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Abstract: Practitioners in all applied domains value simple and adaptable lifetime distributions. They
make it possible to create statistical models that are relatively easy to manage. A novel simple lifetime
distribution with two parameters is proposed in this article. It is based on a parametric mixture
of the exponential and weighted exponential distributions, with a mixture weight depending on a
parameter of the involved distribution; no extra parameter is added in this mixture operation. It
can also be viewed as a special generalized mixture of two exponential distributions. This decision
is based on sound mathematical and physical reasoning; the weight modification allows us to
combine some joint properties of the exponential and weighted exponential distribution, which are
known as complementary in several modeling aspects. As a result, the proposed distribution may
have a decreasing or unimodal probability density function and possess the demanded increasing
hazard rate property. Other properties are studied, such as the moments, Bonferroni and Lorenz
curves, Rényi entropy, stress-strength reliability, and mean residual life function. Subsequently, a
part is devoted to the associated model, which demonstrates how it can be used in a real-world
statistical scenario involving data. In this regard, we demonstrate how the estimated model performs
well using five different estimation methods and simulated data. The analysis of two data sets
demonstrates these excellent results. The new model is compared to the weighted exponential,
Weibull, gamma, and generalized exponential models for performance. The obtained comparison
results are overwhelmingly in favor of the proposed model according to some standard criteria.

Keywords: exponential distribution; weighted exponential distribution; moments; Rényi entropy;
stress-strength parameter; simulation; data analysis

MSC: 60E05, 62E15, 62F10

1. Introduction
1.1. State of Art

The exponential distribution is one of the most popular and useful lifetime distribu-
tions for modeling and analysis. Its simple probability density and distribution functions
help to derive various mathematical results in closed forms.

Several extensions of this distribution were also studied in the statistical literature. For
example, the weighted exponential (WE), generalized exponential, gamma, and Weibull
distributions are different extensions of the exponential distribution. In this article, we
will introduce a modified version of the WE distribution. Gupta and Kundu [1] have
introduced the WE distribution by using the Azzalini [2] method. The WE distribution can
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also be obtained as the sum of two independent but non-identical exponential distributions.
Mathematically, the WE distribution has the following cumulative distribution function
(cdf), and probability density function (pdf):

F(x; α, λ) =
1 + α

α

[
1− e−λx − 1

1 + α

(
1− e−λx(1+α)

)]
, x > 0, (1)

and
f (x; α, λ) =

1 + α

α
λe−λx

(
1− e−λαx

)
, x > 0,

respectively. Here, α > 0 and λ > 0 are parameters of the distribution. The pdf of the
WE distribution is unimodal (contrary to the pdf of the exponential distribution) and the
corresponding hazard rate function (hrf) is increasing for all values of α. It also possesses
various likelihood ratio properties. Also, all its moments can be calculated explicitly. It
follows that the related mean, variance, skewness, kurtosis, coefficient of variation, etc. can
be computed easily. The technical details can be found in Gupta and Kundu [1] and Das
and Kundu [3]. On the practical side, the WE distribution is suitable for modelling lifetime
data when wear-out or ageing is present, providing a real alternative to the exponential
distribution for this aim. The success of this weighted version of the exponential distribution
has inspired a generation of researchers and practitioners for more in this direction.

Thus, several authors have conducted works in the theory of WE distribution, includ-
ing the development of useful extensions, i.e., Roy and Adnan [4] proposed the wrapped
WE distribution along with its basic characteristics, Hussian [5] developed the weighted
inverted exponential distribution, Dey et al. [6], Oguntunde [7] and Kharazmi et al. [8]
introduced different structures of generalized WE distributions and Alqallaf et al. [9]
discussed several methods of estimation to estimate the parameters of the WE distribution.
Later, Das and Kundu [3] presented various reliability properties of the original WE distri-
bution given by Gupta and Kundu [1], Perveen et al. [10] considered size-biased double WE
distribution, and Mahdavi and Jabbari [11] explained an extended exponential distribution
with the method of Azzalini [2]. Recently, Oguntunde et al. [12] proposed a two-parameter
inverted WE distribution, Mallick et al. [13] supplemented a new bounded distribution
using the structure of the WE distribution and Bakouch et al. [14] proposed a new kind of
weighted exponential distribution with the feature of logarithmic weight function. Further
discussions on the WE distribution can be found in [15,16], and the references therein.

1.2. Contributions

The starting point of our investigation is the following remark: It can be seen that
the cdf of the WE distribution, given in (1), is not reduced to the cdf of the exponential
distribution for any choice of α (except the limit case). Thus, the WE distribution does not
involve the most popular and useful exponential distribution. To overcome this drawback,
we consider a new cdf based on a simple mixture of the WE and exponential distributions,
with the mixture weight defined with α. It aims to privilege the WE distribution for
large values of α, and the exponential distribution for small values of α. The proposed
distribution is based on a mixture scheme involving the exponential and WE distributions,
as described below:

Let F∗(x; λ) = 1− e−λx, λ, x > 0 be the cdf of the former exponential distribution with
parameter λ. Then, we consider the following cdf, obtained by the mixture operation:

Fo(x; α, λ) =
1

α + 1
F∗(x; λ) +

α

1 + α
F(x; α, λ)

= 1− 1
α + 1

e−λx
(

α + 2− e−λαx
)

, (2)

where x > 0, α ≥ 0, λ > 0, and F(x; α, λ) is the cdf of the WE distribution as defined in (1).
The distribution corresponding to the cdf Fo(x; α, λ) can be called the modified WE (MWE)
distribution. The main novelty in the construction of the MWE distribution remains in the
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considered distribution mixture, with a weight depending on the distribution parameter
α only. Thus, it approaches the WE distribution when α is large, with the same scale
parameter as α, or approaches the basic exponential distribution when α is small; the case
α = 0 is allowed, and we rediscover the exponential distribution with parameter λ; we
recall that the exponential distribution is not a special case of the WE distribution. The
moderate values of α operate as a balance between the WE and exponential distributions.
To our knowledge, the MWE distribution is the first one to have such a specific compromise
distributional structure.

