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Abstract: In this paper, the applicability of the sine modified Lindley distribution, recently introduced
in the statistical literature, is highlighted via the goodness-of-fit approach on biological data. In
particular, it is shown to be beneficial in estimating and modeling the life periods of growth hormone
guinea pigs given tubercle bacilli, growth hormone treatment for children, and the size of tumors
in cancer patients. We anticipate that our model will be effective in modeling the survival times of
diseases related to cancer. The R codes for the figures, as well as information on how the data are
processed, are provided.

Keywords: goodness-of-fit; biomedical data; Lindley distribution; trigonometric function; continuous
distribution

1. Introduction

When people are diagnosed with cancer, COVID-19, or any other severe condition,
or when clinical trials of a new treatment are conducted, survival is a major concern.
Carcinoma is a general term that refers to a variety of diseases that can affect any part of the
body. One of the risk factors is the abrupt development of aberrant cells that grow beyond
their usual bounds, allowing them to infect nearby portions of the body and travel to other
organs, which is one of the risk factors; this is known as metastasis. Widespread metastases
are the leading cause of cancer death.

Doctors seek to regulate the growth and size of these tumors in the places where
they arise in order to protect human lives. The tumor stage and survival times are two
aspects, as they aid doctors in determining the best treatment for their patients. As a result,
determining the probability distribution of tumor size and survival durations is crucial for
selecting the best treatment option.

In order to analyze the numbers of people who are diagnosed with and die from severe
diseases each year, the number of people who are currently living after the diagnosis of a
disease, the mean age at which a disease was diagnosed, and the number of people who
are still alive at a given time after diagnosis, statistics can be used. It also gives an idea of
the differences among groups defined by age, sex, racial/ethnic group, geographic location,
and other categories.

One such way of analyzing the properties of the survival data or the size of the
tumor is by modeling the data. Data modelling related to biological science is of utmost
importance to understanding the data statistically. Over the years, many researchers have
developed discrete as well as continuous distributions that help in modelling biological
data. Ref. [1] developed the Marshall–Olkin Inverse Lomax distribution (MO-ILD), which is
used in modeling cancer stem cells. Ref. [2] studied the weighted generalized Quasi Lindley
distribution, which was studied to model COVID-19 data from Algeria and Saudi Arabia,
and Ref. [3] modeled the survival times of guinea pigs infected with virulent tubercle
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bacilli using the Sine Half-Logistic Inverse Rayleigh distribution. With this motivation in
mind, we use the existing sine-modified Lindley (S-ML) distribution developed by [4] in
modelling data related to different types of cancer. We also provide optimized open source
S-ML distribution codes for practitioners to use.

This paper is structured as follows. Section 2 covers a review of the existing S-ML
distribution. Section 3 includes the application of the distribution to cancer data, as well as
various visual presentations to back up the numbers, and Section 4 concludes the study.

2. The S-ML Distribution

In this section, a brief review of the definitions and properties of the sine generated
(S-G or Sin-G in some references) family of distributions, the modified Lindley distribution,
and the S-ML distribution is implemented. Due to their application and operating capability
in a range of contexts, the families defined by “trigonometric transformations” have sparked
a lot of interest in recent years. The sinusoidal transformation that contributes to the S-G
family was initially studied by [5].

2.1. S-G Family of Distributions

The corresponding basic definitions of the associated distribution function (DF) and
PDF given, respectively, by

FS−G(y; γ) = sin
[π

2
G(y; γ)

]
, y ∈ R

and

fS−G(y; η) =
π

2
g(y; γ) cos

[π

2
G(y; γ)

]
, y ∈ R

where G(y; γ) and g(y; γ) are the DF and PDF of a certain continuous distribution with
parameter vector denoted by γ, respectively. These functions are linked to a reference or
parent distribution that the practitioner determines ahead of time based on the study’s goals.
The S-G family is well-known as a potential parent family alternative. Without introducing
extra parameters, the following stochastic ordering holds: G(y; γ) ≤ FS−G(y; γ) for every
y ∈ R. The S-G family provides the capability to develop flexible statistical models that can
handle a variety of data. The recent works on the S-G family include the sine Lindley and
the sine exponential distribution introduced by [6], the transformed S-G family studied
by [7], the sine Topp Leone-G family of distributions developed by [8], sine Kumaraswamy-
G family introduced by [9], the sine extended odd Fréchet-G family of distributions studied
by [10], and the sine power Lomax model by [11].

