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Abstract: In this paper, we introduce a discrete version of the Pseudo Lindley (PsL) distribution,
namely, the discrete Pseudo Lindley (DPsL) distribution, and systematically study its mathematical
properties. Explicit forms gathered for the properties such as the probability generating function,
moments, skewness, kurtosis and stress–strength reliability made the distribution favourable. Two
different methods are considered for the estimation of unknown parameters and, hence, compared
with a broad simulation study. The practicality of the proposed distribution is illustrated in the
first-order integer-valued autoregressive process. Its empirical importance is proved through three
real datasets.
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1. Introduction

Count data reflect the non-negative integers which represent the frequency of oc-
currence of a discrete event. Such datasets can be observed in numerous fields, such as
actuarial science, finance, medical, sports, etc. For instance, the yearly number of destruc-
tive floods, the number of sports people injured in a month and the hourly number of
COVID-19 vaccinations given are some examples of count data. Increasing the utilization
of discrete distributions for modelling such datasets influenced researchers to propose
more flexible distributions by reducing the estimation errors. Discretizing continuous
distributions by survival discretization is one of the widely followed methods for introduc-
ing discrete distributions. The most famous discretization technique is described below.
Assume that X is a continuous lifetime random variable with the survival function (sf)
S(x) = Pr(X > x). Then, the probability mass function (pmf) dealing with X is given by:

Pr(X = x) = S(x)− S(x + 1), x = 0, 1, 2, . . . (1)

Some of the recently introduced discrete distributions based on this survival dis-
cretization method are as follows: Discrete Lindley distribution by [1], discrete inverse
Weibull distribution by [2], discrete Pareto distribution by [3], discrete Rayleigh distribution
by [4], two-parameter discrete Lindley distribution by [5], exponentiated discrete Lindley
distribution by [6], discrete Burr–Hatke distribution by [7], discrete Bilal distribution [8],
discrete three-parameter Lindley distribution by [9], etc. Recently, Ref. [10] proposed a
discrete version of Ramos–Louzada distribution [11] for asymmetric and over-dispersed
data with a leptokurtic shape.
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Furthermore, count datasets arising in time series can be seen in many applied research
areas. Examples include modelling and predicting the number of claims for next month
for the insurance sector in a company, predicting the number of deaths from disasters,
etc. The first-order integer-valued autoregressive process, or INAR(1), is appropriate for
such cases. The authors of [12,13] independently developed the pioneer works of INAR(1)
with Poisson innovations. Furthermore, since time series of counts mainly display over-
dispersion (i.e., empirical mean is less than empirical variance), Poisson for innovation
distribution is less efficient (since equi-dispersed). Hence, researchers have assembled many
approaches concerning innovations in modelling over-dispersed time series count datasets.
The INAR(1) process with geometric innovations (INAR(1)G) by [14], INAR(1) process with
Poisson–Lindley innovations (INAR(1)PL) by [15], INAR(1) process with a new Poisson
weighted exponential innovation ((INAR(1)NPWE)) by [16], INAR(1) process with discrete
three-parameter Lindley as innovation by [9], INAR(1) process with discrete Bilal as
innovation by [8], INAR(1) process with Poisson quasi Gamma innovations (INAR(1)PQX)
by [17] and the INAR(1) process with Bell innovations (INAR(1)BL) by [18] are some of the
recently developed over-dispersed INAR(1) processes.

Even though these processes provide better solutions to over-dispersed time series
count datasets, they have some limitations that can sometimes cause computing difficulties.
Even if a model has one parameter, the inclusion of special functions in the pmf, cumulative
distribution function (cdf) and other statistical properties makes it difficult to obtain explicit
expressions and, hence, for estimation procedures to generate them (see, e.g., [9,19]).

Hence, the main objective of the present work is to introduce a two-parameter dis-
crete distribution, the discrete Pseudo Lindley (DPsL) distribution, which can serve as a
model to analyse under as well as over-dispersed datasets, having a simple pmf and cdf.
The main peculiarity of the proposed distribution is that it has closed-form expressions for
its statistical properties such as a hazard rate function (hrf), probability-generating function
(pmf), moments, skewness, kurtosis, mean past lifetime (mpl), mean residual lifetime (mrl),
stress–strength reliability, etc. We embellish the importance of the DPsL distribution in the
INAR(1) process by applying the DPsL distribution as an innovation process.

The remaining parts of the paper are organized as follows: Section 2 defines the
proposed distribution and various properties such as moments, mean residual lifetime,
mean past lifetime and stress–strength reliability,. Section 3 contains estimation methods
and their simulation study. The INAR(1) process with DPsL innovations is developed in
Section 4 with its parameter estimation and simulation study. In Section 5, three datasets
are analysed by the DPsL distribution, and some other competitive and well-referenced
distributions, in order to prove its applicability. Final remarks are provided in Section 6.

2. The Discrete Pseudo Lindley Distribution
2.1. Some Basics

A discrete analogue of the PsL distribution is derived in this section, namely, the DPsL
distribution by using the survival discretization method. First of all, let us briefly present
the work of [20], which introduced the Pseudo Lindley (PsL) distribution by mixing two
independent random variables: one having the Exponential (θ) distribution, and the other
having the Gamma (2,θ) distribution, with mixing probabilities β−1

β and 1
β , respectively.

Assume that X is a continuous random variable having the PsL distribution; then, its
probability density function (pdf) and sf are given by:

fPsL(x; θ, β) =


θ(β− 1 + θx)e−θx

β
, x > 0

0 , otherwise

and

SPsL(x; θ, β) =


(β + θx)e−θx

β
, x > 0

1 , otherwise
, (2)
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respectively, where β ≥ 1 and θ > 0. Using the survival discretization technique as
described in (1) by using (2), the pmf of the DPsL distribution can be derived as:

PDPsL(x; θ, β) =
(β + θx)e−θx − (β + θ(x + 1))e−θ(x+1)

β
, x = 0, 1, 2, . . .. (3)

The parameter β can be considered as a shape parameter and θ as a scale parameter.
The DPsL distribution can sometimes be denoted by the DPsL (θ, β) distribution to indicate
the parameters.