In addition to that, the arguments in favor of the MWE distribution are listed as:

(i) The cdf can be written as Fo(x; α, λ) = aF(x; λ) + bF(x; λ(α + 1)), where a = (α +
2)/(α + 1) > 0 and b = −1/(α + 1) < 0, meaning that the MWE distribution
also belongs to the family of generalized mixture of two exponential distributions,
following the spirit of the distribution proposed by [16],

(ii) The cdf is quite simple to manage and consequently, the MWE distribution can be
studied in an-depth manner on all the theoretical and practical aspects,

(iii) Thanks to the parameter α, the related pdf can be decreasing or unimodal, and the
related hrf can be constant or increasing as proven later,

(iv) In some concrete scenarios, the MWE model can be more efficient in data fitting than
the exponential or WE models, among other lifetime models.

All these points will be discussed in detail in this article. In the first part, we deeply
investigate the properties of the proposed distribution. The main functions are expressed,
such as the cumulative distribution, probability density, hazard rate, cumulative hazard
rate, quantile, and survival functions. The shape behavior of the probability density and
hazard rate functions is highlighted. The moments and moment-generating functions are
calculated in an explicit form. The Bonferroni and Lorenz curves are discussed. We perform
an entropy analysis, with the determination of the Rényi entropy. The stress-strength
reliability is expressed under general and precise configurations. The mean residual life
function is also studied and commented on. The remaining part is devoted to the associated
model, showing how it can be applied in a real-world statistical scenario dealing with data.
In this regard, by employing five different estimation methods and considering simulated
data, we show how the obtained estimates performed well. The real-data analysis section
is devoted to the concrete applications of the model with the use of famous data sets. The
performance of the new model is compared with that of the WE, Weibull, gamma, and
generalized exponential models. The obtained comparison results are quite favorable to
the proposed model.

1.3. Paper Organization

The following sections make up the article. Section 2 provides the mathematical
background behind the MWE distribution, along with some notable statistical properties.
Section 3 is devoted to the parameter estimation of the proposed model. A simulation
study is performed in Section 4. An application is given in Section 5. Concluding remarks
are formulated in Section 6.

2. Statistical Properties

The mathematical background of the MWE distribution, as well as several important
statistical features, are presented in this section.

2.1. Quantile and Survival Functions

Inverting Fo(x; α, λ) yields the quantile function of the MWE distribution. By denoting
it as Qo(y; α, λ), it thus satisfies the following nonlinear equation:

e−λQo(y;α,λ)
(

α + 2− e−λαQo(y;α,λ)
)
= (α + 1)(1− y), y ∈ (0, 1).
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It is evident that this function has no closed-form, but numerical work can be done to
determine some punctual values. The other characteristic of the MWE distribution is the
survival function (sf) obtained as

So(x; α, λ) =
1

α + 1
e−λx

(
α + 2− e−λαx

)
, x > 0.

2.2. Shapes of the Probability Density and Hazard Rate Functions

The expression of the pdf of the MWE distribution is given as

fo(x; α, λ) = λe−λx
(

α + 2
α + 1

− e−λαx
)

, x > 0.

Note that, for x > 0, we can write it as

fo(x; α, λ) = a f∗(x; λ) + b f∗(x; λ(α + 1)), a =
α + 2
α + 1

, b = − 1
α + 1

. (3)

where f∗(x; λ) = λe−λx. Since the exponential distribution is well mastered in all the
theoretical and practical aspects, this formula will be useful in the next.

We have fo(0; α, λ) = λ/(α + 1) and limx→+∞ fo(x; α, λ) = 0, for all the values of the
parameters. The shape behavior of this pdf is summarized in the following proposition.

Proposition 1. The two following cases can be distinguished:

• if α ∈ [0, (
√

5− 1)/2), then fo(x; α, λ) is decreasing.
• if α ≥ (

√
5− 1)/2, fo(x; α, λ) is unimodal, with the mode:

x∗ =
1

αλ
log
[
(α + 1)2

α + 2

]
.

Proof. The proof follows the standard function analysis lines; it consists of studying the
derivative of fo(x; α, λ). We have

d
dx

fo(x; α, λ) =
λ2

α + 1
e−λ(α+1)x[(α + 1)2 − (α + 2)eλαx].

Then,

• if α ∈ [0, (
√

5− 1)/2), then

d
dx

fo(x; α, λ) ≤ λ2

α + 1
e−λ(α+1)x[(α + 1)2 − (α + 2)] < 0,

which implies that fo(x; α, λ) is decreasing; the maximal point is obtained at x = 0.
• In the case, α ≥ (

√
5− 1)/2, we have (α + 1)2 ≥ (α + 2), and one value of x vanished

d fo(x; α, λ)/dx; it is given by x = x∗. For x < x∗, we have d fo(x; α, λ)/dx > 0 and for
x > x∗, d fo(x; α, λ)/dx < 0, implying that x = x∗ is a maximal point; it corresponds
to the mode of the MWE distribution.

This ends the proof of Proposition 1.