Ref. [4] improved the S-G family’s performance by applying it to a specific one-
parameter distribution established by [12]: the modified Lindley (ML) distribution. The S-
ML distribution was developed as a result.

2.2. Modified Lindley Distribution

The ML distribution proposed by [12] is made possible by applying the tuning function
e−βy, β > 0 to the Lindley distribution with the goal of boosting its capabilities in a variety
of domains. As a result, the ML distribution is defined by the DF expressed as follows:

GML(y; β) = 1−
[

1 +
βy

1 + β
e−βy

]
e−βy, y > 0.

The PDF is given by

gML(y; β) =
β

1 + β
e−2βy

[
(1 + β)eβy + 2βy− 1

]
, y > 0,

respectively, with β > 0, and GML(y; β) = gML(y; β) = 0 for y ≤ 0.
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The ML distribution adapts to rising, reverse bathtub, and constant hazard rates and
is a mixture of the exponential and gamma distributions with parameters β and (2, 2β).

The practical benefit is very significant; for the three data sets shown in [12], the ML
model outperforms the Lindley and exponential models. The wrapped modified Lindley
distribution proposed by [13] and the inverted modified Lindley distribution proposed
by [14] are two examples of improvements to the ML distribution.

2.3. S-ML Distribution

The corresponding DF and PDF of the S-ML distribution , respectively,

FS-ML(y; β) = cos
[

π

2

(
1 + e−βy yβ

1 + β

)
e−βy

]
, y > 0

and

fS-ML(y; β) =
π

2
β

1 + β
e−2βy

[
(1 + β)eβy + 2yβ− 1

]
sin
[

π

2

(
1 + e−βy yβ

1 + β

)
e−βx

]
, y > 0,

with β > 0, and FS-ML(y; β) = fS-ML(y; β) = 0 for y ≤ 0.
By varying the value of β, different variants of fS-ML(y; β) can be obtained. Figure 1

depicts the most representative of them.
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Figure 1. Illustration of fS-ML(y; β) with selected values of β.

We can imply from Figure 1, that for

smaller values of β, local increasing shape are seen; the distribution is unimodal,
larger values of β, the plot of fS-ML(y; β) decreases and is leptokurtic in shape.

The shapes of the S-ML probability density function (PDF) are found to be adaptable
to different shapes, being unimodal, decreasing, and right-skewed.

The S-ML distribution has also been shown to exhibit a non-monotonic hazard rate
function (HRF), depicting an increasing-reverse bathtub-constant shape. The distribution’s
applicability and adaptability make it very appealing for modeling data from various
fields and [4] has proved that the model stands strong against twelve other competent
distributions, such as the generalized beta type 2 distribution introduced by [15], the Lomax
distribution studied by [16], and the lognormal distribution developed by [17] in modelling
data related to weather and engineering.
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3. Applications

In the statistical literature on life-testing experiments, numerous distributions have
been developed. Some of which can be used to model the increase or decrease in failure
rates, while others can model bathtub and upside-down bathtub failure rates, and still
others can do both. We have examined a few distributions in this case, which include
the S-ML distribution against the sine-Lindley distribution (S-Lindley) defined by [18],
the sine-exponential (S-Expo) distribution studied by [6], the inverse Lindley distribution
(IL) introduced by [19], and the exponential (Expo) distribution as seen in [20].

The PDF and DF of the competing models used against the S-ML model are displayed
in Table 1.

Table 1. DF and PDF of the competitive models used against the S-ML model.

Model DF PDF

S-Lindley cos
[

π

2

(
1 +

yβ

1 + β

)
e−βy

]
π

2
β2

1 + β
(1 + y)e−βy sin

[
π

2

(
1 +

βy
1 + β

)
e−βy

]
S-Expo cos

(π

2
e−βy

) π

2
β sin

(π

2
e−βy

)
e−βy

IL
(

1 +
β

y(1 + β)

)
e−β/y β2

1 + β

(
1 + y

y3

)
e−β/y

Expo 1− e−βy βe−βy

3.1. Methodology

• We begin by investigating the descriptive measures of the modeled data-sets, which
include the mean (µ), median (M), standard deviation (σ), skewness (γ1) and the
kurtosis (γ2).

