
����������
�������

Citation: Rabah, F.; Abukhaled, M.;

Khuri, S.A. Solution of A Complex

Nonlinear Fractional Biochemical

Reaction Model. Math. Comput. Appl.

2022, 27, 45. https://doi.org/

10.3390/mca27030045

Academic Editors: Mehmet Yavuz

and Ioannis Dassios

Received: 18 April 2022

Accepted: 20 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

Solution of A Complex Nonlinear Fractional Biochemical
Reaction Model

Fatima Rabah, Marwan Abukhaled * and Suheil A. Khuri

Department of Mathematics and Statistics, American University of Sharjah, Sharjah P.O. Box 26666,
United Arab Emirates; g00049347@alumni.aus.edu (F.R.); skhoury@aus.edu (S.A.K.)
* Correspondence: mabukhaled@aus.edu

Abstract: This paper discusses a complex nonlinear fractional model of enzyme inhibitor reaction
where reaction memory is taken into account. Analytical expressions of the concentrations of enzyme,
substrate, inhibitor, product, and other complex intermediate species are derived using Laplace
decomposition and differential transformation methods. Since different rate constants, large initial
concentrations, and large time domains are unavoidable in biochemical reactions, different dynamics
will result; hence, the convergence of the approximate concentrations may be lost. In this case, the
proposed analytical methods will be coupled with Padé approximation. The validity and accuracy of
the derived analytical solutions will be established by direct comparison with numerical simulations.

Keywords: enzyme inhibitor; biochemical reaction; fractional differential system; Laplace transfor-
mation; semi-analytic

1. Introduction

Data gathering and experimental analysis do not generally provide rigorous tools
for understanding the kinetics of modern complex physical, biological, and biochemical
research. Therefore, researchers have increasingly employed mathematical modeling,
where theoretical analysis would lead to new insights and pave the way for better designs
and controlled systems [1–6].

A desired feature of fractional operators is their essential multiscale nature. Conse-
quently, time-fractional operators empower memory effects. In other words, the response
of a system is dependent on its previous history. In contrast, space-fractional operators
enable nonlocal and scale effects [7]. This nonlocal property of fractional derivatives gives
insight into a system’s future state features from the previous and present states. There-
fore, fractional models are more suitable for simulating physical phenomena and hence
more accurate for biochemical reactions. Moreover, fractal geometries that model nonlocal
transport, which arises in complex microstructural systems, are often seen in fractional
derivative models [8].

Recent research has affirmed that modeling natural phenomena arising in biology,
chemistry, and physics with fractional differential equations is more suitable for describ-
ing memory and hereditary properties of various materials and processes. For example,
Ionescu et al. detailed, in a comprehensive review, the latest developments in fractional
calculus applications in biological systems [9]. Rihan discussed some fractional-order
differential models of biological systems with memory, such as dynamics of tumor-immune
system and dynamics of HIV infection [10]. Other examples of fractional models covering
various fields of sciences and engineering can be found in fluid flow [11], electrical net-
works [12], viscoelasticity [13], and control theory [14]. The reader is encouraged to see the
recently published survey-cum-expository review article [15], and the following articles,
which shed more light on the discussion on and applications of fractional models [16–21].

Nonetheless, exact solutions to most nonlinear fractional-order differential equations
cannot be found. Therefore, many semi-analytical and numerical methods have been
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developed in recent years to find approximate solutions instead. Most classical numer-
ical methods used for ordinary differential equations have been successfully modified
for fractional differential equations such as implicit Euler scheme [10], spectral collo-
cation methods [22], Adams–Bashforth methods [23], and Runge–Kutta methods [24].
Some of the newly developed numerical methods include a new predictor-corrector for-
mula, Legendre spectral method, discretization of Riemann–Liouville, and a modified
Adams–Bashforth method [25–28].

Although numerical solutions can be accurate and efficiently obtained, they have
some drawbacks that make them less appealing than analytical solutions. Numerical
stability and adjusting parameters to match the numerical data can be exceptionally chal-
lenging [29]. As with numerical methods, most analytical schemes that have been ini-
tially developed for integer-order differential systems have been modified for fractional
differential systems [30–36].

This paper studies a nonlinear fractional model of enzyme inhibitor reactions subject
to two different sets of initial conditions and kinetic parameters. Modified Laplace decom-
position and differential transformation methods are applied to derive simple analytical
expressions for the concentrations of species. The obtained expressions converge and
stabilize over a prescribed small time domain. However, with possible divergent solutions
over large intervals, these methods are coupled with Padé approximation to maintain
convergent series solutions for larger reaction times [37]. The used methods are accessible
to the broader research community and can be adapted to solve other models that arise in
chemistry and chemical engineering.