In order to complete the results in Proposition 1, note that (
√

5− 1)/2 ≈ 0.618034,
and fo(x∗; α, λ) = αλ(α + 2)1/α+1/(α + 1)2(1/α+1).

Here, we see a difference with the WE distribution; the pdf of the MWE distribution
can be decreasing, whereas the pdf of the WE distribution is always bell-shaped. So the
case α ∈ [0, (

√
5− 1)/2) offers more flexibility in this regard. This behavior of the pdf can

be seen in Figure 1.



Math. Comput. Appl. 2022, 27, 17 5 of 20

0.0 1.0 2.0 3.0

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

x

pd
f

α=0.1, λ=0.5
α=0.2, λ=0.5
α=0.4, λ=0.5
α=0.6, λ=0.5

0.0 1.0 2.0 3.0

0.
2

0.
3

0.
4

0.
5

0.
6

x

pd
f

α=0.8, λ=1
α=1.2, λ=1
α=2.0, λ=1
α=2.5, λ=1

0.0 1.0 2.0 3.0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

pd
f

α=0.5, λ=0.5
α=0.5, λ=1.0
α=1.5, λ=1.5
α=1.5, λ=2.0

Figure 1. Graphics of the pdf of the MWE distribution.

We would like to point out that this figure was created using the R software, and that
all subsequent graphical and numerical works will be provided as supplementary material.

Now, a hazard rate analysis is performed. To begin, the cumulative hrf (chrf) is
obtained as

Ho(x; α, λ) = log(α + 1) + λx− log(α + 2− e−λαx), x > 0.

The hrf follows:

ho(x; α, λ) = λ− λα
e−λαx

α + 2− e−λαx , x > 0.

We have ho(0; α, λ) = λ/(α + 1) and limx→+∞ ho(x; α, λ) = λ. In addition, on can
remark that ho(x; α, λ) < h∗(x; λ), where h∗(x; λ) = λ is the hrf of the exponential distribu-
tion with parameter λ > 0. We have a stochastic ordering in this sense. The shape behavior
of this hrf is investigated in the following proposition.

Proposition 2. The hrf ho(x; α, λ) is increasing and concave.

Proof. The proof follows typical function analysis lines, with the derivative of ho(x; α, λ)
being studied. For α > 0, we have

d
dx

ho(x; α, λ) = α2(α + 2)λ2 eλαx[
eλαx(α + 2)− 1

]2 > 0,

which implies that the hrf is increasing. Therefore, we have ho(x; α, λ) ∈ [λ/(α + 1), λ) for
all values of x and the parameters.
Moreover, for α > 0, we have

d2

dx2 ho(x; α, λ) = −α3(α + 2)λ3eλαx eλαx(α + 2) + 1[
eλαx(α + 2)− 1

]3 < 0.

This implies that ho(x; α, λ) is concave for α > 0. Proposition 2 is proved.
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Thus, based on Proposition 2, the MWE distribution has the increasing failure rate
property for α > 0 (the case α = 0 corresponding to the exponential distribution is
excluded), which is a demanded property for statistical analysis of lifetime phenomena.
Figure 2 illustrates these curvature properties by considering various values of α and λ.
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Figure 2. Graphics of the hrf of the MWE distribution.

2.3. Moments and Moment Generating Function

The moments of the MWE distribution are expressed in the next proposition.

Proposition 3. For any positive integer r, the rth raw moment of a random variable X with the
MWE distribution is given by

mr = E(Xr) =
r!

λr(α + 1)

(
α + 2− 1

(α + 1)r

)
.

Proof. Owing to the general mixture expressions given in (3) and the expression of the
moments of the exponential distribution, the rth raw moment of the MWE distribution is

mr =
∫ +∞

0
xr fo(x; α, λ)dx = a

∫ +∞

0
xr f∗(x; λ)dx + b

∫ +∞

0
xr f∗(x; λ(α + 1))dx

= a
r!
λr + b

r!
λr(α + 1)r =

r!
λr(α + 1)

(
α + 2− 1

(α + 1)r

)
.

The stated result is obtained

In particular, based on Proposition 3, we have

m1 =
α(α + 3) + 1

λ(α + 1)2 , m2 =
2(α3 + 4α2 + 5α + 1)

λ2(α + 1)3

m3 =
6(α4 + 5α3 + 9α2 + 7α + 1)

λ3(α + 1)4 , m4 =
24(α5 + 6α4 + 14α3 + 16α2 + 9α + 1)

λ4(α + 1)5 .

In particular, we can remark that, for all the values of α and λ, we have m1 ≥ 1/λ. The
variance of the MWE distribution is

V =
α4 + 4α3 + 7α2 + 6α + 1

λ2(α + 1)4 .
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It is worth noting that, for all the values of α and λ, we have V ≥ 1/λ2.
The moment-generating function encodes all the moments of the distribution. It is

expressed for the MWE distribution in the following result.

Proposition 4. The moment generating function of a random variable X with the MWE distribu-
tion is given by, for any t < λ,

M(t) = E(etX) =
λ[λ(α + 1)2 − t]

(α + 1)(λ− t)(λ(α + 1)− t)
.

Proof. For t < λ, the moment generating function is obtained as

M(t) =
∫ +∞

0
etx fo(x; α, λ)dx = a

∫ +∞

0
etx f∗(x; λ)dx + b

∫ +∞

0
etx f∗(x; λ(α + 1))dx

= a
λ

λ− t
+ b

λ(α + 1)
λ(α + 1)− t

=
α + 2
α + 1

λ

λ− t
− λ

λ(α + 1)− t

=
λ[λ(α + 1)2 − t]

(α + 1)(λ− t)(λ(α + 1)− t)
.