• A statistical analysis is conducted on the data-sets with the help of the statistical soft-
ware [21]. The statistical analysis includes evaluating the estimate (β̂) of the data by the
method of maximum likelihood estimation, the related standard error (SE), and other
statistical measures such as the goodness-of-fit (GOF) test statistics including Akaike
Information criterion (AIC), Bayesian information criterion (BIC) along with Anderson
Darling statistic (A∗), Cramér-von Mises statistic (w∗) and Kolmgrov–Smirnov statistic
(Dn) with its correspondig p-value. The AIC is defined to be

AIC = 2k− 2ll,

the BIC is given by

BIC = k log(n)− 2ll,

where ll denotes the log-likelihood function taken at the maximum likelihood estimate,
n denotes the number of data and k represents the numver of model parameters.
The model with the highest p-value and the lowest values for Dn, w∗, and A∗, as well
as the AIC and BIC values, is the best fit for the data. It will be highlighted in the
coming numerical tables with the blue color. The software R is used to conduct
the estimation.

• Finally, for a visual representation, the empirical probability density function (EPDF)
plots and the empirical cumulative density function (ECDF) plots, accompanied by
the box plot and total time on test (TTT) plot, are displayed. The box plot gives a
visual representation of the descriptive measures of the data and the TTT plot, proved
useful for gaining information about the hazard form of the data. In many real-world
situations, there is qualitative information about the shape of the failure rate function
that might help in the selection of a particular distribution. The TTT plot has a convex
shape for decreasing HRF and a concave shape for increasing HRF.
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3.2. Survival Times of Growth Hormone Medication

The first data set consists of the estimated time from growth hormone medication until
the children reached the target age in the Programa Hormonal de Secretaria de Saude de
Minas Gerais in 2009, as reported in [22].

A summary of the measures of descriptive statistics is provided in Table 2 with the
box and TTT plots plotted in Figure 2.

Table 2. Descriptive statistics of survival times of growth hormone medication.

µ M σ γ1 γ2

5.979 5.260 2.810 0.851 3.119

2 4 6 8 10 12 14

Survival times of growth hormone medication

0.0 0.2 0.4 0.6 0.8 1.0

0
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i/n
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Figure 2. Box plot and TTT plot for the survival times of growth hormone medication.

Table 3 provides β̂, the SE and the GOF metrics of the survival times of growth
hormone medication.

Table 3. β̂, SE and GOF metrics of the survival times of growth hormone medication.

Distribution β̂ SE AIC BIC A∗ w∗ Dn p-Value

S-ML 0.14870 0.01672 170.8874 172.4428 1.5424 0.23195 0.1978 0.1291
S-Lindley 0.22660 0.02426 173.38 174.9353 1.866 0.29474 0.22065 0.06620

S-Expo 0.10780 0.01691 185.8088 187.364 4.0824 0.77177 0.31926 0.00159
IL 4.9096 0.7251 186.918 188.4733 4.6262 0.8702 0.2905 0.00542

Exp 0.18848 0.03186 188.8149 190.3703 4.4891 0.85831 0.33317 0.00084

Statistical Analysis—Based on the information in Table 2, we can conclude that the
data are positively skewed and mesokurtic, as evidenced by the box plot in Figure 2.
The TTT plot of the survival times of the data set is displayed in Figure 2. It shows an
increasing HRF plot. In addition, analysis of the data set shows that the evaluated model
(S-ML) is the best model throughout all elements of the model selection criteria, such as the
increasing hazard function. The S-ML model has a higher p-value and minimum values for
the test statistics including the AIC, BIC, A∗, w∗ , and Dn values, as shown in Table 3. The
EPDF and ECDF plots are given in Figure 3.

The plots in Figure 3 display that the S-ML and S-Lindley models give a better fit to
the data set than the S-Lindley, S-Expo, IL, and Expo models.
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Histogram and estimated PDFs
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Figure 3. The EPDF and ECDF plot for the survival times of growth hormone medication.

