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Abstract: The World Food Studies Simulation Model (WOFOST) model is a daily crop growth and
yield forecast model with interactions with the environment, including soil, agricultural management,
and especially climate conditions. An El Niño–Southern Oscillation (ENSO) phenomenon directly
affected climate change and indirectly affected the rice yield in Thailand. This study aims to simulate
rice production in central Thailand using the WOFOST model and to find the relationship between
rice yield and ENSO. The meteorological data and information on rice yields of Suphan Buri 1 variety
from 2011 to 2018 in central Thailand were used to study the rice yields. The study of rice yield found
that the WOFOST model was able to simulate rice yield with a Root Mean Square Error (RMSE) value
of 752 kg ha−1, with approximately 16% discrepancy. The WOFOST model was able to simulate the
growth of Suphan Buri 1 rice, with an average discrepancy of 16.205%, and Suphan Buri province had
the least discrepancy at 6.99%. Most rice yield simulations in the central region were overestimated
(except Suphan Buri) because the model did not cover crop damage factors such as rice disease or
insect damage. The WOFOST model had good relative accuracy and could respond to estimates of
rice yields. When an El Niño phenomenon occurs at Niño 3.4, it results in lower-than-normal yields
of Suphan Buri 1 rice in the next 8 months. On the other hand, when a La Niña phenomenon occurs
at Niño 3.4, Suphan Buri 1 rice yields are higher than normal in the next 8 months. An analysis of the
rice yield data confirms the significant impact of ENSO on rice yields in Thailand. This study shows
that climate change leads to impacts on rice production, especially during ENSO years.

Keywords: El Niño–Southern Oscillation; rice production; WOFOST model

1. Introduction

Rice is the main economic crop and the staple food of most people in Asia [1]. Approx-
imately 50% of the calories consumed by humans come from wheat, rice, and maize [2].
Rice, the most important crop in Thailand, has been an important national income since
the Ayutthaya period and is still an agricultural commodity that has made a lot of income
for the country until now. Rice production in Thailand is a vital part of the Thai economy,
and many workers work in rice production. Thailand has the fifth largest rice-growing
land globally and is the number one exporter of rice globally. Rice research is critical to
developing technologies that increase yields and increase income for farmers who grow
rice as their primary occupation [3].

Nowadays, the trend of using plant models is increasing in line with the development
of theories and agricultural research data that has arisen with the rapid development of
computer technology and information [4,5]. The timely and accurate estimation of crop
yields is an essential management tool for controlling the general agricultural market [6].
A model is another tool that can assess the influence of limiting factors in rice yield. Rice
yield forecasting methods have been developed to quantify the production of agricultural
systems at the local, regional, or national levels [7–12]. Estimating the yields of cash crops
is essential for an agricultural information system, and tools for this have been developed
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for rice in the Philippines [8]. The Studies Simulation Model (WOFOST) model is widely
used to simulate plant growth processes and yield estimates worldwide [13]. WOFOST is a
mechanical model that can monitor and evaluate plant growth and crop yield forecasting.
It is a standalone software for measuring yields for multiple crops with soil interactions,
agricultural management, and climate conditions. There are many crop databases available
for detailed simulations. The WOFOST’s soil–water balance is easier to achieve than that
in similar highly accurate models (e.g., CERES and SWAP) [14]. The main advantage of
WOFOST is the application of different sets of plant growth parameters as functions of
the development stage that provide an accurate simulation of plant biomass growth [15].
The WOFOST model was built on an interdisciplinary framework of potential global
food security and food production by the Center for World Food Studies in collaboration
with Wageningen Agricultural University [16]. This model has been used successfully to
examine agricultural meteorology and yield forecasts in the European Union [17]. In China,
WOFOST models are widely used to examine the potential of rice growth processes and
to predict rice yields [18–20]. The effect of temperature increase on the efficiency of Kharif
rice in West Bengal was also studied with the WOFOST model and found that the rice yield
prediction with this model was 96% accurate [21]. The advantages of using the model are
time and money savings and looking at trends in response to climate and soil properties.
At the plot level, a process model used for forecasting seasonal yields may improve the
efficiency of crop management decisions, such as local chemical fertilization rates [22].