The stated result is obtained.

Owing to Proposition 4, we see that the moment generating function is quite manage-
able. In particular, we have

log[M(t)] = log λ + log[λ(α + 1)2 − t]− log(α + 1)− log(λ− t)− log[λ(α + 1)− t],

from which we deduce the rth cumulant of the MWE distribution as follows:

κr = (r− 1)!
1
λr

[
1 +

1
(α + 1)r −

1
(α + 1)2r

]
.

One can check that κ1 = m∗1 and κ2 = V. From κ3, we get the third central moments:

κ3 =
2(α6 + 6α5 + 15α4 + 21α3 + 18α2 + 9α + 1)

λ3(α + 1)6 .

Based on these cumulants, the moment skewness and kurtosis are defined by

γ1 =
κ3

V3/2 , β2 =
κ4 + 3κ2

2
V2 ,

respectively. Table 1 lists some moment measures of the MWE distribution, whose variabil-
ity in values is also illustrative of the moment flexibility of the MWE distribution.
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Table 1. Numerical values of the mean, variance, skewness and kurtosis of the MWE distribution.

λ α m1 V γ1 β2

0.5000 0.2000 2.2778 4.8488 1.8639 8.1028
0.5000 0.4000 2.4082 4.9996 1.7628 7.5801
0.5000 0.6000 2.4688 4.9521 1.7198 7.4207
0.5000 0.8000 2.4938 4.8535 1.7089 7.4265
0.5000 1.0000 2.5000 4.7500 1.7146 7.5042
0.5000 1.2000 2.4959 4.6557 1.7283 7.6100
0.5000 1.4000 2.4861 4.5739 1.7454 7.7230

α λ m1 V γ1 β2

1.2000 0.4000 3.1198 7.2745 1.7283 7.6100
1.2000 0.6000 2.0799 3.2331 1.7283 7.6100
1.2000 0.8000 1.5599 1.8186 1.7283 7.6100
1.2000 1.0000 1.2479 1.1639 1.7283 7.6100
1.2000 1.2000 1.0399 0.8083 1.7283 7.6100
1.2000 1.4000 0.8914 0.5938 1.7283 7.6100
1.2000 1.6000 0.7800 0.4547 1.7283 7.6100

A graphical approach to the variation of the moment skewness and kurtosis is given
in Figure 3.
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Figure 3. Graphics of the (a) skewness and (b) kurtosis of the MWE distribution.

From Table 1 and Figure 3, it is visible that the proposed distribution is positively
skewed and leptokurtic distribution for the given parametric values. In addition, the
moment skewness and kurtosis are non-monotonic with respect to α.

Using similar developments, the incomplete moment of the MWE distribution can be
expressed. This is formulated in the following result.

Proposition 5. For any integer r and y ≥ 0, the rth incomplete moment of a random variable X
with the MWE distribution taken at y is given by

m∗r (y) =
∫ y

0
xr fo(x; α, λ)dx =

α + 2
λr(α + 1)

γ(r + 1, λy)− 1
λr(α + 1)r+1 γ(r + 1, λ(α + 1)y),

where γ(a, x) refers to the standard lower incomplete gamma function.

One can use it to express the Bonferroni and Lorenz curves, as well as the mean
residual life function, among other quantities of interest.
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2.4. Bonferroni and Lorenz Curves

The Bonferroni and the Lorenz curves, as well as the Bonferroni and the Gini indices,
have many applications in the field of reliability, insurance, medicine, demography, and
economics. By adopting the notations of the MWE distribution, the Bonferroni and the
Lorenz curves are defined by

b0(p) =
1

pm1

∫ q

0
x fo(x; α, λ)dx, l0(p) =

1
µ

∫ q

0
x fo(x; α, λ)dx,

respectively, where q = Qo(p; α, λ). It is worth noting that the integral terms refer to the
first incomplete moment of the MWE distribution. In addition, the Bonferroni and the Gini
indices are defined by

BI = 1−
∫ 1

0
b0(p)dp, GI = 1− 2

∫ 1

0
l0(p)dp,

respectively. A comprehensive explanation about these indices can be seen in Giorgi
and Nadrajah [17] for different parametric families. For the MWE distribution, based on
Proposition 5, the Bonferroni and Lorenz curves are given as follows:

b0(p) =
(
α2 + 3α + 1

)
− (α + 2)(α + 1)(1 + λq)e−λq + (1 + λ(α + 1)q)e−λ(α+1)q

p(α(α + 3) + 1)

and

l0(p) =
(
α2 + 3α + 1

)
− (α + 2)(α + 1)(1 + λq)e−λq + (1 + λ(α + 1)q)e−λ(α+1)q

(α(α + 3) + 1)
,

respectively.

2.5. Rényi Entropy

The entropy of a distribution (or a random variable) is a measure of the variation
of the uncertainty. The concept of entropy is useful in the area of physics, probability,
statistics, communication theory, and economics. There are different types of entropy in the
distribution theory. In this part, we focus on one of the most useful entropy measures: the
Rényi entropy. For the historical and current results on entropy, we refer to the survey by
Amigo et al. [18].

In the setting of the MWE distribution, the Rényi entropy is defined as

Rη =
1

1− η
log
(∫ +∞

0
( fo(x; α, λ))ηdx

)
,

where η > 0, η 6= 1. The following proposition expresses the Rényi entropy of the
MWE distribution.

