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Abstract: A bounded form of the Teissier distribution, namely the unit Teissier distribution, is intro-
duced. It is subjected to a thorough examination of its important properties, including shape analysis
of the main functions, analytical expression for moments based on upper incomplete gamma func-
tion, incomplete moments, probability-weighted moments, and quantile function. The uncertainty
measures Shannon entropy and extropy are also performed. The maximum likelihood estimation,
least square estimation, weighted least square estimation, and Bayesian estimation methods are
used to estimate the parameters of the model, and their respective performances are assessed via a
simulation study. Finally, the competency of the proposed model is illustrated by using two data sets
from diverse fields.
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1. Introduction

The introduction of new statistical distributions, defined on both the whole real line
and the positive real line, is required for the interpretation of real-world occurrences. In
both of these lines, a large number of probability distributions for real data sets have
been presented recently. Several distributions that fall within these two categories have
demonstrated their importance from both a theoretical and practical standpoint. It is true,
however, that in many practical disciplines such as economics, medicine, biology, and
others, there is a problem of bounded phenomena, or uncertainty resulting from factors
such as rates, indices, proportions, and test scores. It is also important to note that, in
comparing distributions with unbounded support to those with bounded support, one
can find notable scarceness. As a result, in the recent past, some authors have focused on
developing distributions that are defined on the bounded interval using any one of the
parent distribution transformation techniques. For better understanding, we refer to recent
papers in [1,2].

The beta distribution is definitely the most famous distribution among distributions
defined in the (0, 1) interval. While the beta distribution is useful for modeling data on the
unit interval, many other distributions have been proposed and studied over time. The
readers may refer to the Topp–Leone distribution (see [3]), Kumaraswamy distribution
(see [4]) and transformed Leipnik distribution (see [5]). However, in recent times, there
has been a growing interest by statisticians in proposing distributions defined by the unit
interval corresponding to any continuous distribution. The readers may refer to the log-
Lindley distribution (see [6]), exponentiated Topp–Leone distribution (see [7]), unit inverse
Gaussian distribution (see [8]), unit Lindley distribution (see [9]), unit Weibull distribution
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(see [10]), unit Burr-III distribution (see [11]), and unit half normal distribution (see [12]),
among others. As a result, a lot of contributions are made to the existing literature. This
recent leap in the number of research papers devoted to proposing new distributions in the
unit interval exhibits their growing relevance. Despite the fact that many distributions have
been proposed and studied as alternatives, there is still no agreement on which distribution
is preferred.

In this article, a new bounded distribution is introduced by considering the baseline
distribution as the Teissier distribution (TD) which was first introduced by the French
biologist Georges Teissier in modeling the mortality of domestic animal species as a result
of pure aging (see [13]). A continuous random variable Y is said to have the TD with
parameter θ > 0 if its probability density function (pdf) is given by

fY(y; θ) = θ
(

eθy − 1
)

exp
(

θy− eθy + 1
)

, y > 0. (1)

The cumulative distribution function (cdf) of Y is given by

FY(y; θ) = 1− exp
(

θy− eθy + 1
)

, y > 0.

Despite its importance, the TD has been overlooked in the statistical literature. Ref. [14]
examined the location version of this model and explored a characterization based on life
expectancy as part of a demographic study, four decades after it was introduced. In a
later study, Muth [15] found that a TD-derived distribution has a heavier tail than well-
known lifetime distributions such as the gamma, lognormal, and Weibull distributions.
This distribution was later used by [16] to estimate the lifetime distribution for a German
dataset based on used car prices. The TD and its location version have been forgotten
since [16], and no further references appear in the literature until 2008. Ref. [17] showed
that as the parameter decreases to zero, the model approaches the classical exponential
distribution. The authors of [18] reintroduced this distribution and its scaled version, and
studied its important properties using a generalized integro-exponential function [18,19]
can be considered as the two-parameter extensions of the TD.

The study of the TD has gained momentum in both theoretical and applied perspec-
tives after the work of [19–23] substantiate this claim. Meanwhile, the TD and its various
variants proved their signature compared to other models for various real-life data sets.
This is the chief motivation for looking into the TD defined on the unit interval, so-called
the unit Teissier distribution (UTD), and its competency compared to other popular dis-
tributions defined on the unit interval. Finally, it can be concluded that it performs well
compared to other distributions for the real-life data sets considered here.

As in the case of real-life data sets that vary over positive real lines and possess a
bathtub-shaped hazard rate function (hrf), some real-life data sets that are defined on the
unit interval also possess a bathtub-shaped hrf. In the former case, there is a tremendous
amount of work in the literature on various models, such as [24–26]. As far as the latter
case is considered, the papers in [8,27] showed that the unit inverse Gaussian and logit
slash distributions, respectively, provide a bathtub-shaped hrf. These two distributions are
more intricate because of the presence of the log function in their pdfs, and so their cdfs are
not obtained in closed form. Hence, simulation experiments from these two distributions
are very difficult. For some real data sets, the logit slash distribution does not yield a
numerical estimation of parameters. Moreover, the hrfs of both of these distributions
are not analytically tractable, even though they sketch the graph of the hrf and provide
its various shapes. In addition, Korkmaz [27] proved that the logit slash distribution
possesses a N-shaped (modified bathtub shape) and w-shaped bathtub shaped hrf. Another
distribution defined on the unit interval, which also possesses a non-monotone shaped hrf,
is the unit Modified Burr III distribution (see [28]), which has three parameters. Models
with a lower number of parameters are preferable for various reasons, such as ease of
simulation drawing and less difficulty in inferential aspects.
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The UTD solves these two problems by providing closed form expressions for pdf, cdf,
moments, inequality measures, and entropy measures. Secondly, it possesses monotone
(increasing and decreasing) as well as non-monotone functions, such as bathtub-shaped
and N-shaped hrf (modified bathtub shaped) with a smaller number of parameters. Based
on [29], N-shaped hrfs appear in mortality among breast cancer patients.

The rest of the paper is presented as follows. In Section 2, the UTD is introduced
and the statistical properties such as moments, incomplete moments, probability-weighted
moments, and quantile function are studied. The Shannon entropy and extropy are derived
in Section 3. Discussion on different methods of estimation, such as maximum likelihood
(ML), ordinary, weighted least square and Bayesian estimation are carried out in Section 4.
In Section 5, a simulation study is performed to evaluate the performance of the model
parameter estimates. In Section 6, the proposed distribution is elucidated with two real
data sets. Finally, the conclusions are presented in Section 7.