The corresponding cdf and sf are given by:

FDPsL(x; θ, β) = 1− e−θ(1+x)(β + (x + 1)θ)
β

and

SDPsL(x; θ, β) =
e−θ(1+x)(β + (x + 1)θ)

β
, (4)

respectively. As a first property, the pmf given in (3) is log concave, since:

PDPsL(x + 1; θ, β)

PDPsL(x; θ, β)
=

β + θ + xθ − e−θ(β + (2 + x)θ)
β(eθ − 1) + θ((eθ − 1)x− 1)

is a decreasing function in x for every possible value of the parameters.
The possible pmf shapes plotted for different values of the parameters of the DPsL

distribution are displayed in Figure 1.

0 20 40 60 80 100

0
.0

0
2

0
.0

1
4

θ = 0.04,β = 1

x

p
(x

)

0 20 40 60 80 100

0
.0

0
2

0
.0

1
4

θ = 0.04,β = 1.5

x

p
(x

)

0 20 40 60 80 100

0
.0

0
0

0
.0

3
0

θ = 0.04,β = 15

x

p
(x

)

0 5 10 15 20

0
.0

0
0
.0

8

θ = 0.3,β = 1

x

p
(x

)

0 5 10 15 20

0
.0

0
0
.0

8

θ = 0.3,β = 1.5

x

p
(x

)

0 5 10 15 20

0
.0

0
0
.1

5

θ = 0.3,β = 15

x

p
(x

)

Figure 1. The pmf plots of the DPsL distribution for some set of values for θ and β.

The figure clearly indicates that the DPsL distribution is rightly skewed and has a
longer right tail.

A mode of the DPsL distribution, e.g., xm, is an integer value of x, for which the pmf
PDPsL(x; θ, β) is the maximum. That is PDPsL(x; θ, β) ≥ PDPsL(x+1; θ, β) and PDPsL(x; θ, β) ≥
PDPsL(x− 1; θ, β), which is equivalent to:

θ(1 + eθ)− β(eθ − 1)
θ(eθ − 1)

− 1 ≤ xm ≤
θ(1 + eθ)− β(eθ − 1)

θ(eθ − 1)
.
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Hence, if θ(1+eθ)−β(eθ−1)
θ(eθ−1) ≥ 0, and:

1. If θ(1+eθ)−β(eθ−1)
θ(eθ−1) is not an integer, xm is given as the integer part of θ(1+eθ)−β(eθ−1)

θ(eθ−1) ;

2. If θ(1+eθ)−β(eθ−1)
θ(eθ−1) is an integer, the DPsL distribution is bimodal, with the modes given

by x(1)m = θ(1+eθ)−β(eθ−1)
θ(eθ−1) and x(2)m = θ(1+eθ)−β(eθ−1)

θ(eθ−1) − 1.

If θ(1+eθ)−β(eθ−1)
θ(eθ−1) < 0, the mode of the DPsL distribution is xm = 0.

The hrf of the DPsL distribution can be obtained as:

hDPsL(x; θ, β) =
PDPsL(x; θ, β)

1− FDPsL(x; θ, β)

=
(β + θx)e−θx − (β + θ(x + 1))e−θ(x+1)

e−θ(1+x)(β + (x + 1)θ)
.

The hrf of the DPsL distribution was plotted for some set of values for θ and β in
Figure 2.
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Figure 2. The pmf plots of the DPsL distribution for some set of values for θ and β.

Figure 2 clearly indicates that the hrf of the DPsL distribution is always increasing for
different values of the parameters.

2.2. Identifiability

A set of unknown parameters of a model is stated to be identifiable if different sets
of parameters give different distributions for a given x. Here, the identifiability property
of the DPsL distribution is proved. Let PDPsL(x; λ1) and PDPsL(x; λ2) be different pmfs of
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the DPsL distribution indexed by λ1 = (θ1, β1) and λ2 = (θ2, β2), respectively. Then, the
likelihood ratio is given by:

U =
PDPsL(x; λ1)

PDPsL(x; λ2)

=

(β1+θ1x)e−θ1x−(β1+θ1(x+1))e−θ1(x+1)

β1

(β2+θ2x)e−θ2x−(β2+θ2(x+1))e−θ2(x+1)

β2

=
β2

β1
(β1 + θ1x)e−θ1x − (β1 + θ1(x + 1))e−θ1(x+1)

(β2 + θ2x)e−θ2x − (β2 + θ2(x + 1))e−θ2(x+1)
. (5)

Taking logarithm of this ratio, we obtained:

log U = log
(

β2

β1

)
+ log

(
(β1 + θ1x)e−θ1x − (β1 + θ1(x + 1))e−θ1(x+1)

)
− log

(
(β2 + θ2x)e−θ2x − (β2 + θ2(x + 1))e−θ2(x+1)

)
.

Now, by considering x as a continuous variable and taking the partial derivative of
log U with respect to x and equating it to 0, we obtained:

θ1
(
θ1 + β1 − 1 + θ1x− eθ1(θ1x + β1 − 1)

)
(β1 + θ1x)e−θ1x − (β1 + θ1(x + 1))e−θ1(x+1)

=
θ2
(
θ2 + β2 − 1 + θ2x− eθ2(θ2x + β2 − 1)

)
(β2 + θ2x)e−θ2x − (β2 + θ2(x + 1))e−θ2(x+1)

,

which implies that:

e−(θ2−θ1)x (β2 + θ2x)− (β2 + θ2(x + 1))e−θ2

(β1 + θ1x)− (β1 + θ1(x + 1))e−θ1
=

θ2
(
θ2 + β2 − 1 + θ2x− eθ2(θ2x + β2 − 1)

)
θ1
(
θ1 + β1 − 1 + θ1x− eθ1(θ1x + β1 − 1)

) .