Proposition 6. The Rényi entropy of the MWE distribution can be expanded as

Rη = − log λ +
1

1− η
log

(
+∞

∑
r=0

(−1)r

η + αr

(
η

r

)(
α + 2
α + 1

)η−r
)

.
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Proof. By noticing that [(α + 1)/(α + 2)]e−λαx ∈ (0, 1), the generalized binomial theo-
rem gives

∫ +∞

0
( fo(x; α, λ))ηdx = λη

∫ +∞

0
e−ληx

(
α + 2
α + 1

− e−λαx
)η

dx

= λη
∫ +∞

0

+∞

∑
r=0

(−1)r
(

η

r

)(
α + 2
α + 1

)η−r
e−λ(η+αr)xdx

= λη
+∞

∑
r=0

(−1)r
(

η

r

)(
α + 2
α + 1

)η−r ∫ +∞

0
e−λ(η+αr)xdx

= λη−1
+∞

∑
r=0

(−1)r

η + αr

(
η

r

)(
α + 2
α + 1

)η−r
.

By taking the logarithmic function of this expression, and multiplying by 1/(1− η),
we prove Proposition 6.

Owing to Proposition 6, one may use the following approximation for computa-
tional purposes:

Rη ≈ − log λ +
1

1− η
log

(
U

∑
r=0

(−1)r

η + αr

(
η

r

)(
α + 2
α + 1

)η−r
)

,

where U denotes any large integer. This provides an alternative approach to the numerical
computation of the integral term in the original definition of Rη .

2.6. Reliability Characteristics of the MWE Distribution

The stress-strength reliability of two systems is a metric for comparing their life-
times. Here, we derive the stress-strength reliability R = P(X1 > X2), where X1 and X2
are independent random variables distributed with the MWE distribution with possible
different parameters.

Proposition 7. The stress-strength reliability R = P(X1 > X2), where X1 and X2 are independent
random variables distributed with the MWE distribution with parameters (α1, λ1) and (α2, λ2),
respectively, is given by

R = 1− λ1

α2 + 1

[
(α1 + 2)(α2 + 2)
(α1 + 1)(λ1 + λ2)

− α2 + 2
λ1(α1 + 1) + λ2

− α1 + 2
(α1 + 1)(λ1 + λ2(1 + α2))

+
1

λ1(α1 + 1) + λ2(1 + α2)

]
.

Proof. The proof uses the independence of X1 and X2, the definition of the MWE distribu-
tion, and several integral developments; we have

R =
∫ +∞

0
fo(x; α1, λ1)Fo(x; α2, λ2)dx

=
∫ +∞

0
λ1e−λ1x

(
α1 + 2
α1 + 1

− e−λ1α1x
){

1− 1
α2 + 1

e−λ2x
(

α2 + 2− e−λ2α2x
)}

dx

= 1− λ1

α2 + 1

[
(α1 + 2)(α2 + 2)
(α1 + 1)(λ1 + λ2)

− α2 + 2
λ1(α1 + 1) + λ2

− α1 + 2
(α1 + 1)(λ1 + λ2(1 + α2))

+
1

λ1(α1 + 1) + λ2(1 + α2)

]
.
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This ends the proof.

In particular, by applying Proposition 7, if α1 = α2 = α, then R is reduced to

R = 1− λ1

α + 1

(
(α + 2)2 + 1

(α + 1)(λ1 + λ2)
− α + 2

λ1(α + 1) + λ2
− α + 2

(α + 1)(λ1 + λ2(1 + α))

)
.

Furthermore, if λ1 = λ2 = λ, then

R = 1− 1
α2 + 1

(
(α1 + 2)(α2 + 2)

2(α1 + 1)
− α2 + 2

α1 + 2
− α1 + 2

(α1 + 1)(α2 + 2)
+

1
α1 + α2 + 2

)
.

One can notice that, in this case, R does not depend on λ.

2.7. Mean Residual Life Function

The mean residual life function is useful in life testing situations. It is a function
of time s which describes the expected additional lifetime given that a component has
survived until time s. In the context of this study, for a random variable X with the MWE
distribution, it is immediately given by

ms = E(X− s | X ≥ s) =
1

1− Fo(s; α, λ)

∫ +∞

s
(1− Fo(x; α, λ))dx

=
(α + 1)(α + 2)− e−λαs

λ(α + 1)
(
α + 2− e−λαs

)
Figure 4 represents the plot of this function for varying values of α and λ.

Figure 4. Graphic of the mean residual life function of the MWE distribution.

From Figure 4, we observe that, for the fixed values of α, the values of mean residual
life decrease with the increasing values of λ. Similarly, for the fixed values of λ, the values
of mean residual life decrease with the increasing values of α. So, we can conclude that the
mean residual life function is decreasing in nature.

3. Parameters Estimation

In this section, we consider the MWE model, and focus on the parameter estimation
of α and λ, assuming they are unknown. We consider several well-referenced methods
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to provide the estimates, and the performance of these methods is analyzed through a
simulation study.

3.1. Maximum Likelihood Estimates

Let (x1, x2, . . . , xn) be a random sample taken from the MWE distribution with param-
eters α and λ. The log-likelihood function is given by

l(α, λ) =
n

∑
i=1

log( fo(xi; α, λ)) = n log λ− λ
n

∑
i=1

xi +
n

∑
i=1

log
(

α + 2
α + 1

− e−λαxi

)
.

The maximum likelihood estimates (MLEs) of parameters are defined by

(α̂, λ̂) = argmax(α,λ)∈(0,+∞)2 l(α, λ).