2. The Unit Teissier Distribution

In this Section, the UTD is presented and we determine some of its statistical properties.

2.1. Presentation

Mathematically, the UTD is derived from the transformation X = e−Y by taking into
account the definition of the pdf given by (1). Its definition is formalized below.

Definition 1. A random variable X is said to follow the UTD with parameter θ > 0, if its pdf is of
the following form:

f (x; θ) = θ
(

x−θ − 1
)

x−(θ+1)e−x−θ+1, x ∈ (0, 1). (2)

The corresponding cdf is given by

F(x; θ) = x−θe−x−θ+1. (3)

From (2) and (3), the survival function S(x; θ), hrf h(x; θ) and reversed hrf τ(x; θ) of
the UTD are obtained as follows (for x ∈ (0, 1)):

S(x; θ) = 1− x−θe−x−θ+1,

h(x; θ) =
f (x; θ)

S(x; θ)
=

θ
(
x−θ − 1

)
x−(θ+1)e−x−θ+1

1− x−θe−x−θ+1
(4)

and

τ(x; θ) =
f (x; θ)

F(x; θ)
=

θ
(
x−θ − 1

)
x

.

2.2. Shapes of the pdf and hrf

As immediate shape properties for the pdf and hrf, we can say that

lim
x→0

f (x; θ) = lim
x→0

h(x; θ) = 0,

and that the UTD is unimodal; the mode is the value of x maximizing f (x; θ), which is
given by

xmode = 2−
1
θ

(
1 + 3θ −

√
5θ2 + 2θ + 1

1 + θ

) 1
θ

.
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In order to obtain an overview of the shapes of the pdf (2) and hrf (4), the corresponding
plots for different choices of the parameter θ are given in Figures 1 and 2, respectively.
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Figure 1. Plots of various shapes of the pdf of the UTD for varying values of the parameter θ.
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Figure 2. Cont.
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Figure 2. Plots of various shapes of the hrf of the UTD for varying values of the parameter θ.

The graphs of the hrf for various combinations of parameters show various shapes,
including increasing, decreasing, bathtub, and N-shaped (modified bathtub shape). Ac-
cording to [29], mortality among breast cancer patients is characterized by an N-shaped hrf.
This is one of the prominent properties of the UTD.

2.3. Moments

Analytically, the UTD’s non-central moments can be expressed in terms of the upper
incomplete gamma function. This is specified in the result below.

Result 1. For any non-negative integer r, the rth non-central moment of a random variable X with
the UTD is

µ′r = E(Xr) = e
{

Γ
(
− r

θ
+ 2, 1

)
− Γ

(
− r

θ
+ 1, 1

)}
,

where E denotes the expectation operator, e ≈ 2.718282 (the exponential function taken at the value
1) and Γ(a, b) =

∫ ∞
b ta−1e−tdt is the upper incomplete gamma function.

Proof. Based on (2) and the definition of non-central moment, as well as the change of
variable u = x−θ , and considering the definition of the upper incomplete gamma function,
we have

µ′r =
∫ 1

0
xr f (x; θ)dx =

∫ ∞

1
u−

r
θ (u− 1)e−u+1du

= e
{

Γ
(
− r

θ
+ 2, 1

)
− Γ

(
− r

θ
+ 1, 1

)}
.

This ends the proof.

The statistical measures such as the mean (µ) and variance (σ2) can be calculated
numerically by using R software. Figure 3a,b illustrate the behavior of the mean and
variance for varying values of the parameter θ, respectively.
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Figure 3. Plots of the (a) mean and (b) variance of the UTD for varying values of the parameter θ.

2.4. Incomplete Moments

As a generalized version of the non-central moments, the UTD’s incomplete moments
can be also expressed in terms of the upper incomplete gamma function.

Result 2. For any non-negative integer k and x ∈ (0, 1), the kth incomplete moment at x of a
random variable X with the UTD is

mk(x; θ) = E(Xk1X≤x) = e
{

Γ
(
− k

θ
+ 2, x−θ

)
− Γ

(
− k

θ
+ 1, x−θ

)}
.

Proof. By the definition of the kth incomplete moment, we have

mk(x; θ) =
∫ x

0
tk f (t; θ)dt.

In the above integral expression, after making the change of variable u = t−θ , the
proof is similar to the one of Result 1, so the details are excluded here.

There is an interesting aspect of the fact that the first incomplete moment m1(x; θ)
can be used to compute the mean deviation from the mean (µ) given by E[|X− µ|] =
2µF(µ; θ)− 2m1(µ; θ).



Math. Comput. Appl. 2022, 27, 12 7 of 20

2.5. Probability-Weighted Moments

The probability-weighted moments of the UTD are now under investigation.

Result 3. For any non-negative integers r and s, the (r, s)th probability-weighted moment of a
random variable X with the UTD is given as

mr,s(x; θ) = E(XrF(X; θ)s)

=
es+1

(s + 1)−
r
θ +s+2

{
Γ
(
− r

θ
+ s + 2, s + 1

)
− (s + 1)Γ

(
− r

θ
+ s + 1, s + 1

)}
.

Proof. By the definition of the (r, s)th probability-weighted moment and by making the
change of variable u = (s + 1)x−θ , we obtain

mr,s(x; θ) =
∫ 1

0
xr(F(x; θ))s f (x; θ)dx

= es+1θ
∫ 1

0
xr−θ(s+1)x−(θ+1)e−(s+1)x−θ

dx− es+1θ
∫ 1

0
xr−θsx−(θ+1)e−(s+1)x−θ

dx

=
es+1

(s + 1)−
r
θ +s+2

∫ ∞

s+1
u−

r
θ +s+1e−udu− es+1

(s + 1)−
r
θ +s+1

∫ ∞

s+1
u−

r
θ +se−udu

=
es+1

(s + 1)−
r
θ +s+2

{
Γ
(
− r

θ
+ s + 2, s + 1

)
− (s + 1)Γ

(
− r

θ
+ s + 1, s + 1

)}
.