Climate change directly affects rice yield [23–25]. A rice and corn production projection
in northern Thailand was conducted under climate change situation RCP8.5 [26]. An ENSO
phenomenon occurs in the equatorial Pacific Ocean, a very important weather phenomenon
of the world [27]. ENSO has been linked to climate anomalies in remote areas, such as
the southern African droughts and the Atlantic hurricanes, especially in Thailand and the
southern hemisphere. This phenomenon has resulted in current global climate change [28].
El Niño and La Niña are opposite Pacific climate patterns that disrupt normal conditions
that can affect climates worldwide. For this reason, it is necessary to study the impact of
ENSO on the climate affecting rice yields in Thailand. A spatial assessment of yield and
impacts is one of the ways that the limiting factor in rice production can be developed to
solve problems and to increase rice yields in areas that can further raise productivity. As
climate change is an important condition that affects crop growth, we hypothesize that
ENSO phenomena directly affect climate change and indirectly affects the yield of Suphan
Buri 1 rice in Thailand. Therefore, the objectives of this work are to forecast the yield of
Suphan Buri 1 rice and to find the relationship between ENSO phenomena and the quantity
of Suphan Buri 1 rice yield.

2. Materials and Methods
2.1. Study Area Description and Model Input Data

The central region is a vast plain in the center of the country. It is characterized by a
large river basin consisting of mountains east and west, stretching parallel from the north.
The trough is located on the northern highlands, down to the south at the edge of the track.
Most of the area is lowland, divided into two parts: the eastern part is triangular, and the
western or central regions are the rectangular area located on the bottom of the Gulf of
Thailand. The central region has an area of approximately 92,795 km2. The central region
of Thailand is located from Longitude 98◦ E to 101◦ E and Latitude 13◦ N to 18◦ N, as
shown in Figure 1. Most of the topography is lowlands, suitable for cultivation. The central
population grows rice as the main occupation because the land contains infertile areas and
river plains. The ground is sloped from the north and gradually slopes into the Gulf of
Thailand in the south. Especially in the lower Chao Phraya River basin, it is higher than
the sea level. The central region has an average temperature of 27–28 ◦C, which is quite hot.
The average precipitation of the region is about 1375 mm. Most of the area is in a confined
zone, and it rains the most in September. Therefore, the central region is an important area
for rice cultivation from the past to the present, especially in Nakhon Pathom, Suphan Buri,
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Chainat, Ayutthaya, Lopburi, and Phetchabun. Rice yield data were collected from the
Agricultural Information Center, Office of Agricultural Economics, Ministry of Agriculture,
and Cooperatives. The rice cultivar studied was Suphan Buri 1 rice from 2011 to 2018. The
survey of annual rice yield per hectare was collected using the crop-cutting method using
stratified two-stage sampling and systematic sampling. The district was designated as a
population consisting of 490 villages with two levels of sampling units, or 9.70 percent of
the total sample. The district was designated as a population consisting of two sampling
units with 490 villages, representing 9.70% of the total number of samples, and three
households were randomly selected. Each household randomly plots a sample and two
survey points using the 30-step walk technique to frame a 1-square-meter survey and to
calculate the statistics of the survey data using a simple mean calculation method.

Figure 1. Map showing rice cultivation of Suphan Buri 1 in all six provinces in the central region.