They can be obtained by solving the following nonlinear equations according to α
and λ:

∂l(α, λ)

∂α
=

n

∑
i=1

λ(α + 1)2xie−λαxi − 1
(α + 1)(α + 2)− (α + 1)2e−λαxi

= 0 (4)

and

∂l(α, λ)

∂λ
=

n
λ
−

n

∑
i=1

xi +
n

∑
i=1

α(α + 1)xie−λαxi

α + 2− (α + 1)e−λαxi
= 0. (5)

Since we do not have any explicit form of the MLEs, therefore, we need to use numeri-
cal methods to get estimates of parameters. After solving Equations (4) and (5), we get a
precise numerical evaluation of α̂ and λ̂.

3.2. Method of Moments Estimates

Let (x1, x2, . . . , xn) be a random sample taken from the MWE distribution with param-

eters α and λ. LetMr = (1/n)
n
∑

i=1
xr

i . The method of moments estimates (MOMEs) of α

and λ can be obtained by equating the first two raw moments of with sample moments,
leading to solve the two following equations according to α and λ:

α(α + 3) + 1
λ(α + 1)2 −M1 = 0 (6)

and

2(α3 + 4α2 + 5α + 1)
λ2(α + 1)3 −M2 = 0. (7)

Thus, the MOMEs of α and λ can be obtained by solving (6) and (7) numerically.

3.3. Least Squares and Weighted Least Squares Estimates

The method of least squares was proposed by Swain et al. [19]. In this method,
we minimize the distance between the vector of uniformized order statistics and the
corresponding vector of expected values (for more details, see [20]).

Let (x1, x2, . . . , xn) be a random sample taken from the MWE distribution with pa-
rameters α and λ. Also, let x(1), x(2), . . . , x(n) be the order values in increasing order of
x1, x2, . . . , xn.
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Least Squares Estimates: The least square function is defined by

S(α, λ) =
n

∑
i=1

(
Fo

(
x(i); α, λ

)
− i

n + 1

)2
. (8)

The least square estimates (LSEs) of α and λ are defined by

(α̂, λ̂) = argmin(α,λ)∈(0,+∞)2 S(α, λ).

Now, using the cdf given in (2), and (8), we can derive two nonlinear equations
after partially differentiating with respect to unknown parameters. The solution of these
nonlinear equations can be computed by using the Monte Carlo simulation.

Weighted Least Squares Estimates: The weighted least square function is defined by

W(α, λ) =
n

∑
i=1

ηi

(
Fo

(
x(i); α, λ

)
− i

n + 1

)2
,

where ηi = (n + 1)2(n + 2)/[i(n− i + 1)]. The weighted least square estimates (WLSEs) of
α and λ are defined by

(α̂, λ̂) = argmin(α,λ)∈(0,+∞)2W(α, λ).

Therefore, the WLSEs of α and λ can be obtained by using a similar procedure to
the LSEs.

3.4. Cramér-von Mises Estimates

The Cramér-von Mises method is also similar to the previously mentioned two meth-
ods. The Cramér-von Mises function is defined by

C(α, λ) =
1

12n
+

n

∑
i=1

(
Fo

(
x(i); α, λ

)
− 2i− 1

2n

)2
.

The Cramér-von Mises estimates (CMEs) of α and λ are defined by

(α̂, λ̂) = argmin(α,λ)∈(0,+∞)2 C(α, λ).

Hence, the CMEs of α and λ can be obtained by using a similar procedure to the
WLSEs or LSEs.

4. Simulation

In this section, we perform a simulation study to evaluate the efficiency of the esti-
mates of the MWE model parameters as described in Section 3. From the technical view-
point, we used the Monte Carlo algorithm and applied Newton’s method and the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) algorithm, established by Broyden [21], Fletcher [22],
Goldfarb [23], and Shanno [24] in R software. Biases and MSEs based on 5000 replicates of
the parameters of the proposed model are reported in Tables 2–4. Different sample sizes
(n = 50, 100, 200, 500) and different parameter combinations are used to better understand
the behavior of the estimates.
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Table 2. Biases and MSEs of the estimates for α = 0.5 and λ = 1.

n Estimate Bias MSE

α̂ λ̂ α̂ λ̂

50 MLE 0.6411 −0.0459 6.4825 0.0195
MOME 0.7038 −0.0356 0.9878 0.0217
OLSE 0.3002 −0.0956 1.0082 0.0272
WLSE 0.3090 −0.0840 1.2376 0.0246
CME 0.4610 −0.0800 1.3098 0.0244

100 MLE 0.2742 −0.0446 0.7519 0.0109
MOME 0.6530 −0.0367 0.8751 0.0124
OLSE 0.1904 −0.0828 0.4913 0.0172
WLSE 0.1782 −0.0712 0.5446 0.0147
CME 0.2772 −0.0727 0.6083 0.0152

200 MLE 0.1165 −0.0409 0.1834 0.0059
MOME 0.5855 −0.0330 0.7346 0.0058
OLSE 0.1391 −0.0674 0.2210 0.0099
WLSE 0.1177 −0.0573 0.1701 0.0080
CME 0.1794 −0.0619 0.2406 0.0090

500 MLE 0.0620 −0.0365 0.0317 0.0028
MOME 0.5134 −0.0274 0.5407 0.0023
OLSE 0.0981 −0.0527 0.0693 0.0047
WLSE 0.0822 −0.0457 0.0532 0.0037
CME 0.1136 −0.0506 0.0744 0.0044

Table 3. Biases and MSEs of the estimates for α = 1 and λ = 1.

n Estimate Bias MSE

α̂ λ̂ α̂ λ̂

50 MLE 0.7146 −0.0072 4.7462 0.0201
MOME 0.1304 −0.0103 0.5513 0.0270
OLSE 0.1174 −0.0410 1.9271 0.0243
WLSE 0.2331 −0.0352 2.9491 0.0223
CME 0.3445 −0.0250 2.2686 0.0227