2. A Model of Complex Enzyme Inhibitor Reactions

Consider the complex chemical reaction network for mixed enzymatic inhibition as
shown in Figure 1.

Figure 1. A complex chemical reaction for a mixed enzymatic inhibition.

Where E , S , P , and I represent enzyme, substrate, product, and inhibitor, respectively.
ES , EI , and ESI represent the complex intermediate species. The parameters k1, · · · , k9
represent the rate constants. If we express the concentrations of E , S , P ,I , ES , EI , and ESI
by E, S, P, I, C1, C2, and C3, respectively, then the mass action law leads to the following
nonlinear fractional differential model, which is a modification of the integer-derivative
model discussed by Akgül et al. [38]:
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Dα
t E = −k1ES + (k2 + k3)C1 − k4EI + k5C2S,

Dα
t S = −k1ES + k2C1 + k4EI − (k5 + k8)C2S + k9C3,

Dα
t I = −k4EI + k5C2S− k6C1 I + k7C3,

Dα
t P = k3C1,

Dα
t C1 = k1ES− (k2 + k3)C1 − k6C1 I + k7C3,

Dα
t C2 = k4EI − (k5 + k8)C2S + k9C3,

Dα
t C3 = k6C1 I − (k7 + k9)C3 + k8C2S,

(1)

where 0 < α ≤ 1. Dα
t is the Caputo fractional derivative defined by

Dα
x0

f (x) = RLDα
x0

(
f (x)−

m−1

∑
k=0

f (k)(x0)

k!
(x− x0)

k

)
, (2)

where RLDα
x0

f (x) = Dm(Jm−α
x0

f (x)
)
, m − 1 < α ≤ m, and m ∈ N, and Jα

x0
f (x) is the

Riemann–Liouville fractional integration of order α for a real-valued function f : R+ → R
defined by

Jα
x0

f (x) =
1

Γ(α)

∫ x

x0

(x− s)α−1 f (t)dt, α > 0, x > 0. (3)

3. Analytical Expressions for the Concentrations

Consider the nonlinear fractional reaction system (1) subject to the following set of
initial concentrations:

E(0) = e0, S(0) = s0, I(0) = i0, P(0) = p0, C1(0) = c10 , C2(0) = c20 , C3(0) = c30 . (4)

We will derive two approximate analytical expressions of the concentrations of enzyme,
substrate, product, inhibition, and the complex intermediate species using modified Laplace
decomposition (LDM) and differential transformation (DTM) methods.

The difference between Riemann–Louivelle and Caputo fractional derivatives, which
is just in the order of operators, makes Caputo definition closer to the traditional integer-
derivative operator and hence more used than Riemann–Louivelle.

3.1. Laplace Decomposition Approach

We begin with the following lemma whose proof follows immediately from (2)
and (3) [39].

Lemma 1. The Laplace transform of the Caputo fractional derivative of order α is given by

L{Dα f (x)} = smF(s)−∑m
i=1 sm−i f (i−1)(0)
sm−α

, (5)

where m ∈ N and m− 1 < α ≤ m.

Applying Laplace transform to each equation in the reaction system (1) gives

L{E(t)} = e0
s + 1

sαL{−k1ES + (k2 + k3)C1 − k4EI + k5C2S},
L{S(t)} = s0

s + 1
sαL{−k1ES + k2C1 + k4EI − (k5 + k8)C2S + k9C3},

L{I(t)} = i0
s + 1

sαL{−k4EI + k5C2S− k6C1 I + k7C3},
L{P(t)} = p0

s + 1
sαL{k3C1},

L{C1(t)} = c10
s + 1

sαL{k1ES− (k2 + k3)C1 − k6C1 I + k7C3},
L{C2(t)} = c20

s + 1
sαL{k4EI − (k5 + k8)C2S + k9C3},

L{C3(t)} = c30
s + 1

sαL{k6C1 I − (k7 + k9)C3 + k8C2S}.

(6)
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We seek an approximate solution to system (6) and hence a solution to the fractional
system (1) in the form of a power series about t = 0, that is

E(t) =
∞

∑
n=0

En(t), S(t) =
∞

∑
n=0

Sn(t), I(t) =
∞

∑
n=0

In(t), P(t) =
∞

∑
n=0

Pn(t),

C1(t) =
∞

∑
n=0

C1n(t), C2(t) =
∞

∑
n=0

C2n(t), C3(t) =
∞

∑
n=0

C3n(t).
(7)

The nonlinear terms in system (6) are expressed in terms of Adomian polynomials
as follows:

ES =
∞

∑
n=0

A1n =
1
n!