The data necessary for developing rice yield forecasting models was the daily weather
data using data from the Meteorological Department, including the highest temperature
(◦C) data, the lowest temperature (◦C) data, and the internal pressure data during the
morning (kPa), wind speed at an altitude of 2 m (m s−1), precipitation data (mm d−1),
data from the Department of Alternative Energy Development and Efficiency, and solar
radiation intensity data (kJ m−2 d−1) are shown in Table 1. The rice cultivar used in this
study was Suphan Buri 1, about 125 cm tall, and was not sensitive to the photoperiod. The
harvest time was about 120 days, the yield was about 5037.5 kg ha−1 [29], most of which
were planted in late July to early August.

Table 1. Meteorological parameters of the WOFOST model.

No. Describe Unit Year Source

1 Maximum Air Temperature ◦C 2011–2018 Thailand Meteorological Department
2 Minimum Air Temperature ◦C 2011–2018 Thailand Meteorological Department
3 Early Morning Vapor Pressure kPa 2011–2018 Thailand Meteorological Department
4 Mean Wind Speed at 2 m Above Ground m s−1 2011–2018 Thailand Meteorological Department
5 Precipitation mm d−1 2011–2018 Thailand Meteorological Department

6 Irradiation kJ m−2 d−1 2011–2018 Department of Alternative Energy
Development and Efficiency
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2.2. Crop Model Simulation

WOFOST is a mathematical model used in agriculture to study the behavior of bien-
nial crops [30,31]. WOFOST is a daily plant growth simulation model. It is assumed that
the system’s state can be quantified over time and that the changes in the system can be
explained by mathematical equations [31]. In WOFOST, the dry matter is partitioned over
the four parts of the plant according to fixed distribution factors, defined as a function
of the development stage. Dry matter is first partitioned between shoots and roots, as
shown in Equation (1). The growth rate of leaves, stems, and storage organs is simply
the product of the dry matter growth rate of the shoots (Equation (2)) and the fraction
allocated to these organs (Equation (3)). The model is divided into state, rate, and driving
variables. State variables are quantities such as biomass or soil water content. The driving
variables characterize the influence of external factors on the system but are not influenced
by internal processes such as macro-meteorological variables, radiation, air temperature,
and precipitation. The rate part can be calculated from the state and driving variables [31].
The general characteristics of plant growth are modeled based on physiological ecological
processes. Important processes include phenological development, light-blocking, absorp-
tion of CO2, evaporation, respiration, division of absorption to organs, and formation of dry
matter, as shown in Figure 2. Potential growth and water restriction are modeled dynam-
ically daily, considering the soil characteristics and limited water production. WOFOST
is based on the SUCROS (Simple and Universal Crop growth Simulator) model [32,33].
SUCROS is a plant growth model that is influenced by environmental conditions and water
constraints. The concept for calculation is the rate of CO2 (photosynthesis) absorption of
canopy plants. Limited nutrient production is calculated according to the principles of
the QUEFTS (QUantitative Evaluation of the Fertility of Tropical Soils) model [34]. The
QUEFTS model provides yield predictions based on two factors: fertilizer inputs and soil
parameters [34,35].

Figure 2. General simple structure of a dynamic plant growth model [36].
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The plant growth simulation in WOFOST is divided into four parts (leaves, stems,
fruits, and roots) in dry matter, defined in the development process, as shown in Figure 2.
In practice, this method makes it easy to partition the experimental plantings and requires
accurate descriptions of the plant’s phenotypic development and cultivation period. Im-
proper crop phenotypes or the wrong cropping period can easily make the leaf area index
very high or very low. The disadvantage of static partitioning is that it does not consider
the absorption processing capacity from different parts of the plant and does not take into
account the environmental impact of the division. The simulation is divided between
shoots and roots first as follows:

∆Wrt = pcrt · ∆W, (1)

∆Wsh = (1 − pcrt)∆W, (2)

where ∆W is the dry matter growth rate of the total crop (kg ha−1 d−1), ∆Wrt is the dry
matter growth rate of tyhe roots (kg ha−1 d−1), ∆Wsh is the dry matter growth rate of the
shoots (kg ha−1 d−1), and pcrt is the partitioning factor of the roots (kg kg−1). The growth
rates of the leaves, stems, and storage organs are only a product of the dry matter growth
rate of the shoots and the portion allocated to these organs.

