP-WENO-X schemes and the
associated WENO-X schemes, along with the WENO-Z scheme, provide more accurate
results than the WENO-JS scheme do in general. Naturally and as expected, all the
considered schemes have gained the fifth-order convergence rate of accuracy. It can be
found that the results of the MOP-WENO-X schemes are identical to those of the associated
WENO-X schemes for all grid numbers except N = 10. As discussed in [9], the cause of the
accuracy loss for the computing cases of all MOP-WENO-X schemes with N = 10 is that the
mapping functions of the MOP-WENO-X schemes have narrower optimal weight intervals
(standing for the intervals about ω = ds over which the mapping process attempts to use
the corresponding optimal weights; see [31,32]) than the associated WENO-X schemes.

Figure 2 shows the overall L∞ convergence behavior of various considered schemes.
We can observe that: (1) the solutions of all schemes converge at fifth-order, as evidenced
by the slope of the lines; (2) the MOP-WENO-X schemes and their associated WENO-X
schemes, along with the WENO-Z scheme, are significantly more accurate than the classic
WENO-JS scheme; (3) the errors and convergence orders of the MOP-WENO-X schemes
are almost identical to those of their associated WENO-X schemes.

We use this example to discuss the computational cost of the MOP-WENO-X scheme
compared with its associated WENO-X scheme and the classic WENO-JS scheme. In
Figure 3, we drew the graphs for the CPU time versus the computing errors (we only
present the results of the L∞-norm error here just for the sake of brevity in the presentation,
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hereinafter the same). From Figure 3, we can easily see that: (1) generally speaking, the
MOP-WENO-X schemes have better efficiency than the WENO-JS scheme; (2) for all MOP-
WENO-X schemes except the case of “X = M,” they perform almost identically to their
associated WENO-X schemes; (3) for the MOP-WENO-M scheme, it has a slightly lower
efficiency than its associated WENO-M scheme and it has significantly higher efficiency
than the WENO-JS scheme.

Table 2. Convergence properties of considered schemes on solving ut + ux = 0 with initial condition u(x, 0) = sin(πx). To
be continued.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-JS 10 6.18328 × 10−2 - 4.72306 × 10−2 - 4.87580 × 10−2 -
20 2.96529 × 10−3 4.3821 2.42673 × 10−3 4.2826 2.57899 × 10−3 4.2408
40 9.27609 × 10−5 4.9985 7.64332 × 10−5 4.9887 9.05453 × 10−5 4.8320
80 2.89265 × 10−6 5.0031 2.33581 × 10−6 5.0322 2.90709 × 10−6 4.9610
160 9.03392 × 10−8 5.0009 7.19259 × 10−8 5.0213 8.85753 × 10−8 5.0365
320 2.82330 × 10−9 4.9999 2.23105 × 10−9 5.0107 2.72458 × 10−9 5.0228

WENO-Z 10 1.64485 × 10−2 - 1.27535 × 10−2 - 1.18974 × 10−2 -
20 5.04450 × 10−4 5.0271 3.98253 × 10−4 5.0011 3.94040 × 10−4 4.9162
40 1.59132 × 10−5 4.9864 1.25050 × 10−5 4.9931 1.24948 × 10−5 4.9789
80 4.98858 × 10−7 4.9955 3.91834 × 10−7 4.9961 3.91804 × 10−7 4.9951
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88356 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83541 × 10−10 4.9977

WENO-M 10 2.01781 × 10−2 - 1.55809 × 10−2 - 1.47767 × 10−2 -
20 5.18291 × 10−4 5.2829 4.06148 × 10−4 5.2616 3.94913 × 10−4 5.2256
40 1.59422 × 10−5 5.0228 1.25236 × 10−5 5.0193 1.24993 × 10−5 4.9816
80 4.98914 × 10−7 4.9979 3.91875 × 10−7 4.9981 3.91808 × 10−7 4.9956
160 1.56021 × 10−8 4.9990 1.22541 × 10−8 4.9991 1.22538 × 10−8 4.9988
320 4.88356 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83541 × 10−10 4.9977

MOP-WENO-M 10 3.64427 × 10−2 - 2.95270 × 10−2 - 2.81876 × 10−2 -
20 5.18291 × 10−4 6.1357 4.06148 × 10−4 6.1839 3.94913 × 10−4 6.1574
40 1.59422 × 10−5 5.0228 1.25236 × 10−5 5.0193 1.24993 × 10−5 4.9816
80 4.98914 × 10−7 4.9979 3.91875 × 10−7 4.9981 3.91808 × 10−7 4.9956
160 1.56021 × 10−8 4.9990 1.22541 × 10−8 4.9991 1.22538 × 10−8 4.9988
320 4.88356 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83541 × 10−10 4.9977

WENO-IM(2, 0.1) 10 1.58051 × 10−2 - 1.23553 × 10−2 - 1.19178 × 10−2 -
20 5.04401 × 10−4 4.9697 3.96236 × 10−4 4.9626 3.94458 × 10−4 4.9171
40 1.59160 × 10−5 4.9860 1.25033 × 10−5 4.9860 1.24963 × 10−5 4.9803
80 4.98863 × 10−7 4.9957 3.91836 × 10−7 4.9959 3.91797 × 10−7 4.9953
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83547 × 10−10 4.9977

MOP-WENO-IM(2, 0.1) 10 3.35513 × 10−2 - 2.75968 × 10−2 - 2.71898 × 10−2 -
20 5.04401 × 10−4 6.0557 3.96236 × 10−4 6.1220 3.94458 × 10−4 6.1071
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Table 2. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

40 1.59160 × 10−5 4.9860 1.25033 × 10−5 4.9860 1.24963 × 10−5 4.9803
80 4.98863 × 10−7 4.9957 3.91836 × 10−7 4.9959 3.91797 × 10−7 4.9953
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83547 × 10−10 4.9977

WENO-PM6 10 1.74869 × 10−2 - 1.35606 × 10−2 - 1.27577 × 10−2 -
20 5.02923 × 10−4 5.1198 3.95215 × 10−4 5.1006 3.94515 × 10−4 5.0151
40 1.59130 × 10−5 4.9821 1.25010 × 10−5 4.9825 1.24960 × 10−5 4.9805
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

MOP-WENO-PM6 10 3.54584 × 10−2 - 2.88246 × 10−2 - 2.76902 × 10−2 -
20 5.02923 × 10−4 6.1396 3.95215 × 10−4 6.1885 3.94515 × 10−4 6.1332
40 1.59130 × 10−5 4.9821 1.25010 × 10−5 4.9825 1.24960 × 10−5 4.9805
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

WENO-PPM5 10 1.73978 × 10−2 - 1.34998 × 10−2 - 1.27018 × 10−2 -
20 5.03464 × 10−4 5.1109 3.95644 × 10−4 5.0926 3.94865 × 10−4 5.0075
40 1.59131 × 10−5 4.9836 1.25011 × 10−5 4.9841 1.24961 × 10−5 4.9818
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88356 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83528 × 10−10 4.9978

MOP-WENO-PPM5 10 3.49872 × 10−2 - 2.85173 × 10−2 - 2.75955 × 10−2 -
20 5.03464 × 10−4 6.1188 3.95644 × 10−4 6.1715 3.94865 × 10−4 6.1269
40 1.59131 × 10−5 4.9836 1.25011 × 10−5 4.9841 1.24961 × 10−5 4.9818
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88356 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83528 × 10−10 4.9978

WENO-RM(260) 10 1.52661 × 10−2 - 1.19792 × 10−2 - 1.17698 × 10−2 -
20 5.02845 × 10−4 4.9241 3.95138 × 10−4 4.9220 3.94406 × 10−4 4.8993
40 1.59130 × 10−5 4.9818 1.25010 × 10−5 4.9822 1.24960 × 10−5 4.9801
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

MOP-WENO-RM(260) 10 3.29243 × 10−2 - 2.73131 × 10−2 - 2.73015 × 10−2 -
20 5.02845 × 10−4 6.0329 3.95138 × 10−4 6.1111 3.94406 × 10−4 6.1132
40 1.59130 × 10−5 4.9818 1.25010 × 10−5 4.9822 1.24960 × 10−5 4.9801
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

WENO-MAIM1 10 6.13264 × 10−2 - 4.81375 × 10−2 - 4.86913 × 10−2 -
20 5.08205 × 10−4 6.9150 4.26155 × 10−4 6.8196 5.03701 × 10−4 6.5950
40 1.59130 × 10−5 4.9971 1.25010 × 10−5 5.0913 1.24960 × 10−5 5.3330
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

MOP-WENO-MAIM1 10 6.63923 × 10−2 - 5.17462 × 10−2 - 5.19799 × 10−2 -
20 5.08205 × 10−4 7.0295 4.26155 × 10−4 6.9239 5.03701 × 10−4 6.6892
40 1.59130 × 10−5 4.9971 1.25010 × 10−5 5.0913 1.24960 × 10−5 5.3330
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977
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Table 2. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

MIP-WENO-ACMk 10 1.52184 × 10−2 - 1.19442 × 10−2 - 1.17569 × 10−2 -
20 5.02844 × 10−4 4.9196 3.95138 × 10−4 4.9178 3.94406 × 10−4 4.8977
40 1.59130 × 10−5 4.9818 1.25010 × 10−5 4.9822 1.24960 × 10−5 4.9801
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

MOP-WENO-ACMk 10 3.29609 × 10−2 - 2.72363 × 10−2 - 2.70295 × 10−2 -
20 5.02844 × 10−4 6.0345 3.95138 × 10−4 6.1070 3.94406 × 10−4 6.0987
40 1.59130 × 10−5 4.9818 1.25010 × 10−5 4.9822 1.24960 × 10−5 4.9801
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977
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Figure 2. L∞-norm error plots for various WENO schemes for Example 1.
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Figure 3. Comparison of various WENO schemes for Example 1 in CPU time and L∞-norm computing errors.