By performing x → +∞, we obtained 0 =
θ2

2(1−eθ2 )

θ2
1(1−eθ1 )

or +∞ =
θ2

2(1−eθ2 )

θ2
1(1−eθ1 )

according

to θ2 > θ1 or θ2 < θ1, respectively, which is impossible since θ1 > 0 and θ2 > 0. There-
fore, θ1 = θ2. By taking into account this equality, by taking x = 0 in (5), we obtained
β1−(β1+θ1)e−θ1

β2−(β2+θ1)e−θ1
= β1

β2
, which is possible if, and only if, β1 = β2. Therefore, we concluded that

the DPsL model is identifiable and that the parameters uniquely determine the distribution,
that is, PDPsL(x; λ1) = PDPsL(x; λ2) ⇐⇒ λ1 = λ2.

2.3. Moments, Skewness and Kurtosis

In the rest of the study, X denotes a random variable that follows the DPsL distribution.
Then, the probability generating function (pgf) of X can be derived as:

G(s) = E(sX) =
∞

∑
x=0

sxPDPsL(x; θ, β)

=
e2θ β− eθ(β + sβ + θ − θs) + sβ

(eθ − s)2β
, |s| < eθ .

When s in pgf is substituted by et, the moment generating function (mgf) follows as:

M(t) = E(etX) =
e2θ β− eθ(β + etβ + θ − θet) + etβ

(eθ − et)2β
, t < θ.
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By using the well-known relationship between M(t) and the (standard) moments of
X, the first four moments of the DPsL distribution are:

E(X) =
eθ(β + θ)− β

(eθ − 1)2β
, (6)

E(X2) =
e2θ β + 3eθθ + e2θθ − β

(eθ − 1)3β
,

E(X3) =
−β− 3eθ β + 3e2θ β + e3θ β + 7eθθ + 10e2θθ + e3θθ(

eθ − 1
)4

β

and

E(X4) =
−β− 10eθ β + 10e3θ β + e4θ β + 15eθθ + 55e2θθ + 25e3θθ + e4θθ(

eθ − 1
)5

β
.

Based on E(X) and E(X2), the variance of X follows from the Koenig–Huygens
formula as:

Var(X) =
eθ [(eθ − 1)2β2 + (e2θ − 1)βθ − eθθ2]

(eθ − 1)4β2 . (7)

Expressions for skewness and kurtosis of the DPsL distribution can be derived explic-
itly by using the following formulas:

Skewness(X) =
E
(
X3)− 3E

(
X2)E(X) + 2[E(X)]3

[Var(X)]3/2

and

Kurtosis(X) =
E
(
X4)− 4E

(
X2)E(X) + 6E

(
X2)[E(X)]2 − 3[E(X)]4

[Var(X)]2
.

2.4. Coefficient of Variation and Dispersion Index

The expressions of the coefficient of variation (CV) and dispersion index (DI) of X are
given by:

CV(X) =

√
Var(X)

E(X)
=

√
(eθ − 1)2β2 + (e2θ − 1)βθ − eθθ2
√

eθ
(
(β + θ)− βe−θ

)
and

DI(X) =
Var(X)

E(X)
=

(eθ − 1)2β2 + (e2θ − 1)βθ − eθθ2

(eθ − 1)2βeθ(β + θ)
, (8)

respectively.
In full generality, when the DI is one, the distribution is equi-dispersed, and if DI is

greater than (less than) one, the distribution is over-dispersed (under-dispersed). Some
numerical values of the mean, variance, DI, skewness and kurtosis for the DPsL distribution
for some values of the parameters are presented in Tables 1 and 2.

From the information contained in these tables, it is clear that the DPsL distribu-
tion would be an appropriate option for modelling under as well as over-dispersed and
positively skewed datasets.
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Table 1. Values for some moment measures for the DPsL distribution for β = 1.5 and different values
of θ.

θ

Measures 4 5 6 7 8

Mean 0.06934 0.02955 0.01245 0.00518 0.00213

Variance 0.06901 0.02939 0.01241 0.00517 0.00212

DI 0.99525 0.99447 0.99649 0.99820 0.99911

Skewness 3.77540 5.77052 8.91577 13.86130 21.65950

Kurtosis 17.19030 35.95970 81.94370 194.42800 471.29900

Table 2. Values for some moment measures for the DPsL distribution for θ = 2 and different values
of β.

β

Measures 10 11 12 13 14 15

Mean 0.19272 0.18943 0.18669 0.18437 0.18238 0.18065

Variance 0.22724 0.22315 0.21972 0.21681 0.21430 0.21212

DI 1.17912 1.17799 1.17694 1.17595 1.17504 1.17420

Skewness 2.84454 2.86632 2.88457 2.90007 2.91340 2.92497

Kurtosis 12.9041 13.05360 13.17890 13.28540 13.3768 13.4562

2.5. Mean Residual Lifetime and Mean Past Lifetime

The mean residual lifetime (mrl) and mean past lifetime (mpl) of a component are
two widely used measures to study the ageing behaviour of components. Both measures
characterize the distribution uniquely. By assuming that the lifetime of a component is
modelled by X, the mrl of X at i = 0, 1, 2, . . . is defined as:

ζ(i) = E(X− i | X ≥ i)

=
1

1− FDPsL(i− 1; θ, β)

∞

∑
j=i+1

(1− FDPsL(j− 1; θ, β)).

That is:

ζ(i) =
1

e−θi(β + θi)

∞

∑
j=i+1

e−θ j(β + θ j)

=
eiθ((eθ − 1)β− iθ + eθ(1 + i)θ

)
e−θi(β + θi)(eθ − 1)2 .

Furthermore, the mpl of X is another reliability measure that corresponds to the time
elapsed since the failure of X given that the system has already failed before some i. Thus,
the mpl of X at i = 1, 2, . . . is defined by:

ζ∗(i) = E(i− X | X < i)

=
1

FDPsL(i− 1; θ, β)

i

∑
m=1

FDPsL(m− 1; θ, β),
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where ζ∗(0) = 0. That is:

ζ∗(i) =
1

β− e−θi(β + iθ)

i

∑
m=1

(β− e−mθ(β + mθ))

=
e−iθ

β− e−θi(β + iθ)(eθ − 1)2 ×

e−iθ
{[

(eθ − 1)(1 + eθi(1 + i)− eθi(1 + i))
]

β−
[
eθ(1+i) + i− eθ(1 + i)

]
θ
}

.