∆Wi = pcrt · ∆Wshi, (3)

where ∆Wi is the dry matter growth rate of an organ i (kg ha−1 d−1); pci is the division factor
of an organ i (kg kg−1); i is the leaves (lv), storage organs (so), or stems (st). The division
factors, pci, is a function of the developmental stage and specific to each plant. The model
is described using linear interpolation in a one-dimensional array with a developmental
step as independent variables. The development stage requires that the relationship in
Equation (4) must be correct; otherwise, the simulation will stop.

pclv + pcst + pcso = 1, (4)

The total CO2 absorption rate is equal the amount of plant structural components
produced plus the amount used for maintenance and respiration, shown in Equation (5).

Rd − Rm,T−Rg(pcrt+(pclv+pcst+pcso)·(1−pcrt))

Rd
= 0, (5)

where Rg is the daily rate of absorption of CH2O (kg ha−1 d−1), Rd is the rate of maintenance
respiration (kg ha−1 d−1), and Rm,T is the respiration rate in plant growth (kg ha−1 d−1). The
rate of respiration to live must not exceed the total absorption rate; however, if the daily
CH2O absorption rate comes close to zero, this may occur, and therefore, the simulation
should be stopped.

In the model, a yield mortality of 0 for the root and stem growth of plants per unit area
can be easily defined as the growth rate minus the mortality, as in Equation (6). Mortality
is unique to each plant and is defined as the amount of daily living biomass no longer
involved in the plant process. Stem and root mortality at the developmental stage was
described using linear interpolation in one-dimensional arrays with the development
stage as independent variables. The rate of leaf mortality is more complex, where leaf
degradation due to obscured by light should consider water and physiological age. The
growth rate of stems and roots can be explained by

∆Wni = ∆Wi − DiWii (6)

where ∆Wni is the net dry matter growth rate of organ i (kg ha−1 d−1), ∆Wi is the dry
matter growth rate of organ i (kg ha−1 d−1), Wi is the dry matter weight of organ i (kg kg−1),
Di is the death rate of organ i (kg ha−1 d−1), and i is stems (st) or roots (rt). Stem and
root mortality is a characteristic feature of the crop. Although the process describing leaf
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mortality is more complex than calculating stem and root mortality, calculating the total
weight of live leaves is similar to calculating the stem and root weights. The total weight of
the living plant (leaves, stems, and roots) can be obtained by combining them during the
actual plant growth period.

Wt,i = Wt−1,i + ∆Wni∆t (7)

where Wt,i is the dry matter weight of organ i at time step t (kg ha−1) and ∆t is the time
step (d). In the model, the default values for each plant weight are calculated. The default
values for the plant weight must be specified and can be derived from planting density
and seed weight. This value is multiplied by the partitioning factors, pci, at emergence,
yielding the initial values of dry weight of the various organs.

2.3. The El Niño–Southern Oscillation

El Niño is a phenomenon in which the atmospheric pressure at sea level in the eastern
Pacific Ocean is lower than usual, while the other side of the ocean pressure (Indonesia and
northern Australia) is higher than usual. It connects and occurs along with the weak south–
east wind until it becomes a western wind. It blows the sea from the west Pacific Ocean to
the central and eastern Pacific Ocean. Scientists often use the terms ENSO warming (ENSO
warm event or warm phase of ENSO) to describe an El Niño phenomenon in which the SST
in the central and eastern Pacific are warmer than normal. La Niña is an abnormally cold
ocean temperature phenomenon (ENSO cold event or cold phase of ENSO). It describes
the phenomenon in which the SST in the central and eastern Pacific are cooler than normal.
A La Niña phenomenon first appeared in early 2011 [37].