( d
dλ

)n( n

∑
k=0

λkEk

n

∑
k=0

λkSk

)∣∣∣
λ=0

,

EI =
∞

∑
n=0

A2n =
1
n!

( d
dλ

)n( n

∑
k=0

λkEk

n

∑
k=0

λk Ik

)∣∣∣
λ=0

,

C1 I =
∞

∑
n=0

A3n =
1
n!

( d
dλ

)n( n

∑
k=0

λk(C1)k

n

∑
k=0

λk Ik

)∣∣∣
λ=0

,

C2S =
∞

∑
n=0

A4n =
1
n!

( d
dλ

)n( n

∑
k=0

λk(C2)k

n

∑
k=0

λkSk

)∣∣∣
λ=0

.

(8)

Substituting (7) and (8) recursively in (6) and then applying the inverse Laplace
transforms lead to the analytical expressions of all concentrations expressed in series forms.
The first two terms of each of these series are given below

E0 = e0, S0 = s0, I0 = i0, P0 = p0, C10 = c10 , C20 = c20 , C30 = c30 ,

E1 = (s0c20 k5 − s0e0k1 + c10 k2 + c10 k3 − i0e0k4)
tα

Γ(α + 1)
,

S1 = (−s0c20 k5 − s0c20 k8 − s0e0k1 + c10 k2 − c30 k9 + i0e0k4)
tα

Γ(α + 1)
,

I1 = (s0c20 k5 − i0c10 k6 + c30 k7 − i0e0k4)
tα

Γ(α + 1)
,

P1 = (c10 k3)
tα

Γ(α + 1)
,

C11 = (−s0e0k1 − c10 k2 − c10 k3 − i0c10 k6 + c30 k7)
tα

Γ(α + 1)
,

C21 = (−s0c20 k5 − s0c20 k8 + c30 k9 + i0e0k4)
tα

Γ(α + 1)
,

C31 = (s0c20 k8 + i0c10 k6 − c30 k7 − c30 k9)
tα

Γ(α + 1)
.

(9)

3.2. Differential Transformation Method

First proposed by Zhou [40], the differential transformation method (DTM) is an itera-
tive approach for obtaining a Taylor series solution of a differential equation without the
need for the tedious computing of symbolic higher derivatives. Arikoglu and Ozkol [41]
modified the original version of the DTM to make it applicable to solve fractional dif-
ferential equations. In this section, we derive a series solution of system (1) using the
fractional DTM [42].

The fractional power series expansion of the continuous analytical function f (x) is
given by

f (t) =
∞

∑
k=0

F(k)(t− t0)
k/α, (10)

where F(k) is the fractional differential transformation of f (t) defined by



Math. Comput. Appl. 2022, 27, 45 5 of 14

F(k) =


1

(k/α)! Dk/α
∣∣∣
t=t0

, if k/α ∈ Z+, k = 0, 1, 2, . . . , (qα− 1)

0, if k/α /∈ Z+

. (11)

For a fractional-order q, the Caputo fractional derivative is given by

Dq
t0

f (t) =
1

Γ(m− q)
Dm


∫ t

t0


f (t)−

m−1

∑
k=0

(1/k!)(t− t0)
k f (k)(t0)

(t− x)1+q−m

dt

. (12)

The following properties of fractional differential transformations are needed in the
derivation of the analytical solution of system (1) [42].

Theorem 1. If f (x) = g1(x) ± g2(x) ± · · · ± gn(x), then F(k) = G1(k) ± G2(k) ± · · · ±
Gn(k).

Theorem 2. If f (x) =
n

∏
j=1

gj(x), then

F(k) =
k

∑
kn−1=0

kn−1

∑
kn−2=0

· · ·
k3

∑
k2=0

k2

∑
k1=0

G1(k1)G2(k2 − k1) . . . Gn−1(kn−1 − kn−2)Gn(k− kn−1).

Theorem 3. If f (x) = (x− x0)
p, then F(k) = δ(k− αp), where

δ(k) =
{

1 if k = 0
0 if k 6= 0

.

Theorem 4. If f (x) = Dq
x0 [g(x)], then F(k) =

Γ(q + 1 + k/α)

T(1 + k/α)
G(k + αq).

By applying the fractional operator in (12) to system (1), we obtain the same series
solution given in (10) for the integer case. For fractional order derivatives, the variations
between the LDM and DTM were very small, and will be discussed in the Results and
Discussion section.