2.6. Stress–Strength Analysis

Stress–strength reliability has wide applications in almost all fields of engineering and
machine learning. Let Xstress and Xstrength be random variables that model the stress and
strength of a system, respectively. Then, the expected reliability can be calculated by the
following formula:

ReStress−Strength = Pr
[

XStress ≤ XStrength

]
=

∞

∑
x=0

PXStress(x)SXStrength(x),

where PX(x) and SX(x) denote the pmf and sf, respectively, of a random variable X.
Suppose that Xstress and Xstrength are two independent random variables following the DPsL
(θ1, β1) and DPsL (θ2, β2) distributions, respectively. Then, from (3) and (4), the expected
reliability is obtained in closed form as:

ReStress−Strength =

1
β1β2(eθ1+θ2 − 1)3

{
(eθ1 − 1)(eθ1+θ2 − 1)β1

[
(eθ1+θ2 − 1)β2 + θ2eθ1+θ2

]
−θ1eθ1

[
(eθ2 − 1)(eθ1+θ2 − 1)β2 + eθ2(1− 2eθ1 + eθ1θ2)θ2

]}
.

Some numerical values for ReStress−Strength for different values of the parameters are
given in Tables 3–5.

From Tables 3 and 4, it is clear that the expected reliability increases (decreases) as
β1 → ∞ (β2 → ∞). In addition, from Table 5, the expected reliability (decreases) as
θ1 → ∞ (θ2 → ∞).

Table 3. Numerical values of ReStress−Strength associated with the DPsL distribution at θ1 = 0.3,
θ2 = 0.1 for different values of β1 and β2.

θ1 = 0.3, θ2 = 0.1

β1 →
β2 ↓ 1 2 3 7

1 0.82926 0.87819 0.89449 0.91314

2 0.6227 0.75075 0.77358 0.79967

3 0.63327 0.70827 0.73327 0.76184

7 0.57728 0.65972 0.68721 0.71862
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Table 4. Numerical values of ReStress−Strength associated with the DPsL distribution at θ1 = 0.6,
θ2 = 0.01 for different values of β1 and β2.

θ1 = 0.6, θ2 = 0.01

β1 →
β2 ↓ 1 2 3 7

1 0.99903 0.99933 0.99943 0.99955

2 0.98084 0.98488 0.98623 0.98777

3 0.97478 0.98007 0.98183 0.98384

7 0.96785 0.97456 0.97679 0.97935

Table 5. Numerical values of ReStress−Strength associated with the DPsL distribution at β1 = 1,
β2 = 1.5 for different values of θ1 and θ2.

β1 = 1, β2 = 1.5

θ1 →
θ2 ↓ 0.1 0.5 0.7 0.9

0.1 0.40431 0.82936 0.87387 0.89879

0.5 0.04949 0.35792 0.45733 0.52947

0.7 0.02667 0.24765 0.33651 0.40671

0.9 0.01619 0.17754 0.25273 0.31061

2.7. Generating Random Values from the DPsL Distribution

Random values from the DPsL distribution can be generated by following the algo-
rithm given below.

1. Generate u as a realization of a random variable U with the U(0,1) distribution.

2. With the expression of the quantile function of the PsL distribution in mind, compute:

y = − β

θ
− 1

θ
W−1(e−ββ(u− 1)),

where W−1(x) denotes the negative branch of Lambert–W function.

3. Then, x = byc represents a realization of a random variable with the DPsL distribution.

To generate a random sample of size n, repeat the algorithm n times.

3. Estimation Methods

The estimation of unknown parameters of a distribution is critical in accurately deter-
mining the behaviour of this distribution. Here, we use classical methods of estimation such
as the method of maximum likelihood (mle) and weighted least square (wls) estimation for
this purpose.

3.1. Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be a random sample taken from the DPsL (θ, β) distribution, and x1, x2,
. . . , xn be observations of this random sample. The likelihood function is given by:

L =

(
1
β

)n
{

n

∏
i=1

[
(β + θxi)e−θxi − (β + θ(xi + 1))e−θ(xi+1)

]}
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and the log likelihood function is given by:

log L = −n log β +
n

∑
i=1

log
[
(β + θxi)e−θxi − (β + θ(xi + 1))e−θ(xi+1)

]
.

Then, the maximum likelihood estimates (MLEs) of θ and β were obtained by max-
imizing L or log L with respect to these parameters. They can also be determined as the
solutions of the normal equations given by:

∂ log L
∂θ

= 0 =⇒
n

∑
i=1

e−θ(2xi+1)[eθxi (xi + 1)(θxi + θ + β− 1)− eθ(xi+1)xi(θxi + β− 1)]
(β + θxi)e−θxi − (β + θ(xi + 1))e−θ(xi+1)

= 0

(9)

and

∂ log L
∂β

= 0 =⇒

−n
β
+

n

∑
i=1

e−θxi − eθ(xi+1)

(β + θxi)e−θxi − (β + θ(xi + 1))e−θ(xi+1)
= 0. (10)

Equations (9) and (10) can be solved by numerical optimization techniques using
mathematical software such as MATHEMATICA, MATHCAD and R.

3.2. Weighted Least Squares Estimation

Let X(1), X(2), ..., X(n) be the order statistics of a random sample taken from the
DPsL (θ, β) distribution, and x(1), x(2), . . . , x(n) be observations of these random vari-
ables. The weighted least squares estimates (WLEs) of the parameters θ and β of the DPsL
distribution were obtained by maximizing the following function with respect to θ and β:

W =
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
FDPsL

(
x(i); θ, β

)
− i

n + 1

]2
.