Example 2. We calculate Equation (38) with the periodic boundary condition using the following
initial condition [25]:

u(x, 0) = sin
(

πx− sin(πx)
π

)
. (40)

This particular initial condition has two first-order critical points, which both have a
non-vanishing third derivative. Again, the CFL number was set to be (∆x)2/3 and the
calculation was run until a time of t = 2.0.

Table 3 compares the L1, L2, L∞ errors and corresponding convergence orders obtained
from the considered schemes. It is evident that the WENO-X schemes and the associated
MOP-WENO-X schemes can achieve the optimal convergence orders, and this verifies the
properties C1 ∼ C3 of Theorem 2. Unsurprisingly, the WENO-JS scheme gives less accurate
results than the other schemes, and its L∞ convergence order decreases by almost 2 orders
leading to the noticeable drops of the L1 and L2 convergence orders. It is noteworthy that
when the grid number is too small, such as N ≤ 40, in terms of accuracy, the MOP-WENO-
X schemes provide less accurate results than those of the associated WENO-X schemes.
As mentioned in Example 1, the cause of this kind of accuracy loss is that the mapping
functions of the MOP-WENO-X schemes have narrower optimal weight intervals than the



Math. Comput. Appl. 2021, 26, 67 21 of 46

associated WENO-X schemes, and this issue can surely be addressed by increasing the
grid number. Therefore, as expected, the MOP-WENO-X schemes show equally accurate
numerical solutions like those of the associated WENO-X schemes when the grid number
N ≥ 80.

Figure 4 shows the overall L∞ convergence behavior of various considered schemes.
We can observe that: (1) the solutions of all MOP-WENO-X schemes and their associated
WENO-X schemes, and of the WENO-Z scheme, converge at fifth-order, as evidenced
by the slope of the lines, especially for larger (slightly) grid numbers; (2) for the classic
WENO-JS scheme, its solution converges at third-order, as evidenced by its slope of the
line; (3) naturally, the MOP-WENO-X schemes and their associated WENO-X schemes, and
the WENO-Z scheme, are significantly more accurate than the classic WENO-JS scheme; (4)
the errors and convergence orders of the MOP-WENO-X schemes are very close to those of
their associated WENO-X schemes.

We also use this example to discuss the computational cost of the MOP-WENO-X
scheme compared with its associated WENO-X scheme and the classic WENO-JS scheme.
In Figure 5, we drew the graphs for the CPU time versus the L∞-norm computing errors.
From Figure 5, we can easily see that: (1) as expected, the WENO-JS scheme has the lowest
efficiency; (2) again, for all MOP-WENO-X schemes except the case of “X = M,” they
perform almost identically to their associated WENO-X schemes; (3) for the MOP-WENO-
M scheme, despite the fact that it has slightly less efficiency than its associated WENO-M
scheme, it has significantly superior efficiency to the WENO-JS scheme.

Table 3. Convergence properties of considered schemes on solving ut + ux = 0 with initial condition u(x, 0) = sin(πx−
sin(πx)/π). To be continued.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-JS 10 1.24488 × 10−1 - 1.09463 × 10−1 - 1.24471 × 10−1 -
20 1.01260 × 10−2 3.6199 8.72198 × 10−3 3.6496 1.43499 × 10−2 3.1167
40 7.22169 × 10−4 3.8096 6.76133 × 10−4 3.6893 1.09663 × 10−3 3.7099
80 3.42286 × 10−5 4.3991 3.63761 × 10−5 4.2162 9.02485 × 10−5 3.6030
160 1.58510 × 10−6 4.4326 2.29598 × 10−6 3.9858 8.24022 × 10−6 3.4531
320 7.95517 × 10−8 4.3165 1.68304 × 10−7 3.7700 8.31702 × 10−7 3.3085

WENO-Z 10 5.85966 × 10−2 - 4.83441 × 10−2 - 5.14928 × 10−2 -
20 3.21455 × 10−3 4.1881 2.72340 × 10−3 4.1499 3.67979 × 10−3 3.8067
40 1.35382 × 10−4 4.5695 1.35344 × 10−4 4.3307 2.31013 × 10−4 3.9936
80 4.67008 × 10−6 4.8574 4.50404 × 10−6 4.9093 6.79475 × 10−6 5.0874
160 1.50985 × 10−7 4.9510 1.42363 × 10−7 4.9836 2.14556 × 10−7 4.9850
320 4.76201 × 10−9 4.9867 4.45798 × 10−9 4.9970 6.71078 × 10−9 4.9987

WENO-M 10 7.53259 × 10−2 - 6.39017 × 10−2 - 7.49250 × 10−2 -
20 3.70838 × 10−3 4.3443 3.36224 × 10−3 4.2484 5.43666 × 10−3 3.7847
40 1.45082 × 10−4 4.6758 1.39007 × 10−4 4.5962 2.18799 × 10−4 4.6350
80 4.80253 × 10−6 4.9169 4.52646 × 10−6 4.9406 6.81451 × 10−6 5.0049
160 1.52120 × 10−7 4.9805 1.42463 × 10−7 4.9897 2.14545 × 10−7 4.9893
320 4.77083 × 10−9 4.9948 4.45822 × 10−9 4.9980 6.71080 × 10−9 4.9987

MOP-WENO-M 10 9.41832 × 10−2 - 8.03446 × 10−2 - 9.78919 × 10−2 -
20 6.59540 × 10−3 3.8359 6.37937 × 10−3 3.6547 8.97094 × 10−3 3.4479
40 2.60456 × 10−4 4.6623 2.50868 × 10−4 4.6684 4.10480 × 10−4 4.4499
80 4.80253 × 10−6 5.7611 4.52646 × 10−6 5.7924 6.81451 × 10−6 5.9126
160 1.52120 × 10−7 4.9805 1.42463 × 10−7 4.9897 2.14545 × 10−7 4.9893
320 4.77083 × 10−9 4.9948 4.45822 × 10−9 4.9980 6.71080 × 10−9 4.9987



Math. Comput. Appl. 2021, 26, 67 22 of 46

Table 3. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-IM(2, 0.1) 10 8.38131 × 10−2 - 6.71285 × 10−2 - 7.62798 × 10−2 -
20 4.30725 × 10−3 4.2823 3.93700 × 10−3 4.0918 5.84039 × 10−3 3.7072
40 1.51327 × 10−4 4.8310 1.41737 × 10−4 4.7958 2.10531 × 10−4 4.7940
80 4.85592 × 10−6 4.9618 4.53602 × 10−6 4.9656 6.82606 × 10−6 4.9468
160 1.52659 × 10−7 4.9914 1.42479 × 10−7 4.9926 2.14534 × 10−7 4.9918
320 4.77654 × 10−9 4.9982 4.45805 × 10−9 4.9982 6.71079 × 10−9 4.9986

MOP-WENO-IM(2, 0.1) 10 8.49795 × 10−2 - 7.29388 × 10−2 - 9.47429 × 10−2 -
20 7.01287 × 10−3 3.5990 6.80019 × 10−3 3.4230 9.96943 × 10−3 3.2484
40 2.59767 × 10−4 4.7547 2.51121 × 10−4 4.7591 4.01785 × 10−4 4.6330
80 4.85592 × 10−6 5.7413 4.53602 × 10−6 5.7908 6.82606 × 10−6 5.8792
160 1.52659 × 10−7 4.9914 1.42479 × 10−7 4.9926 2.14534 × 10−7 4.9918
320 4.77654 × 10−9 4.9982 4.45805 × 10−9 4.9982 6.71079 × 10−9 4.9986

WENO-PM6 10 9.51313 × 10−2 - 7.83600 × 10−2 - 9.32356 × 10−2 -
20 4.82173 × 10−3 4.3023 4.29510 × 10−3 4.1894 5.91037 × 10−3 3.9796
40 1.55428 × 10−4 4.9552 1.43841 × 10−4 4.9001 2.09540 × 10−4 4.8180
80 4.87327 × 10−6 4.9952 4.54036 × 10−6 4.9855 6.83270 × 10−6 4.9386
160 1.52750 × 10−7 4.9956 1.42488 × 10−7 4.9939 2.14532 × 10−7 4.9932
320 4.77729 × 10−9 4.9988 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986

MOP-WENO-PM6 10 1.00298 × 10−1 - 8.49034 × 10−2 - 9.88357 × 10−2 -
20 5.84504 × 10−3 4.1009 5.80703 × 10−3 3.8699 9.01779 × 10−3 3.4542
40 2.51725 × 10−4 4.5373 2.40678 × 10−4 4.5926 3.66822 × 10−4 4.6196
80 4.87327 × 10−6 5.6908 4.54036 × 10−6 5.7282 6.83270 × 10−6 5.7465
160 1.52750 × 10−7 4.9956 1.42488 × 10−7 4.9939 2.14532 × 10−7 4.9932
320 4.77729 × 10−9 4.9988 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986

WENO-PPM5 10 9.22982 × 10−2 - 7.46925 × 10−2 - 8.46229 × 10−2 -
20 4.68376 × 10−3 4.3006 4.18882 × 10−3 4.1563 5.92748 × 10−3 3.8356
40 1.55745 × 10−4 4.9104 1.44018 × 10−4 4.8622 2.09420 × 10−4 4.8229
80 4.88795 × 10−6 4.9938 4.54528 × 10−6 4.9857 6.83617 × 10−6 4.9371
160 1.52852 × 10−7 4.9990 1.42506 × 10−7 4.9953 2.14527 × 10−7 4.9940
320 4.77759 × 10−9 4.9997 4.45812 × 10−9 4.9984 6.71080 × 10−9 4.9985