The desired result is obtained.

2.6. Mean Residual Life Function

Result 4. For any t ∈ (0, 1), the mean residual life function at t of a random variable X with the
UTD is

r(t; θ) = E(X− t|X > t)

=
1

1− t−θe−t−θ+1

{
1− t− e

θ

[
Γ
(

1− 1
θ

, 1
)
− Γ
(

1− 1
θ

, t−θ

)]}
.

Proof. By the definition of the mean residual life function and by making the change of
variable u = x−θ , we obtain

r(t; θ) =
1

S(t; θ)

∫ 1

t
S(x; θ)dx

=
1

S(t; θ)

{
1− t−

∫ 1

t
x−θe−x−θ+1dx

}
=

1
S(t; θ)

{
1− t− e

θ

∫ t−θ

1
u−

1
θ e−udu

}

=
1

1− t−θe−t−θ+1

{
1− t− e

θ

[
Γ
(

1− 1
θ

, 1
)
− Γ
(

1− 1
θ

, t−θ

)]}
.

The claimed result is achieved.

2.7. Quantile Function

In addition to its remarkable property of being expressed in closed form, the UTD
is also capable of representing the quantile function in terms of the negative branch of
the Lambert W function. We recall that the Lambert W function is a multivalued complex
function defined as the solution of the equation W(z)eW(z) = z, where z is a complex
number. For any real numbers z ≥ −1/e, W(z) has two real branches. The real branch
taking on values in [−1, ∞) is called the principal branch and is denoted by W0, and the
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one taking on values in (−∞,−1] is called the negative branch and is denoted by W−1.
For a comprehensive review of this special function, readers are referred to [30]. From
a computational perspective, the Lambert W function is available in computer algebra
systems such as Maple (function LambertW), Mathematica (function ProductLog), and
Matlab (function lambertW), and also in programming languages such as R [31] (functions
lambert_W0 and lambert_Wm1 for W0 and W−1, respectively, in the package gsl).

Result 5. The quantile function of the UTD is given by

Q(p; θ) =
[
−W−1

(
− p

e

)]− 1
θ , (5)

where p ∈ (0, 1) and W−1 denotes the negative branch of the Lambert W function.

Proof. The cdf F(x; θ) should be inverted to obtain the quantile function of UTD. Thus,
we need to solve F(x; θ) = p according to x, so

−x−θe−x−θ
= − p

e
⇔ −x−θ = W−1

(
− p

e

)
⇔ x =

[
−W−1

(
− p

e

)]− 1
θ .

The obtained x corresponds to the quantile function with respect to p. The desired
result is achieved.

The quantile function in (5) can be used to obtain the following quantities:

• the median given as M = Q(0.5; θ);
• the Galton coefficient of skewness specified by

S =
Q(0.25; θ) + Q(0.75; θ)− 2M

Q(0.75; θ)−Q(0.25; θ)
;

• the Moors coefficient of kurtosis (with correction) defined by

T =
Q(0.875; θ)−Q(0.625; θ) + Q(0.375; θ)−Q(0.125; θ)

Q(0.75; θ)−Q(0.25; θ)
− 1.23.

3. Shannon Entropy and Extropy

This section discusses the Shannon entropy and extropy of the UTD.

3.1. Shannon Entropy

Conceptually, the Shannon entropy is the amount of information into a random
variable. For a random variable T with pdf f (t) with support [0, 1], its Shannon entropy is
defined as

H(T) = −
∫ 1

0
f (t) log f (t)dt. (6)

The Shannon entropy for the UTD is obtained in terms of the following quantities:

• The upper incomplete gamma function already introduced;
• The nth derivative of the gamma function given as Γn(a) =

∫ ∞
0 ta−1(log t)ne−tdt;

• The nth derivative of the incomplete gamma function given as Γn(a, z) =
∫ ∞

z ta−1

(log t)ne−tdt;
• The exponential integral defined by E1(t) =

∫ ∞
t (e−u/u)du.

The next result is about the expression of the Shannon entropy.
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Result 6. The Shannon entropy of a random variable T with the UTD has the following form

H(T) = −(log θ)(eΓ(2, 1)− 1)− Γ1(2)− e(θ + 1)
θ

(
Γ1(2, 1)− E1(1)

)
− 2eΓ(2, 1) + eΓ(3, 1) + 1.

(7)

Proof. By considering the change of variables, u = t−θ and v = t−θ − 1 and taking into
account (2), we obtain

∫ 1

0
f (t) log f (t)dt = e(log θ)

(∫ ∞

1
ue−udu−

∫ ∞

1
e−udu

)
+
∫ ∞

0
ve−v(log v)dv

+
e(θ + 1)

θ

(∫ ∞

1
u log ue−udu−

∫ ∞

1
e−u(log u)du

)
+ e

∫ ∞

1
(2u− u2 − 1)e−udu.

(8)

Substituting (8) in (6) and by using the quantities listed, (7) is obtained.

3.2. Extropy

Extropy is a complementary dual of Shannon entropy that has a variety of interesting
applications, including appropriate scoring of forecasting distributions, comparing the
uncertainty of two random variables, and astronomical measurements of heat distributions
in galaxies, among others. For a random variable T with pdf f (t) with support [0, 1], its
extropy is defined as

J(T) = −1
2

∫ 1

0
f 2(t)dt. (9)

Result 7. The extropy of a random variable T with the UTD has the following form

J(T) =
θe2

2
1
θ +3

{
Γ
(

1
θ
+ 3, 2

)
− 1

4
Γ
(

1
θ
+ 4, 2

)
− Γ

(
1
θ
+ 2, 2

)}
. (10)

Proof. By considering the change of variable u = 2t−θ and taking into account (2), the
numerator of (9) can be obtained as∫ 1

0
f 2(t; θ)dt = θ2e2

∫ 1

0
t−2(θ+1)t−2θe−2t−θ

dt + θ2e2
∫ 1

0
t−2(θ+1)e−2t−θ

dt

− θ2e2
∫ 1

0
t−2(θ+1)2t−θe−2t−θ

dt

=
θe2

2
1
θ +4

∫ ∞

2
u

1
θ +3e−udu +

θe2

2
1
θ +2

∫ ∞

2
u

1
θ +1e−udu− θe2

2
1
θ +2

∫ ∞

2
u

1
θ +2e−udu

=
θe2

2
1
θ +4

Γ
(

1
θ
+ 4, 2

)
+

θe2

2
1
θ +2

Γ
(

1
θ
+ 2, 2

)
− θe2

2
1
θ +2

Γ
(

1
θ
+ 3, 2

)
.