3.3. Simulation Study

The current section deals with examining the efficiency of two estimation methods
for estimating the parameters of the DPsL distribution using simulation. Estimates were
calculated for different values of parameters ((θ = 0.5, β = 1) and (θ = 2.2, β = 1.5)) for
various sample sizes (25, 50, 75, 100) using the two estimation methods discussed and, thus,
compared. Then, N = 1000 samples of values from the DPsL distribution using methods
discussed in Section 2.7 were generated. The indices such as values of the estimates, mean
square errors (MSEs), average absolute biases (Bias) and average mean relative estimates
(MREs) were calculated in R software using the following formulas:

MSE =
1
N

N

∑
i=1

(ζ̂i − ζ)2, Bias =
1
N

N

∑
i=1
|ζ̂i − ζ|,

MRE =
1
N

N

∑
i=1

|ζ̂i − ζ|
ζ

,

where ζ = θ or β, and the index i refers to the ith sample. Simulation results, including
values of estimates, Bias, MSEs and MREs for the two parameters θ and β of the DPsL
distribution using the estimation approaches discussed, are reported in Tables 6 and 7.
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Table 6. Simulation results of our estimation approaches for the DPsL distribution with θ = 0.5, β = 1.

n Indices
MLE WLSE

θ β θ β

25

Estimates
Bias
MSE
MRE

0.4902
0.0098
0.0069
0.1319

1.1126
0.1126
0.1217
0.1326

0.4289
0.0710
0.0448
0.2599

1.0049
0.0049
7.1204 ×10−5

0.0049

50

Estimates
Bias
MSE
MRE

0.4904
0.0096
0.0033
0.0908

1.0808
0.0808
0.0379
0.0868

0.4243
0.0757
0.0444
0.2444

1.0035
0.0035
3.26×10−5

0.0035

75

Estimates
Bias
MSE
MRE

0.4920
0.0079
0.0019
0.0704

1.0614
0.0614
0.0160
0.0614

0.4247
0.0753
0.0429
0.2328

1.0030
0.0030
2.217×10−5

0.0030

100

Estimates
Bias
MSE
MRE

0.4926
0.0074
0.0015
0.0634

1.0553
0.0553
0.0119
0.0553

0.4225
0.0775
0.0427
0.2350

1.0028
0.0028
1.904×10−5

0.0028

Table 7. Simulation results of our estimation approaches for the DPsL distribution with θ = 2.2,
β = 1.5.

n Indices
MLE WLSE

θ β θ β

25

Estimates
Bias
MSE
MRE

2.3027
0.1027
1.5197
0.2509

1.2005
0.2995
0.2979
0.3328

1.7547
0.4452
0.2564
0.2079

1.3939
0.1060
0.0154
0.0734

50

Estimates
Bias
MSE
MRE

2.1843
0.0157
0.2381
0.1829

1.2621
0.2378
0.2774
0.3193

1.8200
0.3799
0.1932
0.1749

1.3993
0.1007
0.0134
0.0681

75

Estimates
Bias
MSE
MRE

2.1853
0.0147
0.1565
0.1457

1.3217
0.1783
0.2519
0.2949

1.8370
0.3629
0.1750
0.1689

1.4066
0.0934
0.0118
0.0639

100

Estimates
Bias
MSE
MRE

2.2052
0.0052
0.0993
0.1154

1.4245
0.0755
0.2468
0.2784

1.8489
0.3511
0.1627
0.1642

1.4133
0.0867
0.0105
0.0598

From the above tables, it is clear that, for estimating θ, the corresponding MLE
performed well, and for β, the corresponding WLSE outperformed the MLE.
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4. INAR(1) Process with DPsL Innovations

Numerous fields, such as agriculture, epidemiology, actuarial science, finance, etc.,
have come across certain time series of counts. Analysing these kinds of datasets using
the INAR(1) process was first applied using Poisson innovations by [12,13]. Suppose that
{εt}t∈Z are the innovations, so are independent and identically distributed (iid) random
variables, with E(εt) = µε and variance Var(εt) = σ2

ε . A stochastic process {Xt}t∈Z
defined as:

Xt = p ◦ Xt−1 + εt,

with 0 ≤ p < 1, is stated to be an INAR(1) process. The symbol ◦ is called as binomial
thinning operator, which can be described as:

p ◦ Xt−1 =
Xt−1

∑
j=1

Uj,

where {Uj}j∈Z is a sequence of iid Bernoulli random variables with parameter p. The one
step transition probability of the INAR(1) process is given by:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=1

Pr(B = i)Pr(εt = k− i), k, l ≥ 0,

where B denotes a random variable following the Binomial (n, p) distribution. The mean,
variance and dispersion index (DI) of {Xt}t∈Z are given by [21]. They are:

E(Xt) =
µε

1− p
, (11)

Var(Xt) =
pµε + σ2

ε

1− p2 (12)

and

DI(Xt) =
DIε + p
1 + p

, (13)

where µε, σ2
ε and DIε are the mean, variance and DI of the innovation distribution. The re-

sults of [12,13] influenced us to propose a new INAR(1) process with DPsL innovations,
which are capable of modelling over as well as under-dispersed count datasets. Suppose
that {εt}t∈Z follow a DPsL distribution; then, the one step transition probability matrix of
the corresponding process is:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=1

(
l
i

)
pi(1− p)l−i

× (β + θ(k− i))e−θ(k−i) − (β + θ((k− i) + 1))e−θ((k−i)+1)

β
,

which hereafter is called the INAR(1)DPsL process. By substituting µε, σ2
ε , and DIε in (11)–(13)

with (6)–(8), the mean, variance and DI of the INAR(1)DPsL process could be attained. The
conditional expectation and variance of the INAR(1)DPsL process are given by:

E(Xt | Xt−1) = pXt−1 + µε, (14)
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and
Var(Xt | Xt−1) = p(1− p)Xt−1 + σ2

ε , (15)

respectively, where µε and σ2
ε are given in (6) and (7), respectively (see [13,21]).

4.1. Estimation

Here, the inference of the INAR(1)DPsL process was examined using two estimation
methods: the conditional maximum likelihood (CML) and Yule–Walker (YW) methods.
A simulation study was performed to assess the efficiency of the two methods.