MOP-WENO-PPM5 10 9.50369 × 10−2 - 8.08190 × 10−2 - 9.65522 × 10−2 -
20 6.27179 × 10−3 3.9215 6.11267 × 10−3 3.7248 8.98120 × 10−3 3.4263
40 2.52600 × 10−4 4.6340 2.41656 × 10−4 4.6608 3.69338 × 10−4 4.6039
80 4.88795 × 10−6 5.6915 4.54528 × 10−6 5.7324 6.83617 × 10−6 5.7556
160 1.52852 × 10−7 4.9990 1.42506 × 10−7 4.9953 2.14527 × 10−7 4.9940
320 4.77759 × 10−9 4.9997 4.45812 × 10−9 4.9984 6.71080 × 10−9 4.9985

WENO-RM(260) 10 8.24328 × 10−2 - 6.64590 × 10−2 - 7.64206 × 10−2 -
20 4.37642 × 10−3 4.2354 4.00547 × 10−3 4.0524 5.88375 × 10−3 3.6992
40 1.52200 × 10−4 4.8457 1.42162 × 10−4 4.8164 2.09889 × 10−4 4.8090
80 4.86434 × 10−6 4.9676 4.53769 × 10−6 4.9694 6.83016 × 10−6 4.9416
160 1.52735 × 10−7 4.9931 1.42486 × 10−7 4.9931 2.14533 × 10−7 4.9926
320 4.77728 × 10−9 4.9987 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986

MOP-WENO-RM(260) 10 8.96509 × 10−2 - 7.51169 × 10−2 - 9.20962 × 10−2 -
20 6.87612 × 10−3 3.7047 6.65488 × 10−3 3.4967 9.75043 × 10−3 3.2396
40 2.59418 × 10−4 4.7282 2.51194 × 10−4 4.7275 4.03065 × 10−4 4.5964
80 4.86434 × 10−6 5.7369 4.53769 × 10−6 5.7907 6.83016 × 10−6 5.8829
160 1.52735 × 10−7 4.9931 1.42486 × 10−7 4.9931 2.14533 × 10−7 4.9926
320 4.77728 × 10−9 4.9987 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986
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Table 3. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-MAIM1 10 1.24659 × 10−1 - 1.14152 × 10−1 - 1.40438 × 10−1 -
20 8.07923 × 10−3 3.9476 7.08117 × 10−3 4.0108 1.03772 × 10−2 3.7584
40 3.32483 × 10−4 4.6029 3.36264 × 10−4 4.3963 6.62891 × 10−4 3.9685
80 1.01162 × 10−5 5.0385 1.49724 × 10−5 4.4892 4.48554 × 10−5 3.8854
160 1.52910 × 10−7 6.0478 1.42515 × 10−7 6.7150 2.14522 × 10−7 7.7080
320 4.77728 × 10−9 5.0003 4.45807 × 10−9 4.9986 6.71079 × 10−9 4.9985

MOP-WENO-MAIM1 10 1.27999 × 10−1 - 1.12692 × 10−1 - 1.31113 × 10−1 -
20 7.62753 × 10−3 4.0688 6.93240 × 10−3 4.0229 1.27480 × 10−2 3.3625
40 3.37132 × 10−4 4.4998 3.36497 × 10−4 4.3647 6.40953 × 10−4 4.3139
80 1.01162 × 10−5 5.0586 1.49724 × 10−5 4.4902 4.48554 × 10−5 3.8369
160 1.52910 × 10−7 6.0478 1.42515 × 10−7 6.7150 2.14522 × 10−7 7.7080
320 4.77728 × 10−9 5.0003 4.45807 × 10−9 4.9986 6.71079 × 10−9 4.9985

MIP-WENO-ACMk 10 8.75629 × 10−2 - 6.98131 × 10−2 - 7.91292 × 10−2 -
20 4.39527 × 10−3 4.3163 4.02909 × 10−3 4.1150 5.89045 × 10−3 3.7478
40 1.52219 × 10−4 4.8517 1.42172 × 10−4 4.8247 2.09893 × 10−4 4.8107
80 4.86436 × 10−6 4.9678 4.53770 × 10−6 4.9695 6.83017 × 10−6 4.9416
160 1.52735 × 10−7 4.9931 1.42486 × 10−7 4.9931 2.14533 × 10−7 4.9926
320 4.77728 × 10−9 4.9987 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986

MOP-WENO-ACMk 10 9.08634 × 10−2 - 7.58160 × 10−2 - 9.29135 × 10−2 -
20 7.09246 × 10−3 3.6793 6.88532 × 10−3 3.4609 1.01479 × 10−2 3.1947
40 2.59429 × 10−4 4.7729 2.51208 × 10−4 4.7766 4.03069 × 10−4 4.6540
80 4.86436 × 10−6 5.7369 4.53770 × 10−6 5.7908 6.83017 × 10−6 5.8830
160 1.52735 × 10−7 4.9931 1.42486 × 10−7 4.9931 2.14533 × 10−7 4.9926
320 4.77728 × 10−9 4.9987 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986

Example 3. We calculate Equation (38) using the following initial condition [29]:

u(x, 0) = sin9(πx), (41)

with the periodic boundary condition. It is trivial to verify that this initial condition has
high-order critical points. We also set the CFL number to be (∆x)2/3.

We use the L1- and L∞-norm of numerical errors to measure the dissipations of the
schemes. It is easy to check that the exact solution is u(x, t) = sin9 (π(x− t)

)
. Moreover,

we consider the increased errors (in percentage) compared to the MIP-WENO-ACMk
scheme that gives solutions with highly low dissipations. For the L1- and L∞-norms of
numerical errors of the scheme “Y,” their associated increased errors at output time t are
defined by

χ1 =
LY

1 (t)− LMIP−WENO−ACMk
1 (t)

LMIP−WENO−ACMk
1 (t)

× 100%,

χ∞ =
LY

∞(t)− LMIP−WENO−ACMk
∞ (t)

LMIP−WENO−ACMk
∞ (t)

× 100%,

where LMIP−WENO−ACMk
1 (t) and LMIP−WENO−ACMk

∞ (t) are the L1- and L∞-norms of numer-
ical errors of the MIP-WENO-ACMk scheme.
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Figure 4. L∞-norm error plots for various WENO schemes for Example 2.

Table 4 shows the L1- and L∞-norm numerical errors and their increased errors by
using a uniform grid cell of N = 200 at different output times of t = 10, 100, 200, 500, 1000.
From Table 4, we can observe that: (1) the WENO-JS scheme has the largest increased errors
for no matter short or long output times; (2) for short output times, such as t ≤ 100, the
solutions computed by the WENO-M scheme are closer to those of the MIP-WENO-ACMk
scheme, leading to smaller increased errors than the associated MOP-WENO-M scheme;
(3) however, when the output time is larger, such as t ≥ 200, the solutions computed by the
MOP-WENO-M scheme, whose increased errors do not get larger but evidently decreased,
are closer to those of the MIP-WENO-ACMk scheme than the associated WENO-M scheme,
whose errors increases dramatically, leading to significantly larger increased errors; (4) the
performance of the WENO-Z scheme is very similar to that of the WENO-M scheme; (5)
although the errors of the MOP-WENO-X schemes except the MOP-WENO-M scheme are
not as small as those of the associated WENO-X schemes, these errors can be maintained
considerable levels leading to acceptable increases in errors that are much lower than those
of the WENO-JS and WENO-M schemes.

Actually, as mentioned in Examples 1 and 2, the cause of the slight accuracy loss
discussed above is that the mapping function of the MOP-WENO-X scheme has narrower
optimal weight intervals than the associated WENO-X schemes, and one can easily over-
come this drawback by increasing the grid number. To demonstrate this, we calculate
this problem using the same schemes at the same output times with a larger grid number
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of N = 800. The results are shown in Table 5, and we can see that: (1) the errors of the
MOP-WENO-X schemes get closer to those of the MIP-WENO-ACMk scheme when the
grid number increases from N = 200 to N = 800, resulting in the significant decrease of the
increased errors, and in different words, the errors of the MOP-WENO-X schemes and the
MIP-WENO-ACMk scheme are so close that one can ignore their differences; (2) although
the errors of the WENO-JS, WENO-M and WENO-Z schemes get smaller when the grid
number increases from N = 200 to N = 800, their increased errors become very large; (3)
naturally, the increased errors of the MOP-WENO-X schemes are far smaller than those of
the WENO-JS, WENO-M and WENO-Z schemes. Actually, it is an important advantage of
the MOP-WENO-X schemes that can maintain comparably high resolution for long output
times. In the next subsection we have further discussion of this.
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Figure 5. Comparison of various WENO schemes for Example 2 in CPU time and L∞-norm computing errors.
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Table 4. Performances of various considered schemes on solving ut + ux = 0 with u(x, 0) = sin9(πx), N = 200.