3.3. Survival Times of Guinea Pigs Data

This data set was originally studied by [23], which has also been analyzed previously
by [24]. The data set represents the survival times of n = 72 guinea pigs injected with differ-
ent doses of tuberculosis bacilli. The main concern of this data set is to predict the survival
times of the guinea pigs because they have a high susceptibility to human tuberculosis.

A summary of measures of descriptive statistics is provided in Table 4 with the box
and TTT plots displayed in Figure 4.

0 100 200 300

Survival times of Guinea pigs

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
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i/n

T
(i
/n

)

Figure 4. Box plot and TTT plot for the survival times of guinea pigs.
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Table 4. Descriptive statistics of the survival times of guinea pigs.

µ M σ γ1 γ2

99.82 70.00 81.11 1.796245 5.614

Table 5 displays β̂, the SE and the GOF metrics for the survival times of guinea pigs.

Table 5. β̂, SE and GOF metrics for the survival times of guinea pigs.

Distribution β̂ SE AIC BIC A∗ w∗ Dn p-Value

S-ML 0.0082780 0.0006544 791.9648 794.2415 2.022 0.3638 0.14389 0.1014
S-Lindley 0.013329 0.001003 795.0701 797.3468 2.6594 0.5020 0.16629 0.03728

S-Expo 0.00567 0.0006084 805.7007 807.9773 3.8741 0.68284 0.19629 0.0077
IL 61.066 7.084 807.3371 809.6137 4.590 0.8316 0.1845 0.01479

Expo 0.010018 0.001169 808.8843 811.1609 4.472 0.8059 0.2115 0.00317

Statistical Analysis—Table 4 informs us that the data are right-skewed and leptokur-
tic, as demonstrated by a graphical representation of the box plot in Figure 4. Figure 4
also illustrates the TTT plot of this data set. It displays an increasing HRF plot. Moreover,
analysis of the data set implies that the S-ML distribution is the best model among the other
competitive models, when statistical GOF criteria and the increasing HRF are considered.
We can observe from Table 5, that the S-ML distribution has minimum values for the test
statistics with a higher p-value and least values for GOF metrics. The EPDF and ECDF
plots are displayed in Figure 5.

From Figure 5, we can also confirm this suitability behavior, as the plots of S-ML and
S-Lindley distribution trace the shape of the data very well. We can conclude from Table 5
and Figure 5 that the S-ML model perfectly describes the survival times of guinea pigs.
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Figure 5. EPDF and ECDF plots for the survival times of Guinea pigs.

3.4. Size of Tumors in Lung Cancer Patients

A swelling or tumor arises when the cells in the lungs expand at an abnormally fast
rate, which can lead to lung cancer. It is possible to identify that and see if its spread to
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other organs based on a variety of indicators. One of these characteristics is tumor stage,
which aids doctors in determining the best treatment for their patients. The tumor size
is used to determine the staging system. The data show the tumor size of 76 lung cancer
patients at Tanta University’s chest hospital, sixty of whom are in stage I, seven in stage II,
and the rest in stage III.

A summary of measures of descriptive statistics is provided in Table 6 with the box
and TTT plots plotted in Figure 6.

2 4 6 8 10

Tumour size of lung cancer patients

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

i/n

T
(i
/n

)

Figure 6. Box plot and TTT plot of the tumor size of the lung cancer patients.

Table 6. Descriptive statistics of the tumor size of the lung cancer patients.

µ M σ γ1 γ2

3.531 2.700 2.570 1.442 4.269

Table 7 displays β̂, the SE and the GOF metrics of the tumor size of the lung cancer
patients.

Table 7. β̂, SE and GOF metrics of the tumor size of the lung cancer patients.

Distribution β̂ SE AIC BIC A∗ w∗ Dn p-Value

S-ML 0.21916 0.02031 324.8085 327.1393 1.9164 0.2733 0.1239 0.1934
S-Lindley 0.3201 0.02373 329.8057 332.1365 2.3303 0.3321 0.15054 0.06381

S-Expo 0.16063 0.01724 341.6504 343.9812 4.5324 0.7384 0.2303 0.00063
IL 2.9640 0.2832 337.1246 339.4554 5.3844 0.9086 0.1823 0.01278

Expo 0.28313 0.03248 345.8022 348.133 5.2671 0.8884 0.2461 0.0002

Statistical Analysis—From Table 6, we see that the data are right-skewed and lep-
tokurtic. This is proved in a graphical display of the box plot in Figure 6. Figure 6 shows
the TTT plot of this data set. It illustrates an increasing HRF plot. From Table 7, the S-ML
model has minimum values for Dn and higher p-value with least values for AIC and BIC.
The EPDF and ECDF plots are illustrated in Figure 7.