4.1.1. Conditional Maximum Likelihood

Let X1, X2, . . . , XT be a random sample taken from the INAR(1)DPsL process, and
x1, x2, . . . , xT be observations of this random sample. Then, the conditional log likelihood
function of the INAR(1)DPsL process is given by:

`(Θ) =
T

∑
t=2

log[Pr(Xt = xt | Xt−1 = xt−1)]

=
T

∑
t=2

log

[
min(xt ,xt−1)

∑
i=1

(
xt−1

i

)
pi(1− p)xt−1−i

(β + θ(xt − i))e−θ(xt−i) − (β + θ(xt − i + 1))e−θ(xt−i+1)

β

]
,

(16)

where Θ = (θ, β, p) is the vector of unknown parameters to be estimated. Maximizing (16)
with respect to Θ yields the CML estimates (CMLEs). In this regard, we used the optim-
function in R software for the same. In addition, the fdHess function in R was used to
obtain the observed information matrix and, hence, the standard errors (SE) of estimates of
parameters in the INAR(1)DPsL process.

4.1.2. Yule–Walker

The YW estimates (YWEs) of the INAR(1)DPsL process were computed by solving
simultaneous equations of sample and theoretical moments. Since the autocorrelation
function (ACF) of the INAR(1) process at lag h was ρx(h) = ph, the YWE of p is given by:

p̂YW =

T
∑

t=2
(xt − x̄)(xt−1 − x̄)

T
∑

t=1
(xt − x̄)2

.

Now, the YWEs for θ and β were obtained by solving the equations of sample mean
equals theoretical mean and sample dispersion equals theoretical dispersion of the process.
Here, by denoting as θ̂YW and β̂YW the YWEs of θ and β, respectively, the following
relationship holds:

β̂YW =
θ̂YWeθ̂YW

x(1− p̂YW)(eθ̂YW − 1)2 − (eθ̂YW − 1)
, (17)

where x = ∑T
t=1 xt/N. Substituting β̂YW with (17) in (13) and equating (13) to sample

dispersion, we obtained θ̂YW .
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4.2. Simulation of INAR(1)DPsL Process

Here, a simulation study was conducted to comprehensively determine the perfor-
mance of CMLEs and YWEs of the parameters of the INAR(1)DPsL process. In this regard,
we generated N = 1000 samples each of sizes n = 25, 50, 100 from the proposed distri-
bution for two sets of parameter values (θ = 0.1, β = 1.1 and θ = 3, β = 4). For each
n, average absolute bias, MSE and MRE for the parameters were calculated for the two
methods. The simulation results are presented in Table 8.

Table 8. Simulation results of the INAR(1)DPsL process.

θ = 0.1, β = 1.1

Sample Size (n) Parameters
CML YW

Bias MSE MRE Bias MSE MRE

25
θ

β

p

0.0183
0.2067
0.0449

0.0019
1.8986
0.0248

0.3271
0.9959
0.4289

0.0644
0.1305
0.6456

0.0047
0.2778
0.2627

0.6443
0.1186
2.1519

50
θ

β

p

0.0035
0.0916
0.0113

0.0007
0.3807
0.1187

0.1758
0.4131
0.2345

0.0633
0.0687
0.0232

0.0043
0.0881
0.0255

0.6330
0.0624
0.0773

100
θ

β

p

0.0014
0.0657
0.0096

0.0001
0.0178
0.0072

0.0841
0.0732
0.1812

0.0623
0.0369
0.0200

0.0040
0.0351
0.0019

0.6225
0.0336
0.0668

θ = 3, β = 4

Sample Size (n) Parameters
CML YW

Bias MSE MRE Bias MSE MRE

25
θ

β

p

0.7181
0.5259
0.0344

0.0853
0.2878
0.0502

1.6194
0.6254
0.2546

0.6708
0.1634
0.3809

1.1252
0.0276
0.5484

0.2236
0.0408
0.5441

50
θ

β

p

0.5244
0.0461
0.0054

0.0824
0.0434
0.0382

1.2841
0.4046
0.2157

0.5281
0.1609
0.2889

0.9221
0.0263
0.5318

0.1764
0.0402
0.4128

100
θ

β

p

0.0709
0.0363
0.0032

0.0816
0.0241
0.0282

0.3019
0.2953
0.1813

0.2791
0.1606
0.2553

0.1449
0.0260
0.0624

0.0930
0.0402
0.3647

From the above table, we observed that the average biases, MSEs and MREs of CMLEs
tended to zero quicker than those of YWEs, making them efficient for small as well as large
sample sizes. Therefore, the CML estimation was preferred to attain unknown parameters
of the INAR(1)DPsL process.
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5. Empirical Study

Three real datasets were used in this section to illustrate the performance of the DPsL
distribution over some competitive distributions. The capability of the fitted distributions
was compared using the goodness of fit criterion with its corresponding p-value.

5.1. Failure Times

The data of failure times for a sample of 15 electronic components in an acceleration
life test (see [22]) were considered here. These data were based on the discretization concept.
Adopting a data analysis setting, we compared the DPsL, discrete three-parameter Lindley
(DTPL) (see [9]), discrete log-logistic (DLL) (see [23]), discrete inverse Weibull (DIW)
(see [2]), discrete Burr–Hutke (DBH) (see [6]), discrete Pareto (DP) (see [3]), Poisson (P) and
geometric (G) distributions. The MLEs with standard errors (SEs) and confidence intervals
(CIs) for the parameter(s), estimated −log Likelihood (−L), Akaike information criterion
(AIC), Bayesian information criterion (BIC) and goodness of fit statistic (Kolmogorov
statistic (K-S) and p-value) of these distributions for this dataset are given in Table 9.

Table 9. The MLEs, CIs, −L, AIC, BIC, K-S and p-values of all the fitted distributions for the failure
times data.