MIP-WENO-ACMk MOP-WENO-ACMk
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.42873× 10−5 − 1.38205× 10−4 − 1.55900× 10−4 85% 5.22964× 10−4 278%
100 8.35747× 10−4 − 1.36404× 10−3 − 2.72470× 10−3 226% 9.83147× 10−3 621%
200 1.65557× 10−3 − 2.68955× 10−3 − 4.11740× 10−3 149% 6.66166× 10−3 148%
500 3.95849× 10−3 − 6.45564× 10−3 − 8.34435× 10−3 111% 1.83215× 10−2 184%
1000 7.24723× 10−3 − 1.21593× 10−2 − 1.54830× 10−2 114% 3.16523× 10−2 160%

WENO−JS WENO−Z
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 3.86931× 10−4 359% 5.36940× 10−4 289% 9.25912× 10−5 10% 1.38334× 10−4 0%
100 5.42288× 10−3 549% 1.20056× 10−2 780% 1.45856× 10−3 75% 3.76895× 10−3 176%
200 2.35657× 10−2 1323% 6.47820× 10−2 2309% 8.32696× 10−3 403% 3.37176× 10−2 1154%
500 1.55650× 10−1 3832% 2.57663× 10−1 3891% 8.95980× 10−2 2163% 1.94577× 10−1 2914%
1000 2.91359× 10−1 3920% 4.44664× 10−1 3557% 1.42377× 10−1 1865% 2.80558× 10−1 2207%

WENO−M MOP−WENO−M
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.90890× 10−5 6% 1.38348× 10−4 0% 1.56466× 10−4 86% 5.08956× 10−4 268%
100 1.29154× 10−3 55% 3.32665× 10−3 144% 2.88442× 10−3 245% 1.01393× 10−2 643%
200 5.74021× 10−3 247% 2.37125× 10−2 782% 5.11795× 10−3 209% 1.02172× 10−2 280%
500 4.89290× 10−2 1136% 1.78294× 10−1 2662% 9.09352× 10−3 130% 1.98022× 10−2 207%
1000 1.34933× 10−1 1762% 3.17199× 10−1 2509% 1.75990× 10−2 143% 4.01776× 10−2 230%

WENO-IM(2, 0.1) MOP-WENO-IM(2, 0.1)
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.46989× 10−5 0% 1.38220× 10−4 0% 1.55777× 10−4 85% 5.08361× 10−4 268%
100 8.39425× 10−4 0% 1.36420× 10−3 0% 2.74109× 10−3 228% 9.88287× 10−3 625%
200 1.67834× 10−3 1% 2.68977× 10−3 0% 4.16210× 10−3 151% 6.81406× 10−3 153%
500 4.17514× 10−3 5% 8.13666× 10−3 12% 8.37898× 10−3 112% 1.84998× 10−2 187%
1000 6.45231× 10−3 0% 1.21388× 10−2 0% 1.25166× 10−2 73% 2.02754× 10−2 67%

WENO−PM6 MOP−WENO−PM6
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.40259× 10−5 0% 1.38205× 10−4 0% 1.53937× 10−4 83% 4.92116× 10−4 256%
100 8.30374× 10−4 −1% 1.36410× 10−3 0% 2.70283× 10−3 223% 9.52154× 10−3 598%
200 1.63963× 10−3 −1% 2.68938× 10−3 0% 4.07454× 10−3 146% 6.49923× 10−3 142%
500 3.88864× 10−3 −2% 6.45650× 10−3 0% 8.46326× 10−3 114% 1.83171× 10−2 184%
1000 7.17606× 10−3 −1% 1.21637× 10−2 0% 1.54196× 10−2 113% 3.15065× 10−2 159%

WENO−PPM5 MOP−WENO−PPM5
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.40198× 10−5 0% 1.38206× 10−4 0% 1.53322× 10−4 82% 4.97691× 10−4 260%
100 8.30119× 10−4 −1% 1.36411× 10−3 0% 2.70476× 10−3 224% 9.71919× 10−3 613%
200 1.63931× 10−3 −1% 2.68939× 10−3 0% 4.17894× 10−3 152% 6.89990× 10−3 157%
500 3.89396× 10−3 −2% 6.45658× 10−3 0% 8.34997× 10−3 111% 1.83470× 10−2 184%
1000 7.20573× 10−3 −1% 1.21629× 10−2 0% 1.21149× 10−2 67% 1.87607× 10−2 54%

WENO−RM(260) MOP−WENO−RM(260)
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.43348× 10−5 0% 1.38206× 10−4 0% 1.55787× 10−4 85% 5.05390× 10−4 266%
100 8.35534× 10−4 0% 1.36404× 10−3 0% 2.72147× 10−3 226% 9.74612× 10−3 615%
200 1.65314× 10−3 0% 2.68956× 10−3 0% 4.13179× 10−3 150% 6.71615× 10−3 150%
500 3.94006× 10−3 0% 6.45544× 10−3 0% 8.32505× 10−3 110% 1.83262× 10−2 184%
1000 7.25689× 10−3 0% 1.21576× 10−2 0% 1.57577× 10−2 117% 3.30552× 10−2 172%

WENO−MAIM1 MOP−WENO−MAIM1
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.24623× 10−5 −2% 1.38215× 10−4 0% 9.97376× 10−5 18% 1.38172× 10−4 0%
100 8.03920× 10−4 −4% 1.36392× 10−3 0% 8.16839× 10−4 −2% 1.36470× 10−3 0%
200 1.58626× 10−3 −4% 2.68849× 10−3 0% 1.60912× 10−3 −3% 2.68832× 10−3 0%
500 3.77900× 10−3 −5% 6.46356× 10−3 0% 6.83393× 10−3 73% 1.63188× 10−2 153%
1000 7.04287× 10−3 −3% 1.21473× 10−2 0% 1.24817× 10−2 72% 2.22178× 10−2 83%
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Table 5. Performance of various considered schemes on solving ut + ux = 0 with u(x, 0) = sin9(πx), N = 800.

MIP-WENO-ACMk MOP-WENO-ACMk
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28794× 10−8 - 1.36172× 10−7 - 8.47930× 10−8 2% 1.36172× 10−7 0%
100 8.28891× 10−7 - 1.36206× 10−6 - 9.73202× 10−7 17% 1.79160× 10−6 32%
200 1.65782× 10−6 - 2.72415× 10−6 - 1.78369× 10−6 8% 2.72415× 10−6 0%
500 4.14451× 10−6 - 6.81018× 10−6 - 4.84739× 10−6 17% 8.79296× 10−6 29%
1000 8.28868× 10−6 - 1.36194× 10−5 - 8.61232× 10−6 4% 1.36194× 10−5 0%

WENO-JS WENO-Z
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 4.23531× 10−7 411% 6.95290× 10−7 411% 8.28830× 10−8 0% 1.36173× 10−7 0%
100 4.74028× 10−6 472% 1.09481× 10−5 704% 8.28938× 10−7 0% 1.36207× 10−6 0%
200 7.29285× 10−5 4299% 9.51604× 10−4 34832% 2.10734× 10−6 27% 9.02795× 10−6 231%
500 3.11698× 10−2 751974% 8.63989× 10−2 1268573% 9.91182× 10−4 23816% 1.65219× 10−2 242506%
1000 1.01278× 10−1 1221783% 2.13485× 10−1 1567407% 2.82670× 10−3 34003% 1.85472× 10−2 136082%

WENO-M MOP-WENO-M
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28912× 10−8 0% 1.36173× 10−7 0% 8.48762× 10−8 2% 1.36173× 10−7 0%
100 8.29015× 10−7 0% 1.36207× 10−6 0% 9.93577× 10−7 20% 2.03738× 10−6 50%
200 2.27991× 10−6 38% 1.22731× 10−5 351% 1.81123× 10−6 9% 2.72417× 10−6 0%
500 1.41413× 10−3 34021% 1.90785× 10−2 280047% 4.68314× 10−6 13% 6.81022× 10−6 0%
1000 1.83325× 10−2 221075% 1.38215× 10−1 1014739% 8.53126× 10−6 3% 1.36195× 10−5 0%

WENO-IM(2, 0.1) MOP-WENO-IM(2, 0.1)
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28803× 10−8 0% 1.36172× 10−7 0% 8.48292× 10−8 2% 1.36172× 10−7 0%
100 8.28891× 10−7 0% 1.36206× 10−6 0% 9.80868× 10−7 18% 1.87953× 10−6 38%
200 1.65781× 10−6 0% 2.72415× 10−6 0% 1.79137× 10−6 8% 2.72415× 10−6 0%
500 4.14443× 10−6 0% 6.81019× 10−6 0% 4.88306× 10−6 18% 9.14624× 10−6 34%
1000 8.28840× 10−6 0% 1.36194× 10−5 0% 8.63424× 10−6 4% 1.36194× 10−5 0%

WENO-PM6 MOP-WENO-PM6
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28795× 10−8 0% 1.36172× 10−7 0% 8.47719× 10−8 2% 1.36172× 10−7 0%
100 8.28892× 10−7 0% 1.36206× 10−6 0% 9.71688× 10−7 17% 1.78452× 10−6 31%
200 1.65782× 10−6 0% 2.72415× 10−6 0% 1.78163× 10−6 7% 2.72415× 10−6 0%
500 4.14452× 10−6 0% 6.81018× 10−6 0% 4.93547× 10−6 19% 1.08735× 10−5 60%
1000 8.84565× 10−6 7% 1.38461× 10−5 2% 8.65269× 10−6 4% 1.36194× 10−5 0%

WENO-PPM5 MOP-WENO-PPM5
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28794× 10−8 0% 1.36172× 10−7 0% 8.47367× 10−8 2% 1.36172× 10−7 0%
100 8.28890× 10−7 0% 1.36206× 10−6 0% 1.04103× 10−6 26% 1.78285× 10−6 31%
200 1.65781× 10−6 0% 2.72415× 10−6 0% 1.83725× 10−6 11% 2.72415× 10−6 0%
500 4.14448× 10−6 0% 6.81018× 10−6 0% 4.30721× 10−6 4% 6.81018× 10−6 0%
1000 8.28862× 10−6 0% 1.36194× 10−5 0% 8.27506× 10−6 0% 1.36194× 10−5 0%

WENO-RM(260) MOP-WENO-RM(260)
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28794× 10−8 0% 1.36172× 10−7 0% 8.48225× 10−8 2% 1.36172× 10−7 0%
100 8.28889× 10−7 0% 1.36206× 10−6 0% 9.56819× 10−7 15% 1.58577× 10−6 16%
200 1.65781× 10−6 0% 2.72415× 10−6 0% 1.77008× 10−6 7% 2.72415× 10−6 0%
500 4.14448× 10−6 0% 6.81018× 10−6 0% 4.72311× 10−6 14% 6.81018× 10−6 0%
1000 8.28860× 10−6 0% 1.36194× 10−5 0% 8.55573× 10−6 3% 1.36194× 10−5 0%