(11)

Substituting (11) in (9), (10) is obtained.

4. Estimation and Inference
4.1. Maximum Likelihood Estimation

Let x1, x2, . . . , xn be a random sample of values of size n from a random variable X
with the UTD of unknown parameter θ. Then the likelihood function of θ is given by

l(θ) = θn
n

∏
i=1

x−(θ+1)
i

n

∏
i=1

(
x−θ

i − 1
)

e−∑n
i=1(x−θ

i −1). (12)
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Then the ML estimate (MLE) of θ, say θ̂, is obtained by maximizing l(θ) with respect
to θ. Thus, for any θ > 0, we have l(θ) ≤ l(θ̂). Practically, one can use the derivative
technique; the partial derivative of log l(θ) with respect to the parameter is

∂ log l(θ)
∂θ

=
n
θ
−

n

∑
i=1

x−θ
i log xi

x−θ
i − 1

−
n

∑
i=1

log xi +
n

∑
i=1

x−θ
i log xi,

and θ̂ is obtained by solving the equation ∂ log l(θ)
∂θ = 0 according to θ. Numerical optimiza-

tion approaches employing mathematical tools such as R and Mathematica are the only
way to achieve this.

Fisher Information Matrix and Asymptotic Confidence Interval

In order to carry out statistical inference on the parameters of the UTD, the 1 × 1
expected Fisher information matrix is needed. It can, however, be efficiently approximated
by the observed Fisher information matrix J(θ̂) given by

J(θ̂) = − ∂2 log l(θ)
∂θ2

∣∣∣∣
θ=θ̂

and we can approximate variance of θ̂ as

Var(θ̂) ≈ J−1(θ̂).

Then the approximate 100(1− φ)% two-sided normal confidence interval for θ is given

by θ̂ ± Z φ
2

√
Var(θ̂), where Z φ

2
is the upper φ

2
th

percentile of a standard normal distribution

and φ is the significance level.

4.2. Ordinary and Weighted Least-Squares Estimation

The ordinary least square (LS) estimation and the weighted least square (WLS) es-
timation were proposed by [32] to estimate the parameters of the beta distribution. Let
x1:n, x2:n, . . . , xn:n be the ordered values of x1, x2, . . . , xn. Let us set

R(θ) =
n

∑
i=1

[
F(xi:n; θ)− i

n + 1

]2
.

Then the LS estimate (LSE) of θ, say θ̃, is obtained by minimizing R(θ) with respect to θ.
Thus, for any θ > 0, we have R(θ̂) ≤ R(θ). Practically, the LSE can also be obtained by
solving the following equation:

∂R(θ)
∂θ

= 2
n

∑
i=1

[
F(xi:n; θ)− i

n + 1

]
D(xi:n; θ) = 0,

where

D(x; θ) =
∂F(x; θ)

∂θ
= −e−x−θ+1x−2θ(xθ − 1) log(x),

according to θ. Similarly, the WLS estimate (WLSE) of θ, say θ̆, is obtained by minimizing
the non-linear function

W(θ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F(xi:n; θ)− i

n + 1

]2
,

and it can also be obtained by solving the following equation:

∂W(θ)

∂θ
= 2

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F(xi:n; θ)− i

n + 1

]
D(xi:n; θ) = 0.
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4.3. Bayesian Estimation

In this subsection, the estimate of the UTD parameter is calculated by using Bayesian
analysis. With this approach, prior knowledge about the problem can be incorporated.
Here, the parameter should be given a prior density, and two types of priors are used
as random priors: the half-Cauchy (HC) and the normal (N) priors. In the numerical
integration, prior distributions that are not completely flat provide enough information to
allow the numerical approximation algorithm to continue exploring the target posterior
density. The HC distribution features such shapes, and its mean and variance do not exist,
but its mode is equal to zero. Regarding the HC distribution, when the parameter becomes
25, the pdf is flat, but not entirely. According to [33], depending upon the information
necessary, uniform or HC is a better choice of prior. Thus, for the parameter θ, HC(25) and
N(0, 1000) are used as prior distributions.

• Case 1: θ ∼ HC(25), then the posterior pdf is given by

π(θ/x) ∝ l(θ)× 2× 25
π(θ2 + 252)

. (13)

• Case 2: θ ∼ N(0, 1000), then the posterior pdf is given by

π(θ/x) ∝ l(θ)× 1√
2π × 103

e−
θ2

2×103 , (14)

where l(θ) is derived from (12).

Since (13) and (14) are not in closed form, one may use numerical integration or MCMC
methods.

5. Simulation Study
5.1. Simulation for ML, LS, and WLS Estimates

In the simulation study, the Monte Carlo simulation was done in order to prove the
efficiency of the model by using different estimation methods such as ML, LS, and WLS.
The estimates were calculated for true values of parameters for N = 1000 samples of sizes
25, 50, 75, 100, 150, 200, and 500 and the following quantities were computed:

1. Mean of the estimates: Mean(υ) = 1
N ∑N

i=1 υi;
2. Average bias of the estimates: Bias(υ) = 1

N ∑N
i=1(υi − θ);

3. Mean square error (MSE) of the estimates: MSE(υ) = 1
N ∑N

i=1(υi − θ)2,

where υ ∈ {θ̂, θ̃, θ̆}, and the index i indicates the considered number of the sample.
Tables 1–3 show the simulation results corresponding to the ML, LS, and WLS estima-
tion methods. A graphical comparison of the MSEs obtained from the three methods
is presented in Figure 4. Among these methods, the ML estimation provides accurate
estimates of the parameter with the least MSE. As in all the estimation methods, the MSE
decreases as sample size n increases, as expected.

Table 1. Simulation results: MLEs, bias, and MSE.