Model

Statistic DPsL DTPL DLL DIW

θ MLE (SE)
CI

β MLE (SE)
CI

λ MLE (SE)
CI

0.0623 (0.0043)
(0.0538, 0.0707)
1.3427 (0.1572)
(1.0331, 1.6492)

–
–

0.5084 (0.8277)
(−1.1139, 2.1307)

0.0924 (0.1506)
(0.0629, 0.1219)
0.9397 (0.0040)
(0.0845, 0.1003)

21.4627 (1.392)
(18.7344, 24.1909)

1.7906 (0.1001)
(1.5943, 1.9868)

–
–

0.0077 (0.0032)
(0.0013, 0.0140)
0.7111 (0.0343)
(0.6439, 0.7782)

–
–

−L 64.2790 64.2790 65.6904 70.4214
AIC 132.558 134.558 135.3809 144.8427
BIC 133.9741 136.6822 136.797 146.2588

K-S value 0.1114 0.1116 0.1351 0.2194
p-value 0.9819 0.9816 0.9133 0.4068

Model

Statistic DBH DP P G

θ MLE (SE)
CI

0.999 (0.0019)
(0.9953, 1.0030)

0.7202 (0.0158)
(0.6893, 0.7511)

27.535 (0.3498)
(26.8495, 28.2208)

0.035 (0.0023)
(0.0305, 0.0395)

−L 91.3684 77.4023 151.2064 66.0001
AIC 184.7368 156.8047 304.4129 133.0002
BIC 185.4448 157.5127 305.1209 134.7083

K-S value 0.7912 0.4053 0.3815 0.1766
p-value 1.582×10−10 0.0097 0.0179 0.6743

From Table 9, it is evident that, besides the DPsL distribution, the DTPL, G and DLL
distributions also performed quite well, but it is clear that the DPsL distribution was
the best among them, since it had the lowest K-S, AIC and BIC, with a higher p-value.
In order to illustrate this claim, Figure 3 provides the probability–probability (P–P) plots,
and Figure 4 displays the estimated cdfs of the fitted distributions.
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Figure 3. The P–P plots for the fitted distributions using the failure times data.
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Figure 4. Estimated cdfs of the fitted distributions using the failure times data.

From the above figures, we could infer that the DPsL distribution yielded a better
fit among other fitted distributions. Table 10 completes these results by presenting some
descriptive measures of the fitted DPsL distribution. Hence, it is evident that the fitted
DPsL distribution was over dispersed, moderately right skewed and leptokurtic.

Table 10. Values of some descriptive statistics of the DPsL distribution for the failure times data.

Mean Variance DI Skewness Kurtosis

27.8667 395.5822 14.1955 0.7020 2.3149
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5.2. Numbers of Borers

The second dataset was the biological experiment data, which represented the number
of European corn borer (No. ECB) larvae Pyrausta in the field (see [24]). It was an experi-
ment conducted randomly on eight hills in 15 replications, and the experimenter counted
the number of borers per hill of corn. The fits of the DPsL distribution were compared
together with some competitive distributions which were the new Poisson weighted ex-
ponential (NPWE) (see [16]), DIW, discrete Burr-XII (DBXII) (see [23]), discrete Bilal (DBl)
(see [8]), DP, DBH and Poisson (P) distributions. The MLEs with their corresponding SEs,
CIs under the form (lower bound of the CI (LCI), upper bound of the CI (UCI)) for the
parameter(s) and goodness of fit test for the numbers of borers dataset are reported in
Table 11.

Table 11. The MLE, LCI, UCI, −L, AIC, BIC, χ2 and p-values for the one parameter distributions considered using the
number of borers dataset.

X
Observed
Frequency

Expected Frequency

DPsL NPWE DIW DBXII DBl DP DBH P

0 43 44.62 48.32 41.37 43.84 32.74 64.45 68.07 27.22
1 35 30.46 28.86 41.85 39.61 39.59 20.15 21.97 40.38
2 17 19.07 17.24 15.42 15.62 24.27 9.69 10.51 29.95
3 11 11.34 10.29 7.17 7.20 12.50 5.65 5.98 14.81
4 5 6.51 6.15 3.94 3.91 5.97 3.68 3.75 5.49
5 4 3.65 3.67 2.42 2.37 2.74 2.58 2.51 1.63
6 1 2.01 2.19 1.61 1.59 1.23 1.90 1.75 0.40
7 2 1.09 1.31 1.13 1.09 0.54 1.46 1.26 0.09
8 2 1.25 1.94 5.09 4.80 0.24 1.15 0.93 0.02

Total 120 120 120 120 120 120 120 120 120

θ

MLE 0.7219 0.1434 0.345 0.519 0.6565 0.3292 0.8654 1.4834
SE 0.0122 0.2945 0.043 0.051 0.0017 0.0031 0.0035 0.0101

LCI 0.6980 0 0.261 0.419 0.6532 0.3232 0.8585 1.4635
UCI 0.7459 0.4339 0.429 0.619 0.6599 0.3352 0.8723 1.5033

β

MLE 2.4635 0.5896 1.541 2.358
SE 0.1367 1.3706 0.156 0.3656

LCI 2.1956 0 1.235 1.641
UCI 2.7315 3.2760 1.847 3.074

−L 200.4152 200.8774 204.812 204.293 204.6753 220.6182 214.0490 219.1879
AIC 404.8303 405.7548 413.624 412.586 411.3505 443.2363 430.0979 440.3759
BIC 410.4053 411.3297 419.199 418.161 414.138 446.0238 432.8854 443.1634
χ2 1.4445 2.1591 5.511 4.664 10.0780 26.645 25.795 38.583

Degrees of freedom 3 3 3 3 4 4 4 4
p-value 0.9194 0.8267 0.138 0.198 0.0731 <0.001 <0.001 <0.001

From the above table, it is evident that, besides the DPsL distribution, the NPWE
distribution also performed quite well, but it is clear that the DPsL distribution was the best
among them, since it had the lowest −L, AIC, BIC and χ2 value with the highest p-value.

From Figure 5, we could infer that the DPsL distribution yielded a better fit among
other fitted distributions. To complete this, Table 12 contains some descriptive measures of
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the fitted DPsL distribution. Hence, here also, it is evident that the fitted DPsL distribution
was over-dispersed, moderately right skewed and leptokurtic.
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Figure 5. The estimated pmfs of the fitted distributions for the number of borers dataset.

Table 12. Values of some descriptive statistics of the DPsL distribution for the number of borers dataset.