WENO-MAIM1 MOP-WENO-MAIM1
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28796× 10−8 0% 1.36172× 10−7 0% 8.28791× 10−8 0% 1.36172× 10−7 0%
100 8.28893× 10−7 0% 1.36206× 10−6 0% 8.28894× 10−7 0% 1.36206× 10−6 0%
200 1.65782× 10−6 0% 2.72415× 10−6 0% 1.65783× 10−6 0% 2.72415× 10−6 0%
500 4.14450× 10−6 0% 6.81018× 10−6 0% 4.14454× 10−6 0% 6.81018× 10−6 0%
1000 8.28865× 10−6 0% 1.36194× 10−5 0% 8.28830× 10−6 0% 1.36194× 10−5 0%

In Figures 6 and 7, we plot the solutions computed by various schemes at output time
t = 1000 with the grid numbers of N = 200 and N = 800, respectively. For N = 200,
Figure 6 shows that: (1) the MOP-WENO-M scheme provides results with far higher
resolution than the associated WENO-M scheme and the WENO-Z scheme, which give
results with slightly better resolution than the worst one computed by the WENO-JS scheme;
(2) the results of the MOP-WENO-MAIM1 scheme are very close to those of its associated
WENO-MAIM1 scheme; (3) the results of the other MOP-WENO-X schemes show far better
resolutions than the WENO-M , WENO-Z, and WENO-JS schemes, although they give
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results with very slightly lower resolutions than their associated WENO-X schemes because
of the narrower optimal weight intervals. Actually, we can amend this minor issue by
using a larger grid number. Consequently, for N = 800, it can be seen from Figure 7 that:
(1) all the MOP-WENO-X schemes produce results very close to those of their associated
mapped WENO-X schemes with extremely high resolutions except the case of X = M; (2)
the MOP-WENO-M scheme also produces results with very high resolution, whereas the
resolutions of the results from the WENO-M , WENO-Z, and WENO-JS schemes have far
lower resolutions.
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Figure 6. Performances of various WENO schemes for Example 3 at output time t = 1000 with a uniform mesh size of
N = 200.
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Figure 7. Performances of various WENO schemes for Example 3 at output time t = 1000 with a uniform mesh size of
N = 800.

Example 4. We calculate Equation (38) using the following initial condition [8]:

u(x, 0) =



1
6
[
G(x, β, z− δ̂) + 4G(x, β, z) + G(x, β, z + δ̂)

]
, x ∈ [−0.8,−0.6],

1, x ∈ [−0.4,−0.2],
1−

∣∣10(x− 0.1)
∣∣, x ∈ [0.0, 0.2],

1
6
[
F(x, α, a− δ̂) + 4F(x, α, a) + F(x, α, a + δ̂)

]
, x ∈ [0.4, 0.6],

0, otherwise,

(42)

where G(x, β, z) = e−β(x−z)2
, F(x, α, a) =

√
max

(
1− α2(x− a)2, 0

)
, and the constants are

z = −0.7, δ̂ = 0.005, β =
log 2
36δ̂2

, a = 0.5, and α = 10. The periodic boundary condition is

used. Although the CFL number can be chosen from a wide range of values—for example,
CFL = 0.6 usually works well—we set CFL = 0.1 here to keep the consistent with the
literatures [27,29,31,32] having strong relevance to the present study and to make thorough
comparisons with the results of these literature. For brevity in the presentation, we call
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this linear problem SLP as it is presented by Shu et al. in [8]. It is known that this problem
consists of a Gaussian, a square wave, a sharp triangle, and a semi-ellipse.

In Tables 6 and 7, we present the L1, L2, L∞ errors and the corresponding convergence
rates of accuracy with t = 2 and t = 2000, respectively. For the case of t = 2, it can be seen
that: (1) the L1 and L2 orders of all considered schemes are approximately 1.0 and about
0.35 to 0.5, respectively; (2) negative values of the L∞ orders of all considered schemes
are generated; (3) in terms of accuracy, the MOP-WENO-X schemes produce less accurate
results than the associated WENO-X schemes. For the case of t = 2000, it can be seen
that: (1) the L1, L2 orders of the WENO-JS, WENO-M, and WENO-Z schemes decrease to
very small values and even become negative; (2) however, the L1 and L2 orders of all the
MOP-WENO-X schemes, and the associated mapped WENO-X schemes without WENO-
M, are clearly larger than 1.0 and around 0.5 to 0.9, respectively; (3) the L∞ orders of all
WENO-X schemes are very small, and some of them are even negative (e.g., the WENO-JS,
WENO-PPM5 and MIP-WENO-ACMk schemes), and those of the MOP-WENO-X schemes
are all positive, although they are also very small; (4) in terms of accuracy, on the whole,
the MOP-WENO-X schemes produce accurate and comparable results to the associated
WENO-X schemes, except the WENO-M scheme. However, if we take a closer look, we can
find that the resolution of the results computed by the WENO-M scheme is significantly
lower than that of the MOP-WENO-M scheme, and the other mapped WENO-X schemes
generate spurious oscillations, but the associated MOP-WENO-X schemes do not. Detailed
tests are conducted and the solutions are presented carefully to demonstrate this in the
following subsection.

Table 6. Convergence properties of various considered schemes on solving ut + ux = 0 with initial condition Equation (42),
t = 2. To be continued.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-JS 200 6.30497 × 10−2 - 1.08621 × 10−1 - 4.09733 × 10−1 -
400 2.81654 × 10−2 1.2103 7.71111 × 10−2 0.4943 4.19594 × 10−1 −0.0343
800 1.41364 × 10−2 0.9945 5.69922 × 10−2 0.4362 4.28463 × 10−1 −0.0302

WENO-Z 200 4.98422 × 10−2 - 9.59452 × 10−2 - 3.92478 × 10−1 -
400 2.37836 × 10−2 1.0674 6.98647 × 10−2 0.4576 4.03601 × 10−1 −0.0403
800 1.19851 × 10−2 0.9887 5.14607 × 10−2 0.4411 4.13262 × 10−1 −0.0341

WENO-M 200 4.77201 × 10−2 - 9.53073 × 10−2 - 3.94243 × 10−1 -
400 2.23407 × 10−2 1.0949 6.91333 × 10−2 0.4632 4.05856 × 10−1 −0.0419
800 1.11758 × 10−2 0.9993 5.09232 × 10−2 0.4411 4.16937 × 10−1 −0.0389

MOP-WENO-M 200 5.72690 × 10−2 - 1.00827 × 10−1 - 4.14785 × 10−1 -
400 2.72999 × 10−2 1.0689 7.33765 × 10−2 0.4585 4.45144 × 10−1 -0.1019
800 1.42908 × 10−2 0.9338 5.57886 × 10−2 0.3953 4.64024 × 10−1 −0.0599

WENO-IM(2, 0.1) 200 4.40293 × 10−2 - 9.19118 × 10−2 - 3.86789 × 10−1 -
400 2.02331 × 10−2 1.1217 6.68479 × 10−2 0.4594 3.98769 × 10−1 −0.0441
800 1.01805 × 10−2 0.9909 4.95333 × 10−2 0.4325 4.09515 × 10−1 −0.0383

MOP-WENO-IM(2, 0.1) 200 6.09985 × 10−2 - 1.03438 × 10−1 - 4.35238 × 10−1 -
400 2.86731 × 10−2 1.0891 7.56598 × 10−2 0.4512 4.62098 × 10−1 −0.0864
800 1.45601 × 10−2 0.9777 5.61842 × 10−2 0.4294 4.64674 × 10−1 −0.0080

WENO-PM6 200 4.66681 × 10−2 - 9.45566 × 10−2 - 3.96866 × 10−1 -
400 2.13883 × 10−2 1.1256 6.82948 × 10−2 0.4694 4.06118 × 10−1 −0.0332
800 1.06477 × 10−2 1.0063 5.03724 × 10−2 0.4391 4.15277 × 10−1 −0.0322

MOP-WENO-PM6 200 5.45129 × 10−2 - 9.95654 × 10−2 - 4.02785 × 10−1 -
400 2.61755 × 10−2 1.0584 7.16656 × 10−2 0.4744 4.26334 × 10−1 −0.0820
800 1.38981 × 10−2 0.9133 5.44733 × 10−2 0.3957 4.63134 × 10−1 −0.1194
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Table 6. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-PPM5 200 4.54081 × 10−2 - 9.33165 × 10−2 - 3.91076 × 10−1 -
400 2.07948 × 10−2 1.1267 6.76172 × 10−2 0.4647 4.02214 × 10−1 −0.0405
800 1.04018 × 10−2 0.9994 4.99580 × 10−2 0.4367 4.12113 × 10−1 −0.0351

MOP-WENO-PPM5 200 5.51553 × 10−2 - 9.94592 × 10−2 - 4.04763 × 10−1 -
400 2.65464 × 10−2 1.0550 7.19973 × 10−2 0.4662 4.32887 × 10−1 −0.0969
800 1.41381 × 10−2 0.9089 5.52704 × 10−2 0.3814 4.68577 × 10−1 −0.1143

WENO-RM(260) 200 4.63072 × 10−2 - 9.40674 × 10−2 - 3.96762 × 10−1 -
400 2.13545 × 10−2 1.1167 6.81954 × 10−2 0.4640 4.08044 × 10−1 −0.0405
800 1.06392 × 10−2 1.0052 5.03289 × 10−2 0.4383 4.16722 × 10−1 −0.0304

MOP-WENO-RM(260) 200 5.54343 × 10−2 - 9.93009 × 10−2 - 4.04041 × 10−1 -
400 2.71415 × 10−2 1.0303 7.22823 × 10−2 0.4582 4.38358 × 10−1 −0.1176
800 1.45563 × 10−2 0.8989 5.66845 × 10−2 0.3507 4.70380 × 10−1 −0.1017