θ = 0.26 θ = 0.45 θ = 0.60

n θ̂ Bias(θ̂) MSE(θ̂) θ̂ Bias(θ̂) MSE(θ̂) θ̂ Bias(θ̂) MSE(θ̂)

25 0.26352 0.00352 0.00045 0.45610 0.00610 0.00135 0.60813 0.00813 0.00241
50 0.26164 0.00164 0.00021 0.45284 0.00284 0.00063 0.60379 0.00379 0.00112
75 0.26116 0.00116 0.00014 0.45200 0.00200 0.00041 0.60267 0.00267 0.00072
100 0.26074 0.00074 0.00010 0.45129 0.00129 0.00031 0.60172 0.00172 0.00055
150 0.26042 0.00042 0.00006 0.45074 0.00074 0.00019 0.60098 0.00098 0.00034
200 0.26028 0.00028 0.00005 0.45049 0.00049 0.00015 0.60065 0.00065 0.00027
500 0.26011 0.00011 0.00002 0.45019 0.00019 0.00006 0.60025 0.00025 0.00011



Math. Comput. Appl. 2022, 27, 12 12 of 20

Table 1. Cont.

θ = 1 θ = 1.5 θ = 2

n θ̂ Bias(θ̂) MSE(θ̂) θ̂ Bias(θ̂) MSE(θ̂) θ̂ Bias(θ̂) MSE(θ̂)

25 1.01355 0.01355 0.00669 1.52033 0.02033 0.01505 2.02711 0.02711 0.02676
50 1.00632 0.00632 0.00312 1.50948 0.00948 0.00702 2.01264 0.01264 0.01248
75 1.00446 0.00446 0.00200 1.50668 0.00668 0.00450 2.00891 0.00891 0.00800
100 1.00286 0.00286 0.00153 1.50429 0.00429 0.00344 2.00572 0.00572 0.00612
150 1.00163 0.00163 0.00094 1.50245 0.00245 0.00213 2.00327 0.00327 0.00378
200 1.00109 0.00109 0.00074 1.50164 0.00164 0.00166 2.00218 0.00218 0.00295
500 1.00041 0.00041 0.00030 1.50062 0.00062 0.00068 2.00082 0.00082 0.00121

Table 2. Simulation results: LS estimates, bias, and MSE.

θ = 0.26 θ = 0.45 θ = 0.60

n θ̃ Bias(θ̃) MSE(θ̃) θ̃ Bias(θ̃) MSE(θ̃) θ̃ Bias(θ̃) MSE(θ̃)

25 0.26122 0.00122 0.00069 0.45210 0.00210 0.00207 0.60280 0.00280 0.00368
50 0.25998 −0.00002 0.00030 0.44997 −0.00003 0.00089 0.59996 −0.00004 0.00159
75 0.25997 −0.00003 0.00019 0.44994 −0.00006 0.00058 0.59992 −0.00008 0.00103

100 0.25990 −0.00010 0.00016 0.44983 −0.00017 0.00047 0.59977 −0.00023 0.00084
150 0.25954 −0.00046 0.00010 0.44920 −0.00080 0.00029 0.59893 −0.00107 0.00051
200 0.26057 0.00057 0.00008 0.44914 −0.00086 0.00022 0.59886 −0.00114 0.00039
500 0.25980 −0.00020 0.00003 0.44964 −0.00036 0.00009 0.59953 −0.00047 0.00016

θ = 1 θ = 1.5 θ = 2

n θ̃ Bias(θ̃) MSE(θ̃) θ̃ Bias(θ̃) MSE(θ̃) θ̃ Bias(θ̃) MSE(θ̃)

25 1.00467 0.00467 0.01021 1.50701 0.00701 0.02297 2.00935 0.00935 0.04083
50 0.99993 −0.00007 0.00442 1.49990 −0.00010 0.00994 1.99986 −0.00014 0.01768
75 0.99986 −0.00014 0.00287 1.49979 −0.00021 0.00646 1.99972 −0.00028 0.01148

100 0.99961 −0.00039 0.00233 1.49942 −0.00058 0.00523 1.99923 −0.00077 0.00930
150 0.99821 −0.00179 0.00142 1.49732 −0.00268 0.00319 1.99643 −0.00357 0.00567
200 0.99809 −0.00191 0.00109 1.49714 −0.00286 0.00244 1.99619 −0.00381 0.00434
500 0.99921 −0.00079 0.00045 1.49881 −0.00119 0.00101 1.99842 −0.00158 0.00180

Table 3. Simulation results: WLS estimates, bias, and MSE.

θ = 0.26 θ = 0.45 θ = 0.60

n θ̆ Bias(θ̆) MSE(θ̆) θ̆ Bias(θ̆) MSE(θ̆) θ̆ Bias(θ̆) MSE(θ̆)

25 0.26141 0.00141 0.00062 0.45243 0.00243 0.00186 0.60324 0.00324 0.00330
50 0.26024 0.00024 0.00026 0.45041 0.00041 0.00078 0.60055 0.00055 0.00140
75 0.26018 0.00018 0.00017 0.45030 0.00030 0.00051 0.60041 0.00041 0.00090

100 0.26007 0.00007 0.00014 0.45012 0.00012 0.00041 0.60016 0.00016 0.00072
150 0.25971 −0.00029 0.00008 0.44950 −0.00050 0.00025 0.59934 −0.00066 0.00044
200 0.25968 −0.00032 0.00006 0.44944 −0.00056 0.00019 0.59925 −0.00075 0.00034
500 0.25986 0.00014 0.00001 0.44976 −0.00024 0.00008 0.59968 −0.00032 0.00014

θ = 1 θ = 1.5 θ = 2

n θ̆ Bias(θ̆) MSE(θ̆) θ̆ Bias(θ̆) MSE(θ̆) θ̆ Bias(θ̆) MSE(θ̆)

25 1.00540 0.00540 0.00917 1.50809 0.00809 0.02063 2.01079 0.01079 0.03668
50 1.00091 0.00091 0.00388 1.50137 0.00137 0.00872 2.00182 0.00182 0.01550
75 1.00067 0.00067 0.00250 1.50101 0.00101 0.00562 2.00135 0.00135 0.00999

100 1.00026 0.00026 0.00201 1.50039 0.00039 0.00451 2.00052 0.00052 0.00802
150 0.99889 −0.00111 0.00122 1.49834 −0.00166 0.00275 1.99778 −0.00222 0.00490
200 0.99876 −0.00124 0.00093 1.49813 −0.00187 0.00210 1.99751 −0.00249 0.00373
500 0.99946 −0.00054 0.00038 1.49919 −0.00081 0.00087 1.99892 −0.00108 0.00154
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Figure 4. Graphical comparison of the MSEs obtained from ML, LS, and WLS estimation methods for
(a) θ = 0.26, (b) θ = 0.45, (c) θ = 0.60, (d) θ = 1.0, (e) θ = 1.5 and (f) θ = 2.0.