The plots in Figure 7 show that S-ML distribution captures the shape of the histogram
of the data set. We can conclude from Table 7 and Figure 7 that the S-ML distribution can
be used to model this data set related to the size of tumors in lung cancer patients.
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Figure 7. The EPDF and ECDF plot for the size of the tumor of the lung cancer patients.

4. Conclusions

In this paper, we have extended the applications of the sine-modified Lindley (S-
ML) distribution developed by [4] to model biomedical data. The distribution yields the
benefits of both the modified Lindley and S-G distributional functionalities. It was used
to investigate the distribution of tumor size, patients diagnosed with cancer’s survival
durations, and medications provided. The AIC, BIC, and test statistics such as A∗, w∗,
and Dn with their associated p-values are used to select the best-fitting model. These
metrics are supported by a visual representation of how well the S-ML model fits the data,
such as a box plot or a TTT plot. We believe the findings are superior to other competing
distributions for modeling biomedical data and can be used to model a range of other
biological data. We have also included the data sets and R codes for all of the figures in the
paper, as well as all of the estimations, and the tests carried out. We refer readers to the
Appendix A for these R codes.
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Appendix A

In this section, we have included the code to analyze data set 1, using the software R.
The codes for the graphs in the data analysis are also plotted.
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Appendix A.1. Data Sets

Data set 1
(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43, 3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51,
4.60, 4.61, 4.75, 5.03, 5.10, 5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)
Data set 2
(12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58,59, 60, 60, 60,
60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96,98, 99, 109,
110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376)
Data set 3
(0.96, 1.06, 1.09, 1.16, 1.19, 1.20, 1.32, 1.33, 1.40, 1.42, 1.46, 1.49, 1.51, 1.52, 1.54, 1.57, 1.59,
1.68, 1.70, 1.70, 1.76, 1.76, 1.77, 1.80, 1.81, 1.86, 1.89, 1.89, 1.94, 2.20, 2.20, 2.22, 2.36, 2.36, 2.39,
2.41, 2.45, 2.69, 2.71, 2.73, 2.77, 2.80, 2.83, 2.87, 2.94, 2.98, 3.03, 3.04, 3.19, 3.31, 3.57, 3.73, 4.17,
4.27, 4.30, 4.36, 4.45, 4.79, 4.85, 4.97, 5.26, 5.33, 5.53, 5.55, 5.91, 6.25, 6.31, 7.62, 7.84, 8.49, 8.63,
8.99, 9.94, 10.43, 10.86, 11.18)

Appendix A.2. Graphics for the PDF of S-ML Distribution

x= 0:10
f= function(x,p) #defining the pdf of S-ML model
{
(((pi/2)*(p/(1+p))*exp(-2*p*x))*(((1+p)*exp(p*x))+(2*p*x)-1)*sin((pi/2)*
(1+(exp(-p*x)*((p*x)/(1+p))))*exp(-p*x)))
}

curve(f(x,p= 5),col="yellow",xlab="x", ylim=c(0,1),ylab="pdf",lwd=2 )
curve(f(x,p= 15),col="pink", lwd=2, add= TRUE)
curve(f(x,p= 50),col="purple", lwd=2, add= TRUE)
curve(f(x,p=100),col="orange", lwd=2, add= TRUE)

legend("topright",legend=c(expression(paste(beta," = ",5)),
expression(paste(beta," = ",15)),
expression(paste(beta, " = ",50)),
expression(paste(beta, " = ",100))),
ncol=1, col=c("yellow","pink","purple", "orange"),
lwd=c(2,2,2,2), cex=c(1,1,1,1),text.width = 0.1, inset=0.011, bty ="n")
### In the same way, we can plot the pdf for other beta~values.