WENO-MAIM1 200 5.71142 × 10−2 - 1.03257 × 10−1 - 4.15051 × 10−1 -
400 2.48065 × 10−2 1.2031 7.29236 × 10−2 0.5018 4.23185 × 10−1 −0.0280
800 1.21078 × 10−2 1.0348 5.32803 × 10−2 0.4528 4.28710 × 10−1 −0.0187

MOP-WENO-MAIM1 200 5.98640 × 10−2 - 1.05066 × 10−1 - 4.12365 × 10−1 -
400 2.64819 × 10−2 1.1767 7.38102 × 10−2 0.5094 4.26841 × 10−1 −0.0498
800 1.33647 × 10−2 0.9866 5.44089 × 10−2 0.4400 4.38310 × 10−1 −0.0383

MIP-WENO-ACMk 200 4.45059 × 10−2 - 9.24356 × 10−2 - 3.92505 × 10−1 -
400 2.03633 × 10−2 1.1280 6.69718 × 10−2 0.4649 4.03456 × 10−1 −0.0397
800 1.02139 × 10−2 0.9954 4.95672 × 10−2 0.4342 4.13217 × 10−1 −0.0345

MOP-WENO-ACMk 200 5.56533 × 10−2 - 9.94223 × 10−2 - 4.03765 × 10−1 -
400 2.79028 × 10−2 0.9961 7.33101 × 10−2 0.4396 4.48412 × 10−1 −0.1513
800 1.43891 × 10−2 0.9554 5.51602 × 10−2 0.4104 4.67036 × 10−1 −0.0587

Table 7. Convergence properties of various considered schemes on solving ut + ux = 0 with initial condition Equation (42),
t = 2000.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-JS 200 6.12899 × 10−1 - 5.08726 × 10−1 - 7.99265 × 10−1 -
400 5.99215 × 10−1 0.0326 5.01160 × 10−1 0.0216 8.20493 × 10−1 −0.0378
800 5.50158 × 10−1 0.1232 4.67585 × 10−1 0.1000 8.14650 × 10−1 0.0103

WENO-Z 200 3.86995 × 10−1 - 3.42335 × 10−1 - 6.85835 × 10−1 -
400 2.02287 × 10−1 0.9359 2.18125 × 10−1 0.6503 5.18993 × 10−1 0.4021
800 1.66703 × 10−1 0.2791 1.94240 × 10−1 0.1673 5.04564 × 10−1 0.0407

WENO-M 200 3.81597 × 10−1 - 3.59205 × 10−1 - 6.89414 × 10−1 -
400 3.25323 × 10−1 0.2302 3.12970 × 10−1 0.1988 6.75473 × 10−1 0.0295
800 3.48528 × 10−1 −0.0994 3.24373 × 10−1 −0.0516 6.25645 × 10−1 0.1106

MOP-WENO-M 200 3.85134 × 10−1 - 3.48164 × 10−1 - 7.41230 × 10−1 -
400 1.74987 × 10−1 1.1381 1.86418 × 10−1 0.9012 5.04987 × 10−1 0.5537
800 6.40251 × 10−2 1.4505 1.07629 × 10−1 0.7925 4.81305 × 10−1 0.0693

WENO-IM(2, 0.1) 200 2.17411 × 10−1 - 2.30000 × 10−1 - 5.69864 × 10−1 -
400 1.12590 × 10−1 0.9493 1.64458 × 10−1 0.4839 4.82180 × 10−1 0.2410
800 5.18367 × 10−2 1.1190 9.98968 × 10−2 0.7192 4.73102 × 10−1 0.02784

MOP-WENO-IM(2, 0.1) 200 3.83289 × 10−1 - 3.47817 × 10−1 - 7.25185 × 10−1 -
400 1.67452 × 10−1 1.1947 1.76550 × 10−1 0.9783 5.24538 × 10−1 0.4673
800 6.44253 × 10−2 1.3780 1.05858 × 10−1 0.7379 5.19333 × 10−1 0.0144

WENO-PM6 200 2.17323 × 10−1 - 2.28655 × 10−1 - 5.63042 × 10−1 -
400 1.05197 × 10−1 1.0467 1.47518 × 10−1 0.6323 5.04977 × 10−1 0.1570
80 4.47030 × 10−2 1.2347 9.34250 × 10−2 0.6590 4.71368 × 10−1 0.0994
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Table 7. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

MOP-WENO-PM6 200 4.51487 × 10−1 - 4.01683 × 10−1 - 7.71539 × 10−1 -
400 1.75875 × 10−1 1.3601 1.83478 × 10−1 1.1305 5.06314 × 10−1 0.6077
800 6.32990 × 10−2 1.4743 1.04688 × 10−1 0.8095 4.76091 × 10−1 0.0888

WENO-PPM5 200 2.17174 × 10−1 - 2.29008 × 10−1 - 5.65575 × 10−1 -
400 1.03201 × 10−1 1.0734 1.46610 × 10−1 0.6434 5.06463 × 10−1 0.1593
800 4.81637 × 10−2 1.0994 9.47748 × 10−2 0.6294 5.14402 × 10−1 −0.0224

MOP-WENO-PPM5 200 3.86292 × 10−1 - 3.49072 × 10−1 - 7.36405 × 10−1 -
400 1.75232 × 10−1 1.1404 1.88491 × 10−1 0.8890 5.14732 × 10−1 0.5167
800 6.36336 × 10−2 1.4614 1.06801 × 10−1 0.8196 4.98424 × 10−1 0.0464

WENO-RM(260) 200 2.17363 × 10−1 - 2.28662 × 10−1 - 5.62933 × 10−1 -
400 1.04347 × 10−1 1.0587 1.47093 × 10−1 0.6365 4.98644 × 10−1 0.1750
800 4.45176 × 10−2 1.2289 9.33066 × 10−2 0.6567 4.71450 × 10−1 0.0809

MOP-WENO-RM(260) 200 4.56942 × 10−1 - 4.06524 × 10−1 - 7.71747 × 10−1 -
400 2.25420 × 10−1 1.0194 2.25814 × 10−1 0.8482 5.12018 × 10−1 0.5919
800 8.02414 × 10−2 1.4902 1.18512 × 10−1 0.9301 4.90610 × 10−1 0.0616

WENO-MAIM1 200 2.18238 × 10−1 - 2.29151 × 10−1 - 5.63682 × 10−1 -
400 1.09902 × 10−1 0.9897 1.51024 × 10−1 0.6015 4.94657 × 10−1 0.1885
800 4.41601 × 10−2 1.3154 9.35506 × 10−2 0.6910 4.72393 × 10−1 0.0664

MOP-WENO-MAIM1 200 2.39900 × 10−1 - 2.47191 × 10−1 - 6.06985 × 10−1 -
400 1.41890 × 10−1 0.7577 1.71855 × 10−1 0.5244 5.61908 × 10−1 0.1113
800 5.43475 × 10−2 1.3845 1.02170 × 10−1 0.7502 5.10242 × 10−1 0.1392

MIP-WENO-ACMk 200 2.21312 × 10−1 - 2.28433 × 10−1 - 5.36234 × 10−1 -
400 1.06583 × 10−1 1.0541 1.46401 × 10−1 0.6418 5.03925 × 10−1 0.0897
800 4.76305 × 10−2 1.1620 9.40930 × 10−2 0.6378 5.15924 × 10−1 −0.0339

MOP-WENO-ACMk 200 3.83033 × 10−1 - 3.46814 × 10−1 - 7.18464 × 10−1 -
400 1.77114 × 10−1 1.1128 1.87369 × 10−1 0.8883 5.05980 × 10−1 0.5058
800 6.70535 × 10−2 1.4013 1.09368 × 10−1 0.7767 4.80890 × 10−1 0.0734

4.2. 1D Linear Advection Problems with Long Output Times

The objective of this subsection is to demonstrate the advantage of the MOP-WENO-X
schemes on long-output-time simulations that can obtain high resolution and meanwhile
do not generate spurious oscillations.

The one-dimensional linear advection problem Equation (38) is solved with the peri-
odic boundary condition by taking the following two initial conditions.

Case 1. (SLP) The initial condition is given by Equation (42).
Case 2. (BiCWP) The initial condition is given by

u(x, 0) =


0, x ∈ [−1.0,−0.8]

⋃
(−0.2, 0.2]

⋃
(0.8, 1.0],

0.5, x ∈ (−0.6,−0.4]
⋃
(0.2, 0.4]

⋃
(0.6, 0.8],

1, x ∈ (−0.8,−0.6]
⋃
(−0.4,−0.2]

⋃
(0.4, 0.6].

(43)

Case 1 and Case 2 were carefully simulated in [9]. Case 1 is called SLP as mentioned
earlier in this paper. Case 2 consists of several constant states separated by sharp disconti-
nuities at x = ±0.8,±0.6,±0.4,±0.2 and it was called BiCWP for brevity in the presentation
as the profile of the exact solution for this Problem looks like the Breach in City Wall.