A Niño 3.4 region (5◦ N–5◦ S, 120◦ W–170◦ W) is the standard region used by the
National Oceanic and Atmospheric Administration (NOAA) to identify El Niño (warm)
and La Niño (cold) in the tropical Pacific Ocean as shown in Figure 3. The event is defined
as having three months with a higher than +0.5 anomaly for warm events (El Niño) and
with an anomaly at or below −0.5 for cold events (La Niña). The criteria are divided into
additional weakness (with irregularities 0.5 to 0.9 SST), moderate (1.0 to 1.4), strong (1.5 to
1.9), and very severe events (≥2.0).

Figure 3. Niño area.
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2.4. The Evaluation of the Model

The evaluation of the model was performed by collecting historical rice yield data,
analyzing the growth characteristics of rice, and selecting rice strains. The selection method
was based on economic importance, such as the number of productions, product prices,
and historical export amount from the Office of Agricultural Economics. To compare the
rice yields obtained from the model, the Root Mean Square Error (RMSE) expressed as
Equation (8) and the Absolute Percent error (APE) in Equation (9) were used to evaluate
the model results and to find the rice parameters suitable for cultivation. To evaluate
whether the model’s trend is overestimated or underestimated, the Coefficient of Residual
Mass (CRM) was used, as expressed in Equation (10). Positive values for CRM indicate
that the measure is underestimated, and negative values for CRM indicate a tendency to
overestimate: minimum = −∞, maximum = +∞, while optimal is 0.

RMSE =

√√√√√ n
∑

t=1
(Ft − Ot)2

n
(8)

APE =

∣∣∣∣ Ft − Ot

Ot

∣∣∣∣× 100 (9)

CRM = 1 −

n
∑

t=1
Ft

n
∑

t=1
Ot

(10)

where Ft is the Suphan Buri 1 rice yield data from the WOFOST model at time t, Ot is the
Suphan Buri 1 rice yield data from the measured data from the Department of Agricultural
Statistics at time t, t is the time, and n is the total time.

The estimation of crop yield under extreme climate events (El Niño and La Niña
events) was not included in the WOFOST model. Therefore, this study attempted to
find the relationship between the weather conditions in the central region of Thailand
and ENSO phenomena. Precipitation forecasts from ENSO phenomena were made by
constructing multiple linear regression (MLR) equations. The independent variable of
MLR is the average 30-year precipitation data from 1981 to 2010 (X1), and the SST anomaly
index in the Niño 3.4 area (X2). The dependent variable is the precipitation data for each
province (Y), as shown in Equation (11).

Y = C · (A · X1) + (B · X2) (11)

where Y is the precipitation data for each province; X1 is the average 30-year precipitation
data from 1981 to 2010; X2 is the SST anomaly index in the Niño 3.4 area; and A, B, and C
are constant coefficients.

3. Results

In this study, the simulation of rice yield was conducted using the WOFOST model,
which models the growth and yield of a crop in the absence of injuries. The parameters of
the WOFOST model were re-calibrated using the data in Thailand. The methodological
framework of this study includes two procedures. The results of the WOFOST model are
compared with the survey data from the Department of Agricultural Statistics, first, to
verify that the model’s algorithms work properly and, second, to find the relationship
between the Suphan rice yield and ENSO phenomena to determine the effect of rice yield.
Model assessments were performed using historical data covering 2011 to 2018. The
simulation results were compared with the observed data using statistical methods to
determine whether WOFOST could simulate the growth of Suphan Buri 1 rice. Figure 4
shows the dry weight of living leaves (WLV), dry weight of living stems (WST), dry weight
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of living storage organs (WSO), and total above-ground production (dead and living plant
organs) (TAGP) using the WOFOST model, as shown in Figure 4.

(a) (b)

(c) (d)

Figure 4. The results of simulating the weight of rice variety Suphan Buri. (a) WLV, (b) WST, (c) WSO, and (d) TAGP.