5.2. Simulation for Bayesian Estimates

For the UTD parameter θ, in Section 4.3, the HC distribution (Case 1) and N distri-
bution (Case 2) were motivated as prior distributions. As a result, the posterior summary
results, such as means, standard deviations (SDs), Monte Carlo errors (MCEs), lower
bounds (LBs), and upper bounds (UBs) of the 95% confidence intervals and medians are
summarized in Tables 4 and 5 for Case 1 and Case 2, respectively. In both cases, increas-
ing sample size leads to a decrease in SD and MCE, which predicts a consistency in the
Bayesian estimates.

Table 4. Posterior summary results (Case 1: θ ∼ HC(25)).

θ = 0.26

n Mean SD MCE LB UB Median

25 0.26217 0.01971 0.00300 0.22331 0.28030 0.26770
50 0.26834 0.01649 0.00213 0.24361 0.29064 0.26831
75 0.27247 0.01599 0.00206 0.25154 0.29064 0.27118
100 0.26770 0.01057 0.00175 0.25917 0.28695 0.26957
150 0.27098 0.00938 0.00154 0.25339 0.28218 0.26928
200 0.26300 0.00638 0.00123 0.25714 0.26781 0.26407
500 0.27236 0.00264 0.00109 0.26706 0.27597 0.27425

θ = 0.45

n Mean SD MCE LB UB Median

25 0.45493 0.04530 0.00889 0.36841 0.52298 0.45676
50 0.47560 0.02125 0.00716 0.43660 0.51318 0.46884
75 0.46305 0.02069 0.00598 0.41964 0.50306 0.46555
100 0.47071 0.01648 0.00517 0.42378 0.49429 0.47592
150 0.46769 0.01489 0.00393 0.42507 0.49429 0.46646
200 0.45651 0.00991 0.00262 0.44271 0.47886 0.45687
500 0.46907 0.00830 0.00231 0.44839 0.48607 0.46841
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Table 4. Cont.

θ = 0.60

n Mean SD MCE LB UB Median

25 0.62836 0.05583 0.01269 0.51515 0.69347 0.65291
50 0.63488 0.03203 0.00815 0.55716 0.68275 0.63661
75 0.63130 0.02958 0.00740 0.54930 0.68275 0.63682
100 0.64362 0.02506 0.00657 0.59327 0.68275 0.65125
150 0.61670 0.02001 0.00473 0.59286 0.65175 0.60516
200 0.58433 0.01135 0.00361 0.56540 0.60849 0.58477
500 0.61527 0.00864 0.00333 0.60791 0.63575 0.61179

θ = 1

n Mean SD MCE LB UB Median

25 1.02150 0.08400 0.01689 0.84895 1.13786 1.02060
50 1.02859 0.08394 0.01243 0.94449 1.15295 1.02883
75 1.04385 0.04133 0.01163 0.92371 1.09369 1.04292
100 1.06278 0.04029 0.01001 1.02172 1.22162 1.05589
150 1.03099 0.03427 0.00846 0.98819 1.07907 1.03083
200 1.02172 0.02549 0.00573 0.99575 1.05466 1.02620
500 0.97150 0.01249 0.00484 0.94968 0.98967 0.97079

θ = 1.5

n Mean SD MCE LB UB Median

25 1.52918 0.14300 0.04025 1.31918 1.78305 1.50069
50 1.51870 0.11159 0.03641 1.17142 1.67897 1.55316
75 1.40491 0.09922 0.03165 1.20423 1.52690 1.42708
100 1.56450 0.07915 0.02093 1.25097 1.64389 1.57598
150 1.54486 0.05005 0.01196 1.47530 1.61097 1.55532
200 1.52040 0.02288 0.00591 1.50104 1.56919 1.52027
500 1.55005 0.02201 0.00390 1.52843 1.58571 1.55540

θ = 2

n Mean SD MCE LB UB Median

25 2.06736 0.15240 0.03757 1.74925 2.30008 2.13126
50 2.07023 0.14915 0.02789 1.75671 2.29423 2.09929
75 2.07862 0.11586 0.02615 1.92777 2.22704 2.06513
100 2.09001 0.07422 0.02596 1.99647 2.20813 2.07646
150 2.03891 0.07322 0.02149 1.75963 2.14525 2.06189
200 2.06265 0.05250 0.01654 1.99405 2.26134 2.05505
500 2.09538 0.04211 0.01636 2.06500 2.21627 2.06596

Table 5. Posterior summary results (Case 2: θ ∼ N(0, 1000)).

θ = 0.26

n Mean SD MCE LB UB Median

25 0.25141 0.05134 0.01312 0.04355 0.30548 0.26122
50 0.25790 0.04318 0.01151 0.15933 0.29794 0.26140
75 0.26324 0.03247 0.00592 0.24319 0.28917 0.26559
100 0.27617 0.01091 0.00322 0.25228 0.29550 0.27556
150 0.24699 0.01081 0.00208 0.23512 0.26737 0.24183
200 0.26654 0.01409 0.00285 0.25307 0.30800 0.26631
500 0.26818 0.01401 0.00159 0.26320 0.28228 0.26949
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Table 5. Cont.