In Figures 8–11, we show the comparison of considered schemes for SLP and BiCWP,
respectively, by taking t = 2000 and N = 800. It can be seen that: (1) all the MOP-WENO-X
schemes produce results with considerable resolutions which are significantly higher than
those of the WENO-JS, WENO-M and WENO-Z schemes, and what is more, they all do
not generate spurious oscillations, while most of their associated WENO-X schemes do,
when solving both SLP and BiCWP; (2) it should be reminded that the WENO-IM(2, 0.1)
scheme appears not to generate spurious oscillations and it gives better resolution than
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the MOP-WENO-IM(2, 0.1) scheme in most of the region when solving SLP on present
computing condition, however, from Figure 8b, one can observe that the MOP-WENO-IM(2,
0.1) scheme gives a better resolution of the Gaussian than the WENO-IM(2, 0.1) scheme,
and if taking a closer look, one can see that the WENO-IM(2, 0.1) scheme generates a very
slight spurious oscillation near x = −0.435 as shown in Figure 8c; (3) it is very evident as
shown in Figure 10 that, when solving BiCWP, the WENO-IM(2, 0.1) scheme generates the
spurious oscillations.
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Figure 8. Performance of the WENO-JS, WENO-M, MOP-WENO-M, WENO-IM(2, 0.1), MOP-WENO-IM(2, 0.1), WENO-
PM6 and MOP-WENO-PM6 schemes for the SLP at output time t = 2000 with a uniform mesh size of N = 800.
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Figure 9. Performance of the WENO-JS, WENO-M, WENO-PPM5, MOP-WENO-PPM5, WENO-RM260, MOP-WENO-
RM260, WENO-MAIM1, MOP-WNEO-MAIM1, MIP-WENO-ACMk and MOP-WENO-ACMk schemes for the SLP at output
time t = 2000 with a uniform mesh size of N = 800.
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Figure 10. Performance of the WENO-JS, WENO-M, MOP-WENO-M, WENO-IM(2, 0.1), MOP-WENO-IM(2, 0.1), WENO-
PM6 and MOP-WENO-PM6 schemes for the BiCWP at output time t = 2000 with a uniform mesh size of N = 800.
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Figure 11. Performance of the WENO-JS, WENO-M, WENO-PPM5, MOP-WENO-PPM5, WENO-RM260, MOP-WENO-
RM260, WENO-MAIM1, MOP-WNEO-MAIM1, MIP-WENO-ACMk and MOP-WENO-ACMk schemes for the BiCWP at
output time t = 2000 with a uniform mesh size of N = 800.

In Figures 12–15, we show the comparison of considered schemes for SLP and BiCWP
respectively, by taking t = 200 and N = 3200. From these solutions computed with larger
grid numbers and a reduced but still long output time, it can be seen that: (1) firstly, the
WENO-IM(2, 0.1) scheme generates spurious oscillations but the MOP-WENO-IM(2, 0.1)
scheme does not while provides an improved resolution when solving SLP; (2) although the
resolutions of the results computed by the WENO-JS, WENO-M and WENO-Z schemes are
significantly improved for both SLP and BiCWP, the MOP-WENO-X schemes still evidently
provide much better resolutions; (3) the spurious oscillations generated by the WENO-X
schemes appear to be more evident and more intense as the grid number increases, while
the associated MOP-WENO-X schemes can still avoid spurious oscillations but obtain
higher resolutions, when solving both SLP and BiCWP.

For the further interpretation, without loss of generality, in Figure 16, we present
the non-OP points of the numerical solutions of SLP computed by the WENO-M and
MOP-WENO-M schemes with N = 800, t = 2000, and the non-OP points of the numerical
solutions of BiCWP computed by the WENO-PM6 and MOP-WENO-PM6 schemes with
N = 3200, t = 200. We can find that there are a great many non-OP points in the solutions
of the WENO-M and WENO-PM6 schemes while the numbers of the non-OP points in the
solutions of the MOP-WENO-M and MOP-WENO-PM6 schemes are zero. Actually, there
are many non-OP points for all considered mapped WENO-X schemes. Furthermore, as
expected, there are no non-OP points for the associated MOP-WENO-X schemes and the



Math. Comput. Appl. 2021, 26, 67 34 of 46

WENO-JS scheme for all computing cases here. We do not show the results of the non-OP
points for all computing cases here just for the simplicity of illustration.
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Figure 12. Performance of the WENO-JS, WENO-M, MOP-WENO-M, WENO-IM(2, 0.1), MOP-WENO-IM(2, 0.1), WENO-
PM6 and MOP-WENO-PM6 schemes for the SLP at output time t = 200 with a uniform mesh size of N = 3200.
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Figure 13. Performance of the WENO-JS, WENO-M, WENO-PPM5, MOP-WENO-PPM5, WENO-RM260, MOP-WENO-
RM260, WENO-MAIM1, MOP-WNEO-MAIM1, MIP-WENO-ACMk and MOP-WENO-ACMk schemes for the SLP at output
time t = 200 with a uniform mesh size of N = 3200.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) (c)

X1 = WENO-M, X 2 = WENO-IM(2, 0.1), X 3 = WENO-PM6(a)

u

x

 Exact
 WENO-JS
 WENO-Z
 X1

 MOP-X1

 X2

 MOP-X2

 X3

 MOP-X3

-0.84 -0.83 -0.82 -0.81 -0.80

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08
(b)

u

x
0.17 0.18 0.19 0.20

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03
(c)

u

x

Figure 14. Performance of the WENO-JS, WENO-M, MOP-WENO-M, WENO-IM(2, 0.1), MOP-WENO-IM(2, 0.1), WENO-
PM6 and MOP-WENO-PM6 schemes for the BiCWP at output time t = 200 with a uniform mesh size of N = 3200.
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Figure 15. Performance of the WENO-JS, WENO-M, WENO-PPM5, MOP-WENO-PPM5, WENO-RM260, MOP-WENO-
RM260, WENO-MAIM1, MOP-WNEO-MAIM1, MIP-WENO-ACMk and MOP-WENO-ACMk schemes for the BiCWP at
output time t = 200 with a uniform mesh size of N = 3200.
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Figure 16. The non-OP points in the numerical solutions of SLP computed by the WENO-M and MOP-WENO-M schemes
with N = 800, t = 2000, and the non-OP points in the numerical solutions of BiCWP computed by the WENO-PM6 and
MOP-WENO-PM6 schemes with N = 3200, t = 200.

In summary, the solutions in this subsection could be regarded as numerical verifi-
cations of properties C4, C5 of Theorem 2. In other words, it could be indicated that the
general method to introduce the OP mapping can help to gain the advantage of achieving
high resolutions and in the meantime preventing spurious oscillations when solving prob-
lems with discontinuities for long output times. Additionally, this is the most important
point we want to report in this paper.

4.3. Comparison with Central WENO Schemes

In this subsection, we compare the performances of the MOP-WENO-X schemes with
the quite recent approach, called central WENO (CWENO) schemes. For simplicity, only
the cases of the WENO-NW6 [36], WENO-CU6 [37] and WENO-θ6 [38] schemes are taken
into account in the following discussion.

We firstly consider the following example.

Example 5. We compute

{
ut + ux = 0, x ∈ (−1, 1),
u(x, 0) = max(− sin(πx), 0),

(44)

with periodic boundary conditions.
We calculate this problem by the fifth-order MOP-WENO-X schemes proposed in

the present work and the sixth-order central schemes of WENO-NW6, WENO-CU6 and
WENO-θ6 schemes. The output time is taken to be t = 2.4 and the cell number is N = 200.
The solutions are plotted in Figure 17. It clearly shows that the sixth-order central WENO
schemes of WENO-NW6 and WENO-CU6 perform worse than the fifth-order MOP-WENO-
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X schemes. It was reported by Jung et al. [38] that this loss of resolution is an important
issue since there are many problems whose solution often exhibits the same behavior as
this example. Therefore, we claim that the MOP-WENO-X schemes are more favorable than
the central WENO schemes of WENO-NW6 and WENO-CU6 for this kind of problems. In
addition, the the central WENO scheme of WENO-θ6 performs as well as the MOP-WENO-
X schemes in this test. Unfortunately, it performs worse and gives significantly lower
resolution than the MOP-WENO-X schemes on solving problems with discontinuities for
long output times. We now discuss this in detail.

We calculate the problems of SLP and BiCWP (see Section 4.2) by using the sixth-order
central schemes of WENO-NW6, WENO-CU6, and WENO-θ6 schemes. The computing
conditions of t = 200 and N = 3200 are used here. In Figures 18 and 19, the results for
SLP and BiCWP are shown. From these figures, we can see that the sixth-order central
WENO schemes of WENO-NW6 and WENO-θ6 provide significantly lower resolutions
than the fifth-order MOP-WENO-X schemes. The WENO-CU6 scheme appears to obtain
the resolution equivalent to, or even better than those of the MOP-WENO-X schemes.
However, it generates spurious oscillations, and the MOP-WENO-X schemes do not.
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Figure 17. (Left): Numerical solutions of Equation (44) at time t = 2.4 obtained from different WENO schemes. (Right):
Zoom near the critical region.
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Figure 18. Performance of the WENO-NW6, WENO-CU6, WENO-θ6 and MOP-WENO-X schemes for the SLP at output
time t = 200 with a uniform mesh size of N = 3200.
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Figure 19. Performance of the WENO-NW6, WENO-CU6, WENO-θ6 and MOP-WENO-X schemes for the BiCWP at output
time t = 200 with a uniform mesh size of N = 3200.

4.4. Euler System in Two Dimension

In this subsection, we focus on the numerical simulations of the shock-vortex inter-
action problem [41,42] and the 2D Riemann problem [43–45]. They are governed by the
two-dimensional Euler system of gas dynamics, taking the following strong conservation
form of mass, momentum and energy

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
= 0,

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
+

∂(ρuv)
∂y

= 0,

∂(ρv)
∂t

+
∂(ρvu)

∂x
+

∂(ρv2 + p)
∂y

= 0,

∂E
∂t

+
∂(uE + up)

∂x
+

∂(vE + vp)
∂y

= 0,

(45)

where ρ, u, v, p, and E are the density components of velocity in the x and y coordinate
directions, pressure, and total energy, respectively. The following equation of state for an
ideal polytropic gas is used to close the two-dimensional Euler system Equation (45)

p = (γ− 1)
(

E− 1
2

ρ(u2 + v2)
)

,
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where γ is the ratio of specific heat, and we set γ = 1.4 in this paper. In the computations
below, the CFL number is taken to be 0.5. All the considered WENO schemes are applied
dimension-by-dimension to solve the two-dimensional Euler system and the local charac-
teristic decomposition [8] is used. In [46], Zhang et al. investigated two commonly used
classes of finite volume WENO schemes in two-dimensional Cartesian meshes, and we
employ the one denoted as class A in this subsection.