Figure 5 compares the simulated and observed rice yields of six provinces in central
Thailand provinces from 2011 to 2018. Most rice yield simulations in the central region were
overestimated (except Suphan Buri) because the model did not cover crop damage factors
such as rice disease or insect damage. The Suphan Buri province had the closest simulation
result because it used some measurement data on soil and crop management in Suphan
Buri province. On the other hand, Phetchabun province had the greatest productivity
difference due to its proximity to the northeastern region, where the soil characteristics
were sandy. The soil in Phetchabun is medium to gravel soil and dense rubble. The topsoil
is sandy loam, which is not suitable for planting. In Figure 6, the correlation coefficient
for all six provinces is 0.344, which shows that the model has a low correlation. Due to
some model’s input data, the data are not yet available. Therefore, soil data and plant
growth data from nearby rice varieties were substituted, which may cause discrepancies in
rice yields.

In order to assess the accuracy of the model, visual comparisons are, of course, not
sufficient, so further tests are performed with statistical parameters such as RMSE, APE,
and CRM. From the comparison, it was found that Suphan Buri province had less errors
than other provinces in the central region, where the RMSE value was approximately
397.117 kg ha−1, which had an error of approximately 6.9%. Ratchaburi province has a
greater error than other provinces in the central region, with an RMSE value of about
870.754 kg ha−1 with an error of about 18.9%. From simulating the yield of rice varieties
Suphan Buri 1, it was found that the WOFOST model was able to simulate rice yield with an
average RMSE of approximately 751.80 kg ha−1 and an percentage error of approximately
16.2%, as shown in Table 2.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Comparison of rice yield between the WOFOST model and observed data. (a) Suphan Buri, (b) Nakhon Pathom,
(c) Lop Buri, (d) Chai Nat, (e) Ayutthaya, and (f) Phetchabun.

Figure 6. Correlation of the rice yield from the WOFOST.

The occurrence of ENSO phenomena at Niño 3.4 from 2011 to 2018 found that, at the
beginning of 2011, a severe La Niña phenomenon had been reduced to normal in April
2011, which affects Thailand as more rain than usual. From May 2015 to May 2016, a severe
El Niño phenomenon occurred. From September 2017 to April 2018, there was a moderate
La Niña phenomenon, and from September to December 2018, there was another moderate
El Niño phenomenon, shown in Figure 7.
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Table 2. Accuracy comparison between the WOFOST model and observed data.

Station Root Mean Absolute Percent Coefficient of C A B R R2
Square Error Error Residual Mass

Suphan Buri 397.117 6.991 −0.055 0.282 0.028 −0.183 0.750 0.563
Nakhon Pathom 731.626 15.150 −0.150 0.266 0.030 −0.348 0.770 0.592

Lop Buri 818.764 18.457 −0.182 0.073 0.031 −0.172 0.818 0.669
Chai Nat 835.593 18.605 −0.180 0.253 0.029 −0.066 0.747 0.558

Ayutthaya 856.984 19.049 −0.188 0.588 0.026 −0.365 0.764 0.583
Phetchabun 870.754 18.971 −0.183 0.067 0.034 −0.506 0.800 0.640

Mean 751.806 16.204 −0.156 − − − 0.775 0.601

Figure 7. The occurrence of ENSO phenomena at Niño 3.4 (5◦ S–5◦ N, 170◦ W–120◦ W) regions from 2011 to 2018.

The correlation between Suphan Buri 1 rice variety in the central region compared with
sea surface temperature anomaly at Niño 3.4 using statistical methods with the correlation
coefficient is shown in Table 3. Most of the correlation coefficients were negative from
statistical testing, indicating that Suphan Buri 1 rice yield was inversely related to ENSO
phenomena. During the next 5–9 months of lag time, the p-value was between 0.0047 and
0.0413. The statistical significance level analysis revealed that the significance (two-tailed)
was less than the 0.05 level of significance.