θ = 0.45

n Mean SD MCE LB UB Median

25 0.44924 0.04779 0.01029 0.37730 0.52804 0.44985
50 0.46277 0.03141 0.00797 0.41231 0.51942 0.46657
75 0.46092 0.02074 0.00545 0.41995 0.49405 0.45864
100 0.47382 0.01515 0.00498 0.44194 0.50921 0.47630
150 0.43418 0.01103 0.00326 0.41547 0.44902 0.43349
200 0.46069 0.01011 0.00263 0.44098 0.48238 0.46259
500 0.46553 0.00599 0.00182 0.45494 0.47738 0.46694

θ = 0.60

n Mean SD MCE LB UB Median

25 0.60442 0.05548 0.01444 0.49541 0.71972 0.60913
50 0.54888 0.03104 0.01281 0.49527 0.62074 0.55447
75 0.61557 0.02836 0.00759 0.57167 0.65640 0.61174
100 0.62561 0.01481 0.00538 0.60462 0.65368 0.62487
150 0.58561 0.01322 0.00402 0.55367 0.60185 0.58913
200 0.59753 0.01138 0.00449 0.58214 0.61691 0.59483
500 0.61042 0.01113 0.00361 0.59462 0.63647 0.61434

θ = 1

n Mean SD MCE LB UB Median

25 1.02150 0.08400 0.01689 0.84895 1.13786 1.02060
50 1.03794 0.06691 0.01658 0.89983 1.14142 1.04985
75 1.04394 0.05572 0.01330 0.90487 1.14142 1.04432
100 1.04440 0.04849 0.01302 0.92824 1.14142 1.03943
150 1.05009 0.04125 0.01278 0.98320 1.13767 1.05431
200 1.00869 0.07225 0.01869 0.90478 1.07876 1.01865
500 1.01614 0.06391 0.00458 1.00317 1.04602 1.01625

θ = 1.5

n Mean SD MCE LB UB Median

25 1.52918 0.14300 0.04025 1.31918 1.78305 1.50069
50 1.54627 0.07872 0.02170 1.38232 1.64742 1.55280
75 1.55881 0.06692 0.01959 1.44383 1.66958 1.55559
100 1.55876 0.04834 0.01311 1.45950 1.62751 1.55994
150 1.55805 0.03772 0.01221 1.48935 1.63206 1.55871
200 1.52328 0.10483 0.00849 1.45942 1.66891 1.52085
500 1.53107 0.09938 0.00683 1.51895 1.62075 1.51895

θ = 2

n Mean SD MCE LB UB Median

25 1.93826 0.19074 0.03847 1.58829 2.30034 1.93391
50 2.06358 0.14649 0.03532 1.62112 2.28823 2.10545
75 2.02426 0.13764 0.02461 1.86401 2.29424 2.01176
100 2.11171 0.10124 0.02076 1.85800 2.22242 2.11979
150 2.05937 0.10096 0.01815 1.97012 2.21942 2.07596
200 2.03326 0.10071 0.01678 1.94723 2.23003 2.03772
500 2.05469 0.06821 0.01188 1.98674 2.26369 2.06343

6. Application
6.1. Methodology

With the help of two real-life data sets, the superiority of the UTD is illustrated. The
first data set is from [34]. The data are the maximum flood level (in millions of cubic feet
per second) for the Susquehanna River at Harrisburg, Pennsylvania. The second data set
represents times between failures of secondary reactor pumps (see [35]).
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An analysis of the total time on test (TTT) plot is used to identify the shape of the
underlying hrf of the data. We specify that the hrf is decreasing, increasing, bathtub-shaped,
and upside-down bathtub-shaped if the empirical TTT transform is convex, concave,
convex then concave, and concave then convex, respectively. Thus, it will be shown that
the first data set has an increasing hrf, while the second data set has a bathtub-shaped
hrf. For the sake of comparison, the following lifetime distributions were considered:
Log-Lindley distribution (LLD) (see [6]), unit Lindley distribution (ULD) (see [9]), Topp–
Leone distribution (TLD) (see [3]), one-parameter Kumaraswamy distribution (OKD),
power distribution (PD), transmuted distribution (TD), two-parameter Kumaraswamy
distribution (KD), beta distribution (BD), exponentiated Topp–Leone distribution (ETLD),
and unit Burr-III distribution (UBD). Using R software, the MLEs of all these distributions’
parameters are computed along with information criteria, which are listed below.

• Akaike information criterion defined by AIC = 2p− 2 log l;

• Akaike information criterion corrected given as AICc = AIC + 2p(p+1)
n−p−1 ;

• Consistent Akaike information criterion specified by CAIC = −2 log l + p(log n + 1);
• Bayesian information criterion defined by BIC = p log n− 2 log l.

Here, log l denotes the estimated value of the maximum log-likelihood, p denotes
the number of parameters and n denotes the number of observations. The Kolmogorov–
Smirnov (KS) test is also used to test the goodness of fit for all the data sets of the UTD
and other distributions. Nonparametrically, this test measures how close the empirical
distribution and the fitted distribution are. The AIC, AICc, CAIC, and BIC measure the
adequacy, while the KS test measures the fit of each distribution. All the computations
were performed using R software.

6.2. Flood Level Data

The data set is from [34]. The data represent the maximum flood level (in millions
of cubic feet per second) for the Susquehanna River at Harrisburg, Pennsylvania, over
20 four-year periods from 1890 to 1969. Table 6 provides the measurements of the data set.

Table 6. Flood level data.

0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423
0.379 0.324 0.269 0.740 0.418 0.412 0.494 0.416
0.338 0.392 0.484 0.265

In Table 7, the MLEs of the parameters of every distribution used and the observed
KS test statistics of each distribution are given. We conclude that the UTD gives the best
fit because it has the smallest KS value and the largest p-value. Table 8 shows that UTD
has the largest maximum log-likelihood value and the smallest AIC, AICc, CAIC, and BIC
values among other models. As a result, it can be concluded that the UTD model is more
successful than the other models for the flood level data.

Table 7. The MLEs of the parameters with their standard errors, KS values, and the associated
p-values.

Distribution MLE of the Parameters (Standard Error) KS p-Value

UTD θ̂ = 1.2184(0.1056) 0.2527 0.1555

LLD λ̂ = 6.39× 10−10(0.0959),
σ̂ = 2.2280(0.2597)

0.3157 0.0372

ULD θ̂ = 1.6205(0.2849) 0.3182 0.0349
TLD θ̂ = 2.2450(0.5019) 0.3352 0.0223
OKD θ̂ = 1.7290(0.3866) 0.4128 0.0022
PD θ̂ = 1.1140(0.2491) 0.3941 0.0040
TD θ̂ = 1(0.7359) 0.4598 0.0004
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Table 8. Log-likelihood, AIC, AICc, CAIC, and BIC values for flood level data.