Mean Variance DI Skewness Kurtosis

1.5917 2.6249 1.6491 0.8172 2.6435

5.3. Numbers of Claims

In this part, a comparison of the performance of the INAR(1)DPsL process with the
INAR(1)DTPL (see [7]), INAR(1)NPWE (see [16]), INAR(1)DPLi (see [15]) and INAR(1)G
(see [14]) processes was conducted. The one-step translation probabilities of the competitive
INAR(1) processes were given as follows:

1. For the INAR(1)DPLi process:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=0

(
l
i

)
pi(1− p)l−i θ2(k− i + θ + 2)

(θ + 1)k−i+3 , θ > 0.

2. For the INAR(1)DTPL process:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=1

(
l
i

)
pi(1− p)l−i

× λk−i{β(λ(log(λ)− 1) + 1) + (λ− 1) log(λ)(α + β(k− i))}
β− α log(λ)

,

0 < λ < 1, αθ + β > 0, θ = − log(λ).
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3. For the INAR(1)NPWE process:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=0

(
l
i

)
pi(1− p)l−iα(1 + θ)(1 + α + αθ)−(k−i)−1,

α > 0, θ > 0.

4. For the INAR(1)G process:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=1

(
l
i

)
pi(1− p)l−i

[
α(1− α)k−i

]
,

0 < α < 1.

The third data we used here were to illustrate the application of the DPsL distribution
in the INAR(1) process. Originally, the data were studied by [25], which consisted of 67
monthly claims for short-term disability benefits made by injured workers to the B.C.
Workers’ Compensation Board (WCB). These data were reported from the BC Center,
Richmond, for the period of 10 years from 1985 to 1994. The mean, variance, and DI of the
dataset were 8.6042, 11.2392 and 1.3062, respectively. To check whether the data considered
had statistically significant over-dispersion, the hypothesis test proposed by [26] was
applied. The value test statistic was 51.971 with a p-value less than 0.001, which showed
the data had significant over-dispersion. Figure 6 displays the plots of the autocorrelation
function (ACF), partial ACF (PACF), histogram and time series plots, and in the PACF plot
the unique first lag significance indicated that these data could be used for modelling the
INAR(1) process.
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Figure 6. PACF, ACF, histogram and time series plot for the number of claims dataset.

The parameter estimates, modelling adequacy criteria, theoretical mean, variance
and DI of the fitted INAR(1) process were recorded in Table 13. Since the INAR(1)DPsL
process had lesser values for -L, AIC and BIC statistics than those of the INAR(1)DTPL,
INAR(1)NPWE, INAR(1)PL and INAR(1)G processes, the INAR(1)DPsL process provided
better fits than the competitors. Additionally, the obtained DI value of the INAR(1)DPsL
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process was very near the empirical one. It is conclusive that the INAR(1)DPsL process
impressively explained the characteristics of the dataset.

Table 13. The estimates and modelling adequacy statistics of the fitted distributions for the number of claims dataset.

Model Parameters Estimates (SE) −L AIC BIC µx σ2
x DIx

INAR(1)DPsL
θ

β

p

0.4835(0.0526)
1.9214(0.1254)
0.5620(0.0439)

245.3344 496.6687 504.3618 8.7812 15.9626 1.8178

INAR(1)DTPL

θ

β

λ

p

−0.1211(0.3067)
0.4834(0.1903)
0.7477(0.0324)
0.5619(0.0439)

245.3344 498.6687 508.9261 8.7604 16.2473 1.8546

INAR(1)NPWE
θ

β

p

0.1729(0.8221)
0.2738(0.1919)
0.6432(0.0338)

252.3457 510.6913 518.3844 8.3542 18.4417 2.2075

INAR(1)DPL
θ

p
0.4938(0.0583)
0.6139(0.0381)

248.6185 501.237 506.3657 9.375 23.1842 2.4729

INAR(1)G
θ

p
0.2431(0.0263)
0.6432(0.0338)

252.3457 508.6913 513.82 9.0417 31.4719 3.4808

Empirical 8.6042 11.2392 1.3062

The residual analysis was conducted to check whether the fitted INAR(1)DPsL process
was accurate. For that, Pearson residuals for the INAR(1)DPsL process were calculated
through the following formula:

rt =
xt − E(Xt | Xt−1 = xt−1)

Var(Xt | Xt−1 = xt−1)
1/2 ,

where E(Xt | Xt−1 = xt−1) and Var(Xt | Xt−1 = xt−1) were derived from (14) and (15),
respectively. When the fitted INAR(1) process was statistically valid, the Pearson residual
had to be uncorrelated and should have had zero mean and unit variance [27]. Here, we
obtained the mean and variance of the Pearson residuals of the INAR(1)DPsL process as
0.035 and 0.967, respectively, which were very close to the desired values. According to the
results of [28], the INAR(1)DPsL process for the data was

Xt = 0.5620 ◦ Xt−1 + εt,

where the innovation process was such that εt follows the DPsL (0.4835, 1.9214) distribution.
Predicted values of the monthly number of claims dataset and the ACF plot of the Pearson
residuals via this process were displayed in Figure 7.

Based on this figure, the ACF plot of the Pearson residuals specified that there was no
presence of autocorrelation for the Pearson residuals.
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Figure 7. The predicted values of the number of claims dataset (left) and the ACF plot of the Pearson
residuals (right).

6. Concluding Remarks

In this paper, a two-parameter discrete distribution, namely, the discrete Pseudo
Lindley (DPsL) distribution, was proposed. Its primary motivation is the ability to model
various phenomena with under- and over-dispersed observed values. Various statistical
properties, almost all having a closed form, revealed the flexibility and simplicity of
the distribution. The estimation of the unknown parameters was performed using two
different methods. They conducted an extensive simulation study to reveal the finite
sample performance of the distribution. Crucially, a new INAR(1) process with DPsL
innovations was developed and studied in detail. Three real-life datasets were considered
to prove the efficiency of the proposed distribution. As a future work, we could consider
other methods of discretization for the PsL distribution, which would then provide better
properties than the survival discretization method. Furthermore, we can attempt to extend
it to bivariate models. We hope that the DPsL distribution, as well as the related modelling
strategy, will be an interesting alternative to modelling count data, especially in modelling
the over-dispersed count data.
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