Appendix A.3. Parameter Estimate along with GOF Metrics

install.packages (c("EstimationTools", "MASS", "plyr" ))
library(EstimationTools)
library(MASS)
library(plyr)

# Data set 1
st = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,
3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,
5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

# S-ML distribution
dSml = function(x, p, log = FALSE) #log of pdf of S-ML model
{
n=count(x)
loglik <- (log(pi/2)+log(p)-log(1+p)-(2*p*x)+log((1+p)*exp(x*p)*(2*p*x)-1)+
log(sin((pi/2)*(1+exp(-p*x)*(p*x)/(1+p))*exp(-x*p))))
if ( log == FALSE)



Math. Comput. Appl. 2022, 27, 43 11 of 16

density <- exp(loglik)
else density <- loglik
return(density)
}

theta <- maxlogL(x =st, dist = "dSml",start = 0.59)

summary(theta)

# S-Lindley~distribution

dSL = function(x, p, log = FALSE) #log of pdf of S-Lindley model
{
n=count(x)
loglik <- (log(pi/2)+log(p^2)+log(1+x)-log(1+p)-(p*x)+
log(sin((pi/2)*(1+((x*p)/(1+p)))*exp(-x*p))))
if ( log == FALSE)
density <- exp(loglik)
else density <- loglik
return(density)
}

theta <- maxlogL(x =st, dist = "dSL",start = 0.59)
summary(theta)

# SE distribution
dSE = function(x, p, log = FALSE) #log of pdf of SE model
{
n=count(x)
loglik <- (log(pi/2)+log(p)-(p*x)+log(sin((pi/2)*exp(-x*p))))
if ( log == FALSE)
density <- exp(loglik)
else density <- loglik
return(density)
}
theta <- maxlogL(x =st, dist = "dSE",start = 0.59)

summary(theta)

#IL distribution
dIL = function(x,p, log = FALSE)
{
n=count(x)
loglik <- (2*log(p))-log(1+p)-(p/x)+log(1+x)-(3*log(x))
if ( log == FALSE)
density <- exp(loglik)
else density <- loglik
return(density)
}

theta <- maxlogL(x =st, dist = "dIL",start = 0.65)

summary(theta)
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#Exp distribution
dE = function(x,p, log = FALSE) #log of pdf of Expo model
{
n=count(x)
loglik <- log(dexp(x, p, log = FALSE))
if ( log == FALSE)
density <- exp(loglik)
else density <- loglik
return(density)
}

st = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,
3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,
5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

theta <- maxlogL(x =st, dist = "dE",start = 0.6)

summary(theta)

Appendix A.4. KS Test Statistic, p-Value and Other Test Statistics

install.packages ("goftest")
library(goftest)
y = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,
3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,
5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

# S-ML~CDF

pSml = function(x,p)
{
p = 0.14870
cos((pi/2)*(1+(exp(-p*x)*(x*p)/(1+p)))*exp(-p*x))
}

ks1=ad1=cvm1=NULL
ks1=ks.test(y,pSml)
ad1=ad.test(y,pSml)
cvm1=cvm.test(y,pSml)
result1=c(ks1$statistic,ks1$p.value,ad1$statistic,ad1$p.value,
cvm1$statistic,cvm1$p.value)

# S-Lindley~CDF

pSL = function(x,p)
{
p = 0.22660
cos((pi/2)*(1+((x*p)/(1+p)))*exp(-p*x))
}

ks1=ad1=cvm1=NULL
ks1=ks.test(y,pSL)
ad1=ad.test(y,pSL)
cvm1=cvm.test(y,pSL)
result1=c(ks1$statistic,ks1$p.value,ad1$statistic,ad1$p.value,
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cvm1$statistic,cvm1$p.value)

# S-Expo CDF
pSe = function(x,p)
{
p = 0.10780
cos((pi/2)*exp(-p*x))
}

ks1=ad1=cvm1=NULL
ks1=ks.test(y,pSe)
ad1=ad.test(y,pSe)
cvm1=cvm.test(y,pSe)
result1=c(ks1$statistic,ks1$p.value,ad1$statistic,ad1$p.value,
cvm1$statistic,cvm1$p.value)