Distribution Log-Likelihood AIC AICc CAIC BIC

UTD 13.5818 −25.1635 −24.9414 −23.1679 −24.1678
LLD 6.6716 −9.3431 −8.6373 −5.3517 −7.3517
ULD 7.1410 −12.2821 −12.0598 −10.2863 −11.2864
TLD 7.3682 −12.7365 −12.5142 −10.7407 −11.7407
OKD 2.5110 −3.0220 −2.7998 −1.0263 −2.0263
PD 0.1124 1.7751 1.9974 3.7709 2.7708
TD 2.2856 −2.5713 −2.3489 −0.5755 −1.5756

Figure 5a,b represent the TTT plot and histogram of flood level data, respectively. The
TTT plot indicates an increasing hrf, case covered by the UTD, and histogram depicts how
well the proposed model fits the data, compared to other models.
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Figure 5. (a) TTT plot and (b) histogram for the flood level data.

The estimated variance of the MLE θ̂ of the UTD parameter θ for the flood level data
is given by

J−1(θ̂) = 0.0112.

Therefore, an approximate 95% confidence interval for θ is [1.0114, 1.4254]. Table 9
gives the median of bootstrap estimates and bootstrap confidence intervals.

Table 9. The median of bootstrap estimators and bootstrap confidence intervals.

Median of Estimates Lower Limit Upper Limit

θ̂ = 1.2239 1.0815 1.4176

6.3. Times between Failures of Secondary Reactor Pumps Data

The data represent times between failures of secondary reactor pumps (see [35]). Here,
a normalization operation is carried out by dividing the original data by 10, in order to
obtain data between 0 and 1. Table 10 provides the measurements of the transformed data.

Table 10. Secondary reactor pumps data.

0.2160 0.0150 0.4082 0.0746 0.0358 0.0199 0.0402 0.0101
0.0605 0.0954 0.1359 0.0273 0.0491 0.3465 0.0070 0.6560
0.1060 0.0062 0.4992 0.0614 0.5320 0.0347 0.1921
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Listed in Table 11 are the MLEs of the parameters and the observed KS test statistic for
each distribution. In terms of KS value and p-value, UTD is the best model. On the basis of
Table 12, it can be seen that the UTD has the largest log-likelihood value, while the AIC,
AICc, CAIC, and BIC values are the smallest. Therefore, the UTD model fits the secondary
reactor pump failure data better than the other models.

Table 11. The MLEs of the parameters and their standard errors, KS values and the associated
p-values.

Distribution MLE of the Parameters (Standard Error) KS p-Value

UTD θ̂ = 0.3625(0.0290) 0.1366 0.7341

LLD λ̂ = 2.12× 10−9(0.4578),
σ̂ = 0.7568(0.0680)

0.1584 0.5573

ULD θ̂ = 4.1497(0.7445) 0.3274 0.0107
TLD θ̂ = 0.4891(0.1020) 0.1962 0.2982
OKD θ̂ = 4.8569(1.0127) 0.2568 0.0796
PD θ̂ = 0.3773(0.0787) 0.2247 0.1678
TD θ̂ = 1(0.4902) 0.4514 0.00008
KD α̂ = 0.6766(0.1407), β̂ = 2.9360(0.9558) 0.1393 0.7123
BD α̂ = 0.6307(0.1575), β̂ = 3.2317(1.0648) 0.1542 0.5919

ETLD α̂ = 0.6567(0.1532), β̂ = 1.6566(0.4805) 0.1465 0.6536
UBD λ̂ = 0.1639(0.0873), b̂ = 2.4273(1.2196) 0.2243 0.1688

Table 12. Log-likelihood, AIC, AICc, CAIC, and BIC values for secondary reactor pumps data.

Distribution Log-Likelihood AIC AICc CAIC BIC

UTD 21.7499 −41.4998 −41.3093 −39.3643 −40.3643
LLD 20.0761 −36.1522 −35.5522 −31.8812 −33.8812
ULD 14.5035 −27.0070 −26.8165 −24.8715 −25.8715
TLD 18.7827 −35.5653 −35.3749 −33.4299 −34.4298
OKD 18.0840 −34.1679 −33.9775 −32.0325 −33.0324
PD 15.5307 −29.0615 −28.8709 −26.9259 −27.9259
TD 11.2067 −20.2229 −20.2229 −18.2779 −19.2778
KD 20.3296 −36.6592 −36.0592 −32.3882 −34.3883
BD 20.0285 −36.0571 −35.4570 −31.7860 −33.7861

ETLD 20.1709 −36.3418 −35.7418 −32.0708 −34.0708
UBD 17.5294 −31.0588 −30.4588 −26.7878 −28.7878

Figure 6a,b represent the empirical TTT plot and histogram of the secondary reactor
pumps data. A bathtub hrf is indicated by the TTT plot for the secondary reactor pumps
data. From the histogram, it can be seen that the empirical line is closer to the fitted
line of the UTD model than other models. The estimated variance of the MLE θ̂ of the
UTD parameter θ for the times between failures of secondary reactor pumps data data is
calculated by

J−1(θ̂) = 0.0008

Therefore, an approximate 95% confidence interval for θ is given by [0.3057, 0.4193].
Table 13 provides the median of bootstrap estimates and bootstrap confidence intervals.

Table 13. The median of bootstrap estimators and bootstrap confidence intervals.

Median of Estimates Lower Limit Upper Limit

θ̂ = 0.3605 0.3154 0.4216
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Figure 6. (a) TTT plot and (b) histogram for secondary reactor pumps data.

7. Conclusions

Through this study, the introduction of a bounded form of the TD by the exponential
transformation was performed. It is named UTD. Certain statistical properties, such as
shape characteristics, moments, incomplete moments, and quantile function were derived.
The Shannon entropy and extropy were also obtained. Based on the ML, LS, WLS, and
Bayesian methods, estimation of the model parameter was established and examined by
simulation studies. The proposed model’s dominance was demonstrated using real-world
data sets, and it is concluded that the UTD is a good candidate in unit interval distributions.
Possible perspectives of this work include the construction of quantile regression models,
as in [36,37], as well as bivariate and discrete versions of the UTD. This work requires
additional developments and investigations, which we will leave for future research.
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