3.3. Padé Approximation

It is known that the convergence of the truncated series solutions obtained by Laplace
decomposition and differential transformation methods are guaranteed only over small
domains. The divergence of the series solution obtained by the LDM or DTM may also
result for large initial conditions. In this case, LDM and DTM methods can be coupled
with Padé approximation to insure convergence. The Padé approximant of the function
f (x), which is a convergent ratio of two polynomials constructed from its Taylor series
expansion, gives a better approximation of the function, especially when there are poles.

When the function f (x) is expressed as a power series, the [L/M] Padé approximant
is given by

f (x) =
PL(x)

QM(x)
=

p0 + p1x + p2x2 + p3x3 + · · ·+ pLxL

1 + q1x + q2x2 + q3x3 + · · ·+ qMxM . (13)

4. Results and Discussion

In this section, two study cases are presented. In each case, the nonlinear reaction
system (1) is solved for a different set of parameters and a different set of initial concentrations.

Example 1. To verify the accuracy of the proposed approaches, we first solve the underlined system
for the integer-derivative, α = 1, subject to the following initial conditions (4).
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e0 = 0.1, s0 = 0.2, i0 = 0.01, p0 = c10 = c20 = c30 = 0, (14)

and the following constant rates

k1 = 0.1, k2 = 0.2, k3 = 0.4, k4 = 0.9, k5 = 1, k6 = 0.4, k7 = 0.9, k8 = 0.2, k9 = 0.5. (15)

The LDM and DTM solutions were identical for all seven species. For example, the identical
five-term series solution obtained by the LDM and the DTM representing the concentration of
enzyme is given by

E(t) = 0.1− 0.0029 t + 0.000778 t2 − 0.000152 t3 + 0.0000242 t4. (16)

The analytical expressions of the concentrations of all other species are provided in the
Supporting Information. Figure 2a–g shows that for the integer case (α = 1), the derived
analytical concentration curves obtained by the LDM and the DTM are identical and
strongly agree with the fourth-order Runge–Kutta numerical curves. Figure 2 also reflects
the temporal dependence of relative concentrations of enzyme reaction components. It is
noticed that concentrations of enzyme, substrate, and product decrease as time increases,
whereas the concentrations of inhibitor, enzyme–substrate, enzyme–inhibitor, and enzyme–
substrate–inhibitor increase with time.

(a) (b)

(c) (d)
Figure 2. Cont.
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(e) (f)

(g)
Figure 2. Analytical and numerical concentration curves for reaction system (1) for the integer-
derivative case (α = 1) with initial concentrations (14) and rate constants (15). (a) Enzyme.
(b) Substrate. (c) Product. (d) Inhibitor. (e) Intermediate species ES. (f) Intermediate species EI.
(g) Intermediate species ESI.

The nonlinear fractional reaction system (1) is also solved for the fractional derivatives
α = 0.9, and α = 0.8. Figure 3a–g shows strong agreements between LDM and DTM
concentration curves of enzyme, substrate, product, inhibition and all complex intermediate
species. In this Figure, the fractional derivative α is an index of memory, where it is noticed
that the concentrations of the enzyme components depend on the fractional order. Figure 3
clearly shows that as α increases, the fractional concentration curve gets closer to the curve
representing the concentration for the integer case (α = 1).

Figure 3a–c confirms that the enzyme, substrate, and inhibitor concentrations increase
as the fractional power increases and decrease as time increases. In contrast, Figure 3d–g
portrays that the product and intermediate species concentrations increase and reach their
maximum with the rise of time and decrease of the fractional power.

Tables 1 and 2 assert that the actual variations between the LDM and DTM for the
fractional cases are smaller than what they appear in Figure 3. This can also be inferred
from the very small y-axis increments in Figure 3.
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Table 1. Maximum variation between LDM and DTM computed concentrations when α = 0.9.

Concentration Maximum Difference Occurred at x

Enzyme 0.0000424 1.000
Substrate 0.0000024 0.007
Inhibition 0.0000103 1.000
Production 0.0000205 0.925
Complex ES 0.0000323 0.925
Complex EI 0.0000105 1.000
Complex ESI 0.0000004 0.525

Table 2. Maximum variation between LDM and DTM computed concentrations when α = 0.8.

Concentration Maximum Difference Occurred at x

Enzyme 0.0000843 0.850
Substrate 0.0000049 0.600
Inhibition 0.0000206 1.000
Production 0.0000408 0.825
Complex ES 0.0000643 0.825
Complex EI 0.0000208 1.950
Complex ESI 0.0000009 0.450

(a) (b)

(c) (d)
Figure 3. Cont.
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(e) (f)

(g)
Figure 3. Analytical concentration curves for fractional reaction system (1) with initial
concentrations (14) and rate constants (15) for the integer-derivative case α = 1 and the fractional-
derivative cases α = 0.9 and 0.8. Solid and dotted curves represent the LDM and the DTM solutions,
respectively. (a) Enzyme. (b) Substrate. (c) Product. (d) Inhibitor. (e) Intermediate species ES.
(f) Intermediate species EI. (g) Intermediate species ESI.