#IL distribution
pIL = function(x,p)
{
p = 4.9096
(1 + (p/((1+p)*x)))*exp(-p/x)
}
ks1=ad1=cvm1=NULL
ks1=ks.test(y,pIL)
ad1=ad.test(y,pIL)
cvm1=cvm.test(y,pIL)
result1=c(ks1$statistic,ks1$p.value,ad1$statistic,ad1$p.value,
cvm1$statistic,cvm1$p.value)

# Expo~CDF

pEx = function(x,p)
{
p = 0.18848
pexp(x,p)
}

ks1=ad1=cvm1=NULL
ks1=ks.test(y,pEx)
ad1=ad.test(y,pEx)
cvm1=cvm.test(y,pEx)
result1=c(ks1$statistic,ks1$p.value,ad1$statistic,ad1$p.value,
cvm1$statistic,cvm1$p.value)

Appendix A.5. Graphics—To Plot the EPDF for the First Data Set

x = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,
3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,
5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

hist(x,prob=T,main="Histogram and estimated PDFs",
col="pink", ylab = "PDF",ylim=c(0,0.05), bty ="n")

p = 0.14870 ## parameter estimate of S-ML model
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curve(((pi/2)*(p/(1+p))*(exp(-2*p*x))*((1+p)*exp(p*x)+(2*x*p)-1)*
(sin((pi/2)*(1+exp(-p*x)*((x*p)/(1+p)))*exp(-x*p)))),col="blue",lwd=3,
add=T)

p = 0.22660 # parameter estimate of S-Lindley
curve(((pi/2)*((p^2)/(1+p))*(1+x)*exp(-p*x)*(sin((pi/2)*
(1+((x*p)/(1+p)))*exp(-x*p)))), col="green",lwd = 3, add=T)

p = 0.10780 # parameter estimate of S-Expo
curve(((pi/2)*(p*exp(-p*x))*(sin((pi/2)*exp(-x*p)))), col="orange",
lwd = 3, add=T)

p = 4.9096 # parameter estimate of IL
curve((((p^2)/(1+p))*((1+x)/x^3)*exp(-p/x)),col="red",lwd = 3, add=T)

p = 0.18848 # parameter estimate of Expo
curve(dexp(x,p), col="yellow", lwd = 3, add = T)

legend("topright",legend = c("S-ML","S-Lindley","S-Expo","IL","Expo"),
ncol = 1,
col= c("blue","green","orange","red","yellow"),lty =1,lwd=3,
text.width = 2.5 , inset= 0.00005, bty ="n")

Appendix A.6. Graphics—To Plot the ECDF for the First Data Set

y = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,
3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,
5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

plot(ecdf(y) , verticals=TRUE, main="Empirical and estimated CDFs",
ylab="CDF", xlab="x", bty ="n")

p = 0.14870 # parameter estimate of S-ML
curve((cos((pi/2)*(1+(exp(-p*x)*((x*p)/(1+p))))*exp(-p*x))),col="blue",
lwd=3, add=T)

p = 0.22660 # parameter estimate of S-Lindley
curve((cos((pi/2)*(1+((x*p)/(1+p)))*exp(-p*x))), col="green",lwd = 3,
add=T)

p = 0.010780 # parameter estimate of S-Expo
curve((cos((pi/2)*exp(-p*x))),col="orange",lwd = 3, add=T)

p = 4.9096 # parameter estimate of IL
curve(((1 + (p/((1+p)*x)))*exp(-p/x)),col="red",lwd = 3, add=T)

p = 0.18848 # parameter estimate of Expo
curve(pexp(x,p), col="yellow", lwd = 3, add = T)

legend("topleft",legend = c("S-ML","S-Lindley","S-Expo","IL","Expo"),
ncol = 1,
col= c("blue","green","orange","red","yellow"),lty =1,lwd=3,
text.width = 2.5 , inset= 0.00005, bty ="n")
#######
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Appendix A.7. Graphics: Bar Plot and TTT Plot for First Data Set

###Bar plot
x = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,
3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,
5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

boxplot(x,main = "Tumour size of lung cancer patients",
col = "orange", border="brown",horizontal = TRUE,notch = TRUE)

###TTT plot
install.packages ("AdequacyModel")
library(AdequacyModel)

TTT(x, lwd = 2, lty 2, col = "red", grid=FALSE)

############################
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