100 MLE 0.4174 −0.0078 3.5071 0.0116
MOME −0.0152 −0.0182 0.5008 0.0158
OLSE 0.0858 −0.0207 1.5188 0.0137
WLSE 0.1388 −0.0166 2.0104 0.0126
CME 0.2204 −0.0114 1.6787 0.0130

200 MLE 0.0649 −0.0017 1.5542 0.0062
MOME −0.1548 −0.0145 0.4094 0.0086
OLSE −0.0483 −0.0052 0.9840 0.0072
WLSE −0.0602 −0.0028 1.0602 0.0064
CME 0.0158 −0.0002 0.9988 0.0069

500 MLE −0.2141 0.0089 0.3936 0.0022
MOME −0.3341 −0.0051 0.3066 0.0030
OLSE −0.2070 0.0160 0.2761 0.0026
WLSE −0.2370 0.0141 0.2548 0.0023
CME −0.1802 0.0179 0.2866 0.0026
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Table 4. Biases and MSEs of the estimates for α = 1.5 and λ = 1.

n Estimate Bias MSE

α̂ λ̂ α̂ λ̂

50 MLE 0.2723 0.0012 4.7454 0.0162
MOME −0.0325 0.0342 0.3603 0.0200
OLSE 0.0888 −0.0405 2.2201 0.0202
WLSE 0.2376 −0.0312 2.8245 0.0182
CME 0.2884 −0.0303 2.2121 0.0192

100 MLE −0.0163 0.0078 2.0841 0.0083
MOME −0.0247 0.0291 0.3181 0.0096
OLSE 0.1303 −0.0244 1.7747 0.0103
WLSE 0.2232 −0.0166 2.0862 0.0091
CME 0.2683 −0.0205 1.8484 0.0099

200 MLE −0.2227 0.0148 0.6364 0.0042
MOME 0.0318 0.0267 0.2444 0.0046
OLSE 0.1333 −0.0099 1.3872 0.0050
WLSE 0.1396 −0.0039 1.3626 0.0044
CME 0.2233 −0.0092 1.4512 0.0049

500 MLE −0.3446 0.0196 0.2372 0.0017
MOME 0.1420 0.0222 0.1582 0.0018
OLSE 0.0786 0.0008 0.8774 0.0021
WLSE −0.0197 0.0063 0.4987 0.0018
CME 0.1225 0.0006 0.9003 0.0021

The results of Tables 2–4 disclose that the range of biases and MSEs of all the param-
eters is very small, indicating the stable nature of the MWE distribution. In some cases,
we observe that if we increase the sample size, we get fewer MSEs for all estimates. This
indicates that these competing estimates have performed well in terms of bias and MSEs
for large sample sizes. Hence, simulation results found empirical evidence of the stability
of our estimates.

5. Real Data Analysis

To see the applications in real-life scenarios of the MWE model, we use two famous
real data sets. To achieve this aim, we determine the MLEs and their standard errors of the
MWE model with other competing models. To find the best model, we consider standard
performance validation criteria such as log-likelihood, Akaike’s Information Criterion (AIC),
and a few goodness-of-fit tests statistics, which are the Kolmogorov-Smirnov (KS), Cramér-
von Mises (CVM) and Anderson-Darling (AD). The p-values related to the KS, CVM, and AD
are also considered. They are denoted as p(KS), p(CVM) and p(AD), respectively. The best
model is the one with the smallest AIC, KS, CVM, and AD, and the greatest p-values. For the
definitions and more information on these criteria, see [25].

The data are fitted to the MWE, WE, Weibull (W), gamma (G), and generalized expo-
nential (GE) distributions (see [26] for the GE distribution). The pdfs of these distributions
are given as follows:

fWE(x; α, λ) =
α + 1

α
λe−αλx(1− e−αλx), x, α, λ > 0,

fW(x; µ, σ) =
µ

σ

( x
σ

)µ−1
e−(

x
σ )

µ

, x, µ, σ > 0,

fG(x; µ, σ) =
1

Γ(µ)
1

σµ xµ−1e−
x
σ , x, µ, σ > 0,
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where Γ(µ) denotes the standard gamma function, and

fGE(x; α, λ) = αλ(1− e−αx)α−1e−λx, x, α, λ > 0.

The following are the details of the two real data sets and statistical analysis:
Data set 1: The failure times data can be found in [27]. The values are: 0.12, 0.43, 0.92,

1.14, 1.24, 1.61, 1.93, 2.38, 4.51, 5.09, 6.79, 7.64, 8.45, 11.9, 11.94, 13.01, 13.25, 14.32, 17.47, 18.1,
18.66, 19.23, 24.39, 25.01, 26.41, 26.8, 27.75, 29.69, 29.84, 31.65, 32.64, 35, 40.7, 42.34, 43.05,
43.4, 44.36, 45.4, 48.14, 49.1, 49.44, 51.17, 58.62, 60.29, 72.13, 72.22, 72.25, 72.29, 85.2, 89.52.

Table 5 reports the MLEs and their standard errors of the fitted models for the data
set 1.

Table 5. MLEs (standard errors) for the data set 1.

Model MLEs (Standard Errors)

MWE α̂ = 0.4069 (0.3763), λ̂ = 0.0399 (0.0056)
W µ̂ = 1.0149 (0.1210), σ̂ = 30.3358 (4.4144)
G µ̂ = 0.9267 (0.1621, σ̂ = 32.5640 (7.4381)
GE α̂ = 0.9086 (0.1622), λ̂ = 0.0312 (0.0058)
WE α̂ = 0.0097 (0.6436), λ̂ = 0.0660 (0.0198)

In order to complete Table 5, we also provide the estimates of the parameters via
different estimation methods in Table 6.