Example 6. (Shock-vortex interaction) We consider the shock-vortex interaction problem used
in [41,42]. It consists of the interaction of a left moving shock wave with a right moving vortex.
The computational domain is initialized by(

ρ, u, v, p
)
(x, y, 0) =

{
UL, x < 0.5,
UR, x ≥ 0.5,

where UL = (ρL, uL, vL, pL) = (1,
√

γ, 0, 1), and UR = (ρR, uR, vR, pR) taking the form

pR = 1.3, ρR = ρL

(
γ− 1 + (γ + 1)pR

γ + 1 + (γ− 1)pR

)
uR = uL

(
1− pR√

γ− 1 + pR(γ + 1)

)
, vR = 0.

The vortex δU = (δρ, δu, δv, δp), defined by the following perturbations, is superimposed
onto the left state UL,

δρ =
ρ2

L
(γ− 1)pL

δT, δu = ε
y− yc

rc
eα(1−r2), δvs. = −ε

x− xc

rc
eα(1−r2), δp =

γρ2
L

(γ− 1)ρL
δT,

where ε = 0.3, rc = 0.05, α = 0.204, xc = 0.25, yc = 0.5, r =
√
((x− xc)2 + (y− yc)2)/r2

c ,
δT = −(γ− 1)ε2e2α(1−r2)/(4αγ). The transmissive boundary condition is used on all bound-
aries. A uniform mesh size of 800× 800 is used and the output time is set to be t = 0.35.

We calculate this problem using all the considered mapped WENO-X schemes in
Table 1 and their associated MOP-WENO-X schemes. For the sake of brevity though, we
only present the solutions of the WENO-M, WENO-IM(2, 0.1), WENO-PPM5, WENO-
MAIM1 schemes and their associated MOP-WENO-X schemes in Figures 20 and 21, where
the first rows give the final structures of the shock and vortex in density profile of the
existing mapped WENO-X schemes, the second rows give those of the associated MOP-
WENO-X schemes, and the third rows give the cross-sectional slices of density plot along
the plane y = 0.65 where x ∈ [0.70, 0.76]. We find that all the considered schemes perform
well in capturing the main structure of the shock and vortex after the interaction. It can be
seen that there are clear post-shock oscillations in the solutions of the WENO-M, WENO-
IM(2, 0.1), and WENO-PPM5 schemes. However, in the solutions of the MOP-WENO-M,
MOP-WENO-IM(2, 0.1), and MOP-WENO-PPM5 schemes, the post-shock oscillations are
either gone or significantly reduced. The post-shock oscillations of the WENO-MAIM1
scheme are very slight and even hard to be noticed. Actually, it seems difficult to distinguish
the solutions of the WENO-MAIM1 scheme from that of the MOP-WENO-MAIM1 scheme
only according to the structure of the shock and vortex in the density profile. Nevertheless,
when taking a closer look from the cross-sectional slices of the density profile along the
plane y = 0.65 at the bottom right picture of Figure 21 where the reference solution
is obtained using the WENO-JS scheme with a uniform mesh size of 1600 × 1600, we
can see that the post-shock oscillation of the WENO-MAIM1 scheme is very remarkable
while it is imperceptible for the MOP-WENO-MAIM1 scheme. Additionally, from the
third rows of Figures 20 and 21, we find that the WENO-IM(2, 0.1) and WENO-PPM5
schemes generate the post-shock oscillations with much bigger amplitudes than that of the
WENO-MAIM1 scheme. The WENO-M scheme also generates clear post-shock oscillations
with the amplitudes slightly smaller than that of the WENO-IM(2, 0.1) and WENO-PPM5
schemes. Evidently, the solutions of the MOP-WENO-M, MOP-WENO-IM(2, 0.1) and
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MOP-WENO-PPM5 schemes almost generate no post-shock oscillations or only generate
some imperceptible numerical oscillations and their solutions are very close to the reference
solution, and this should be an advantage of the mapped WENO schemes whose mapping
functions are OP.
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Figure 20. Density plots for the Shock-vortex interaction using 30 contour lines with range from 0.9 to 1.4 (the first two rows)
and the cross-sectional slices of density plot along the plane y = 0.65 where x ∈ [0.70, 0.76] (the third row), computed using
the WENO-M and MOP-WENO-M (left column), WENO-IM(2, 0.1), and MOP-WENO-IM(2, 0.1) (right column) schemes.
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Figure 21. Density plots for the Shock-vortex interaction using 30 contour lines with range from 0.9 to 1.4 (the first two rows)
and the cross-sectional slices of density plot along the plane y = 0.65 where x ∈ [0.70, 0.76] (the third row), computed using the
WENO-PPM5 and MOP-WENO-PPM5 (left column), WENO-MAIM1 and MOP-WENO-MAIM1 (right column) schemes.
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Example 7. (2D Riemann problem) It is very favorable to test the high-resolution numerical
methods [30,45,47] using the series of 2D Riemann problems [43,44]. In [45], Lax et al. classified
a total of 19 genuinely different Configurations for 2D Riemann problem and calculated all the
numerical solutions. Configuration 4 is chosen here for the test, and the computational domain is
initialized by

(
ρ, u, v, p

)
(x, y, 0) =


(1.1, 0.0, 0.0, 1.1), 0.5 ≤ x ≤ 1.0, 0.5 ≤ y ≤ 1.0,
(0.5065, 0.8939, 0.0, 0.35), 0.0 ≤ x ≤ 0.5, 0.5 ≤ y ≤ 1.0,
(1.1, 0.8939, 0.8939, 1.1), 0.0 ≤ x ≤ 0.5, 0.0 ≤ y ≤ 0.5,
(0.5065, 0.0, 0.8939, 0.35), 0.5 ≤ x ≤ 1.0, 0.0 ≤ y ≤ 0.5.

The transmission boundary condition is used on all boundaries, and the numerical
solutions are calculated on a uniform mesh size of 800× 800. The computations proceed to
t = 0.25.

Similarly, although we calculate this problem using all the considered mapped WENO-
X schemes in Table 1 and their associated MOP-WENO-X schemes, we only present the
solutions of the WENO-M, WENO-PM6, WENO-RM260 and MIP-WENO-ACMk schemes
and their associated MOP-WENO-X schemes here for the sake of brevity. We have shown
the numerical results of density obtained by using these schemes in Figures 22 and 23,
where the first rows give the structures of the 2D Riemann problem in density profile
of the existing mapped WENO-X schemes, the second rows give those of the associated
MOP-WENO-X schemes, and the third rows give the cross-sectional slices of density plot
along the plane y = 0.5 where x ∈ [0.65, 0.692]. We can see that all schemes can capture
the main structure of the solution. However, we can also observe that there are obvious
post-shock oscillations (as marked by the pink boxes), which are unfavorable for the fidelity
of the results, in the solutions of the WENO-M, WENO-PM6, WENO-RM(260) and MIP-
WENO-ACMk schemes. These post-shock oscillations can be seen more clearly from the
cross-sectional slices of density profile as presented in the third rows of Figures 22 and 23,
where the reference solution is obtained by using the WENO-JS scheme with a uniform
mesh size of 3000× 3000. Noticeably, there are either almost no or imperceptible post-
shock oscillations in the solutions of the MOP-WENO-M, MOP-WENO-PM6, MOP-WENO-
RM(RM260) and MOP-WENO-ACMk schemes. Again, we believe that this should be an
advantage of the mapped WENO schemes whose mapping functions are OP.
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Figure 22. Density plots for the 2D Riemann problem using 30 contour lines with range from 0.5 to 1.9 (the first two rows)
and the cross-sectional slices of density plot along the plane y = 0.5 where x ∈ [0.65, 0.692] (the third row), computed using
the WENO-M and MOP-WENO-M (left column), WENO-PM6 and MOP-WENO-PM6 (right column) schemes.
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Figure 23. Density plots for the 2D Riemann problem using 30 contour lines with range from 0.5 to 1.9 (the first two rows) and
the cross-sectional slices of density plot along the plane y = 0.5 where x ∈ [0.65, 0.692] (the third row), computed using the
WENO-RM(260) and MOP-WENO-RM(260) (left column), MIP-WENO-ACMk and MOP-WENO-ACMk (right column) schemes.
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5. Conclusions

The concept of OP-Mapped WENO schemes standing for the family of the mapped
WENO schemes with order-preserving (OP) mappings, as well as a general way to build one
group of this kind of schemes, has been proposed in this paper. Specifically, we extended
the OP mapping introduced in [9] to various existing mapped WENO schemes in references
by providing a general formula of their mapping functions. A systematic analysis has
been performed to prove that the improved mapped WENO scheme based on the existing
mapped WENO-X scheme, denoted as MOP-WENO-X, generates numerical solutions with
the same convergence rates of accuracy in smooth regions as the associated WENO-X
scheme. Furthermore, numerical experiments were run to show that the MOP-WENO-
X schemes have the same advantage as the mapped WENO scheme proposed in [9] in
calculating the one-dimensional linear advection problems including discontinuities with
long output times. The mapping functions of the MOP-WENO-X schemes are OP and
hence able to attain high resolutions and avoid spurious oscillations meanwhile. Moreover,
numerical results with the 2D Euler system problems were presented to show that the
MOP-WENO-X schemes perform well in simulating the two-dimensional problems with
strong shock waves to capture the main flow structures and remove or significantly reduce
the post-shock oscillations.
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