Example 2. Consider the nonlinear fractional reaction system (1) subject to the following set of
relatively large initial concentrations:

e0 = 12, s0 = 5, i0 = 2, p0 = c10 = c20 = c30 = 0, (17)

and the following set of constant rates

k1 = 0.01, k2 = 0.2, k3 = 0.04, k4 = 0.19, k5 = 0.1, k6 = 0.4, k7 = 0.09, k8 = 0.22, k9 = 0.05. (18)

For the integer case, α = 1, the obtained LDM, and DTM truncated series solutions
(concentrations) were identical but diverged rapidly over a small domain. This divergence
was controlled by using a [4/4] Padé approximant for each analytical derived expression.
In Figure 4a, the divergent enzyme concentration curves obtained by the LDM and DTM
are depicted against time. In contrast, Figure 4b shows how the use of Padé approximation
overcomes this obstacle. Figure 5 is similar to Figure 4 but for the substrate concentra-
tion. All concentration curves for the case α = 1 and their [4/4] corresponding Padé
approximations are provided in the Supporting Information.
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(a) (b)
Figure 4. Analytical and numerical concentration curves of Enzyme (E(t)) for the integer-derivative
system (1) with α = 1, initial conditions (17), and parameters (18). (a) Divergent analytical concentra-
tion curve. (b) Convergent analytical concentration curve.

(a) (b)
Figure 5. Analytical and numerical concentration curves of substrate (S(t)) for integer-derivative
system (1) with α = 1, initial conditions (17), and parameters (18). (a) Divergent analytical concentra-
tion curve. (b) Convergent analytical concentration curve.

The DTM was employed to derive analytical expressions for the concentration curves
of all species for fractional values of α (α = 0.9, 0.8). All the obtained curves of more
than 10-term truncated series (provided in the Supporting Information) diverged over a
relatively small domain. Therefore, large order Padé approximations were needed to obtain
the convergent series solutions, as shown in Figure 6. A single command using Maple or
MATLAB can be used to generate Padé approximations (given in supplementary material).
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Cont.



Math. Comput. Appl. 2022, 27, 45 12 of 14

(g)
Figure 6. Analytical LDM concentration curves of E, S, I, P, ES, EI and ESI for system (1) with
initial conditions (17) and parameters (18). (a) Enzyme. (b) Substrate. (c) Product. (d) Inhibitor.
(e) Intermediate species ES. (f) Intermediate species EI. (g) Intermediate species ESI.

5. Conclusions

This paper discussed a complex nonlinear fractional model of enzyme inhibitor re-
actions subject to two different sets of initial concentrations, each with a different set of
reaction rates. The simple, efficient, and reliable Laplace decomposition (LDM) and dif-
ferential transformation (DTM) methods were utilized to solve the nonlinear fractional
biochemical reaction system. The LDM was implemented by using Laplace transform of
Caputo fractional derivative to convert the nonlinear fractional-derivative system (1) into
an algebraic system, where the nonlinear terms are expressed in the form of Adomian
polynomials. Then, the solution is obtained by employing the linearity of the Laplace and
the inverse Laplace transforms. The fractional differential transformation method was
implemented by directly applying Equations (10) and (11), and Theorem 2. The derived
solution of system (1) represent the analytic expressions for the concentrations of enzyme,
inhibitor, substrate, product, and the complex intermediate species: enzyme–substrate,
enzyme–inhibitor, and enzyme–inhibitor–substrate were derived and discussed. From this
study, it was concluded that different rate constants and initial concentrations produce
different dynamics. Furthermore, it was shown that a Padé approximation of the series
solution obtained by LDM and DTM would preserve convergence and stability when large
initial concentrations or large rate constants are assumed. The derived LDM and DTM
concentration expressions for the enzyme inhibitor reaction model were shown to be very
close to the fourth-order Runge–Kutta method when the results were compared for the
integer-derivative case.

The derived fractional analytical concentration curves would play a significant role
in predicting the future state of the biochemical reaction model. In addition, the derived
analytical expressions would be essential in investigating the effects of various reaction
rates to reach better designs and controlled systems. The used methods are accessible to
the broader research community. They can be extended to solve various fractional models
to obtain a better insight into dynamical behavior for biological or chemical systems with
possible hereditary properties.
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mca27030045/s1.
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