It was shown that ENSO phenomena are related to Suphan Buri 1 rice yield at a
significance level of 0.05. The p-value of the eight-month Lag Time was 0.0047, which was
less than the significance level of 0.01, indicating that ENSO phenomena are related to
Suphan Buri 1 rice yield at the significance level of 0.01. It shows that, when El Niño occurs
in the Niño 3.4 area, it causes less precipitation in central Thailand. El Niño phenomena
affected the growth of Suphan Buri 1 rice, causing the rice yield in the next eight months to
be lower than usual. On the other hand, when an La Niña phenomenon occurs in Niño
3.4, it causes more precipitation in central Thailand than usual. This affects the growth of
Suphan Buri 1 rice, resulting in higher yields within the next eight months than usual.
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Table 3. Correlation coefficient between WOFOST and ENSO phenomena.

Lag Time Suphan Buri Nakhon Pathom Lopburi Chai Nat Ayutthaya Phetchabun Sum p-Value

No Lag 0.2474 0.2230 0.2731 −0.5442 −0.0704 0.3114 0.0816 0.5812
Lag 1 0.2767 0.1251 0.3466 −0.5343 −0.0397 0.3170 0.0930 0.5297
Lag 2 0.2227 0.2337 0.2538 −0.7019 −0.1245 0.1435 0.0259 0.8611
Lag 3 0.0445 0.2632 0.0399 −0.7803 −0.2988 −0.0203 −0.1001 0.4983
Lag 4 −0.0490 0.0529 −0.0100 −0.5561 −0.4174 −0.1154 −0.1631 0.2680
Lag 5 −0.3050 −0.1462 −0.2058 −0.2770 −0.6184 −0.2826 −0.2957 0.0413
Lag 6 −0.4505 −0.3401 −0.2718 −0.0047 −0.6448 −0.3315 −0.3389 0.0184
Lag 7 −0.5042 −0.4449 −0.2896 0.1927 −0.5901 −0.3704 −0.3372 0.0191
Lag 8 −0.5959 −0.3630 −0.4019 0.1016 −0.6825 −0.4732 −0.4016 0.0047
Lag 9 −0.5436 −0.4027 −0.3335 0.1778 −0.6232 −0.3870 −0.3556 0.0131

A comparison of precipitation data from multivariate linear regression with precipita-
tion data from measurement stations of the Meteorological Department in each province
from January 2011 to December 2020 (10 years) is shown in Table 2. It was found that
precipitation from the linear regression equation was related to the average precipitation
data in each province. The correlation coefficient (R) equals 0.775, and the coefficient of de-
termination (R2) value was 0.601. From statistical testing, it was found that the precipitation
forecasts from linear regression equations were accurate.

The seasonal rice yield of each province in central Thailand was estimated for the
2019–2021 period based on ENSO phenomena, as shown in Figure 8. The escalating threat of
an ENSO anomaly affects climate change, coupled with future losses to rice production from
droughts (El Niño) and floods (La Niña). Accordingly, the climate change scenarios from
ENSO phenomena affect rice yield in Thailand. The mapping delineates the consequences
of El Niño and La Niña events with future impacts on rice production. Interestingly, during
El Niño years (2019), simulated rice yields were lower at about 4300 kg per hectare than in
other years. This is because the extremely unfavorable conditions for rice growth (drought)
result in fewer rice yields than usual. The rice yields in 2020 were normal as a result of no
ENSO phenomena occurring in that year. Furthermore, the rice yields in 2021 were higher
than other years at about 5200 kg per hectare because there was a La Niña effect that year.
A La Niña event strengthening rice yield can be explained by the increased precipitation in
Thailand, which is sufficient to support the need for water for rice growth. The variation in
rice yields shows the significant impact from El Niño and La Niña events in Thailand.