Table 6. The parameter estimates for the data set 1.

MOME OLSE WLSE CME

α̂ 1.8324 0.2399 0.3517 0.3289
λ̂ 0.0417 0.0344 0.0373 0.0358

Table 7 reports the values of the selection criteria statistics for the data set 1.

Table 7. Selection criteria statistics of the models for the data set 1.

Model AIC KS p(KS) CVM p(CVM) AD p(AD)

MWE 443.8088 0.0955 0.7161 0.1015 0.5796 0.8336 0.4568
W 444.6980 0.1113 0.5290 0.1269 0.4698 0.8907 0.4195
G 444.5201 0.1226 0.4074 0.1477 0.3976 0.8702 0.4325
GE 444.4178 0.1243 0.3903 0.1520 0.3844 0.8719 0.4314
WE 468.9382 0.1544 0.1658 0.2851 0.1489 4.6374 0.0043

The results in Table 7 suggest that the MWE model is the best model among other
competing lifetime models. Therefore, the MWE model may be a good alternative to other
lifetime models having similar statistical properties. Figure 5 displays the histogram and
fitted pdfs, and Figure 6 presents the empirical and estimated cdfs plots.



Math. Comput. Appl. 2022, 27, 17 17 of 20

x

pd
f

0 10 20 30 40 50 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

MWE
W
G
GE
WE

Figure 5. The histogram with the fitted pdfs for the data set 1.
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Figure 6. The empirical cdf with the fitted cdfs for the data set 1.

From Figures 5 and 6, we can see that the WE model has well-captured the main
features of the data.

Data set 2: We also consider the bladder cancer data set by Aldeni et al. [28]. The
values are: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29,
0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51,
2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64,
3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69,
4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,
5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93,
1.46, 18.10, 11.79, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 13.31,
4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 12.07, 6.76, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

Table 8 reports the MLEs and their standard errors of the fitted models for the data
set 2.
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Table 8. MLEs (standard errors) for the data set 2.

Distribution MLEs (Standard Errors)

MWE α̂ = 6.8800 (5.6074), λ̂ = 0.1180 (0.0126)
W µ̂ = 1.0528 (0.0680), σ̂ = 9.6581 (0.8574)
G µ̂ = 1.1782 (0.1315), σ̂ = 8.0157 (1.1076)
GE α̂ = 1.2227 (0.1493), λ̂ = 0.1204 (0.0135)
WE α̂ = 13.1550 (10.6474), λ̂ = 0.1134 (0.0115)

Table 8 is supplemented by Table 9, which contains parameter estimations based on
several estimation methods.

Table 9. The parameter estimates for the data set 2.

MOME OLSE WLSE CME

α̂ 0.0003 5.5633 6.4080 5.0124
λ̂ 0.1003 0.1294 0.1263 0.1312

Table 10 reports −2 log L, AIC, and three different goodness-of-fit tests statistics for
the data set 2 and the results show that the proposed model is having the lowest AIC and
−2 log L values of all the models mentioned. In terms of goodness-of-fit tests statistics, the
WE model is a bit better.

Table 10. Selection criteria statistics for the data set 2.

Model −2 log L AIC KS p(KS) CVM p(CVM) AD p(AD)

MWE 827.2080 831.2080 0.0619 0.7100 0.0842 0.6689 0.5012 0.7453
W 830.1968 834.1968 0.0663 0.6272 0.1380 0.4286 0.8743 0.4302
G 828.7471 832.7471 0.0692 0.5722 0.1178 0.5049 0.6849 0.5713
GE 828.1806 832.1806 0.0684 0.5877 0.1100 0.5389 0.6275 0.6221
WE 828.3536 832.3536 0.0594 0.7579 0.0757 0.7182 0.4816 0.7653

Figures 7 and 8 present the histogram with the fitted pdfs and empirical and theoretical
cdfs plots of the fitted distributions for the data set 2, respectively.
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Figure 7. The histogram with the fitted pdfs for the data set 2.
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Figure 8. The empirical cdf with the fitted cdf for the data set 2.

The nice fits of the estimated functions of the WE model can be observed.

6. Concluding Remarks

Because of its simplicity and mathematical feasibility, the exponential distribution is
used in the majority of distributional advancements, making it the most frequently used
lifetime model in reliability theory. In this article, we have innovated by proposing a novel
simple lifetime distribution with two parameters derived from a special mixture of the
exponential and weighted exponential distributions. Among its qualities, it is simple on
the mathematical side, may have a decreasing or unimodal probability density function,
and possesses the demanded increasing hazard rate property. We have expressed the
moments, Bonferroni and Lorenz curves, Rényi entropy, stress-strength reliability, and
mean residual life function. The corresponding model is then given its own part, which
shows how it might be applied in a real-world statistical scenario using data. In this regard,
we have used five alternative estimation approaches and simulated data to show how
well the estimated model performs. These good results are demonstrated by a study of
some well-known datasets. The performance of the novel model is compared to that of the
weighted exponential, Weibull, gamma, and generalized exponential models. The results
of the comparison show that the proposed model is superior for some criteria. Bivariate
extensions, discrete extensions, and other regression models are all conceivable future
improvements to the new model. These directions necessitate additional research, which
we will defer for now.

Supplementary Materials: All graphical and numerical works are created using the R software; R
codes are available online at https://www.mdpi.com/article/10.3390/mca27010017/s1.
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