(a) (b) (c)

Figure 8. Forecasted results of rice yields in the central region in 2019 to 2021: (a) 2019, (b) 2020, and (c) 2021.
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4. Conclusions and Discussion

The simulation of rice yield was performed using the WOFOST model, which models
the growth and yield of a crop in the absence of injuries. The parameters of the WOFOST
model were re-calibrated using the data in Thailand. The rice cultivar studied was Suphan
Buri 1 from 2011 to 2018. The study areas are six provinces in the central region of Thailand,
an important area for rice cultivation from the past to the present, especially in the provinces
of Nakhon Pathom, Suphan Buri, Chainat, Ayutthaya, Lopburi, and Phetchabun. The
methodological framework of this study includes two procedures. The results of the
WOFOST model are compared with survey data from the Department of Agricultural
Statistics, first, to verify the model’s algorithms are working properly and, second, to find
the relationship between Suphan rice yield and ENSO phenomena to determine the effect
of rice yield. The rice yield simulations in the central region were overestimated (except
Suphan Buri) because the model did not cover crop damage factors such as rice disease
or insect damage. Suphan Buri province had the closest simulation result because it used
some measurement data on soil and crop management in Suphan Buri province. The
results were analyzed using the RMSE, APE, and CRM statistics. The WOFOST model
yielded RMSE values for all six provinces at 752 kg ha−1, with approximately 16% error
and a CRM value of −0.15. On the province scale, the WOFOST model was able to simulate
the actual rice yield.

ENSO is associated with abnormal climatic conditions such as temperature and precip-
itation across the globe. As a result, Thailand is experiencing drought and water shortages
in agriculture. Therefore, an attempt was made to find the relationship between ENSO
phenomena and rice yield. The correlation between rice yields from the six provinces in
the central part of Thailand using the WOFOST model and ENSO phenomena in Niño 3.4
showed that the correlation coefficient was approximately −0.4, with a delay of 8 months.
It shows that, when an El Niño phenomenon occurs at Niño 3.4, it results in lower-than-
normal yields of Suphan Buri 1 rice in the next 8 months. In El Niño years, rice yield
decreased around 8.5% in 2019. On the other hand, when a La Niña phenomenon occurs
at Niño 3.4, Suphan Buri 1 rice yields are higher than normal in the next 8 months. La
Niña years lead to increased precipitation in Thailand, e.g., rice yield increased by around
12.7% in 2021. The analysis of rice yield data confirms the significant impact of ENSO
on rice yields in Thailand. This study shows that climate change leads to impacts on rice
production, especially during ENSO years. Currently, ENSO forecasts are highly accurate
for short-term adaptation. Therefore, it is important to research and develop a production
plan to adapt the planting system to suit El Niño or La Niña situations.

Our study also has some limitations. Restrictions on the input data from experimental
plots did not cover all parameters of the WOFOST model. The rice yields from the WOFOST
model were higher than rice yields measured in all provinces because the simulation did
not account for death from rice disease or insect damage. Rice quality may be one of the
factors that reduce market value and income. This study did not consider the impact
on rice quality. Another reason is the low spatial resolution of input parameters such as
meteorology, crops, management, etc. Due to the limited collection of data over a large
area, the results of the WOFOST model still have some discrepancies. The climate factors
of macro-meteorological variables, radiation, air temperature, and precipitation made
significant contributions to the predictions of rice yield.
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The following abbreviations are used in this manuscript:

APE Absolute Percent Error
CRM Coefficient of Residual Mass
ENSO El Niño and Southern Oscillation
QUEFTS Quantitative Evaluation of the Fertility of Tropical Soils
R Correlation Coefficient
R2 Coefficient of Determination
RMSE Root Mean Square Error
SUCROS Simple and Universal Crop growth Simulator
TAGP Total Above-Ground Production
WOFOST World Food Studies
WSO Living Storage Organs
WST Living Stems
WLV Living Leaves
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