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Abstract: This article aims to develop a mathematical simulation of the steady mixed convective
Darcy–Forchheimer flow of Williamson nanofluid over a linear stretchable surface. In addition,
the effects of Cattaneo–Christov heat and mass flux, Brownian motion, activation energy, and ther-
mophoresis are also studied. The novel aspect of this study is that it incorporates thermal radiation
to investigate the physical effects of thermal and solutal stratification on mixed convection flow
and heat transfer. First, the profiles of velocity and energy equations were transformed toward the
ordinary differential equation using the appropriate similarity transformation. Then, the system
of equations was modified by first-order ODEs in MATLAB and solved using the bvp4c approach.
Graphs and tables imply the impact of physical parameters on concentration, temperature, velocity,
skin friction coefficient, mass, and heat transfer rate. The outcomes show that the nanofluid tem-
perature and concentration are reduced with the more significant thermal and mass stratification
parameters estimation.

Keywords: Williamson nanofluid; thermal stratification; solutal stratification; mixed convection;
Darcy–Forchheimer flow; activation energy

1. Introduction

Nanotechnology is the technique of analyzing and separating or adding an object’s
atoms and molecules that need to be made very small. Over the last thirty years, nan-
otechnology has significantly impacted vast applications in the petroleum industry, food
production, medicine, nuclear energy, cooling of the reactor, and the polymer industry.
Primarily, in 1995, Choi and Eastman [1] “coined the term nanofluid by incorporating the
substance of nanoparticles into base fluids and theoretically demonstrated their efficiency”.
Based on their findings, they noticed a considerable increase in the thermal conduction
of the base liquid. Buongiorno [2] demonstrated the role of Brownian motion and ther-
mophoresis in a nanofluid. The seven slip mechanisms were studied by Buongiorno and
Buongiorno’s concepts: inertia, thermophoresis, gravity, Magnus effects, fluid drainage,
Brownian diffusion, and diffusionphoresis.

Williamson [3] developed “the flow of Pseudo-plastic equation” and analyzed the
properties of the pseudo-plastic flow holding three constants. These are the viscous constant,
plasticity constant, and the ratio between the viscous constant and the plasticity constant.
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Nadeem et al. [4] tested the Williamson fluid model for 2D flows through a stretching sheet.
The role of radiation and heat absorption on an incompressible pseudo-plastic Williamson
fluid over the unsteady flow of the boundary layer via a porous stretched surface was ex-
plored by Hayat et al. [5] and Karthikeyan et al. [6], and they discovered that increasing the
Weissenberg number decreases the skin friction coefficient. According to Zeeshan et al. [7],
water- and engine oil-based CNTs flowed through a porous medium. On the other
hand, the MHD Williamson fluid flow through a nonlinear curved surface in convec-
tive homogeneous and heterogeneous reactions was implemented by K. Ahmed et al. [8].
H. Waqas et al. [9] presented a numerical result for the Carreau–Yasuda nanofluid in a
porous medium with bioconvective microorganisms. Nasir Shehzad et al. [10] determined
that the suction/injection parameter was generated due to a constant and porous medium
in the presence of a heat source, and a chemical reaction was observed. The cutting-edge
reports in Williamson nanofluid flow with thermal radiation and heat generation are
seen in [11–19].

Cattaneo [20] suggested a modified Fourier’s law that included a relaxation time
element to overcome the paradox of Fourier’s law and heat conduction. Christov [21]
extended Cattaneo’s theory by including Oldroyd derivatives, and it was named the
Cattaneo–Christov model theory. Eswaramoorthi et al. [22] expressed the impact of a
Williamson fluid flow of two-dimensional Darcy–Forchheimer on a Riga plate. Dual strati-
fication and a double Catteneo–Christov flux were established for the energy equations.
The contribution of Jeffery fluid flow to the non-Fourier heat flux model on a nonlinear
stretched surface with double stratification was studied by Hayat et al. [23] and Shankar
Goud [24]. Ali et al. [25] used the Cattaneo–Christov dual diffusion model to discuss the
3D incompressible unsteady effect of magneto-hydrodynamics on the transient rotating
flow of Maxwell viscous nanofluid. The relation between thermal boundary layer and
thermal relaxation time was observed in Abu-hamdeh et al. [26]. Rashid et al. [27] ex-
amined the thermal radiation effects of Darcy–Forchheimer Maxwell fluid flow along an
exponentially stretching surface with activation energy. Shafiq et al. [28] “reported the
influence of convective boundary conditions, thermal radiation and chemical reaction on
the three-dimensional flow of Darcy Forchheimer nanofluid across a rotating surface with
Arrhenius activation energy”. “Entropy formation, activation energy, and binary chemical
reaction effects on the Darcy Forchheimer flow of Williamson nanofluid through a nonlinear
stretchable flat surface were deliberated” by Ghulam Rasool et al. [29] and Hayat et al. [30].

The activation energy is the smallest quantity of energy forced to trigger a chemical
reaction in a system. Energy exists in two types: kinetic and potential. A reaction among
molecules could be incomplete due to kinetic energy loss or an inadequate collision. At
this point, only the minimum amount of energy is required to initiate the chemical reac-
tion. Bestman [31] was the first to investigate the impact of activation energy on natural
action in a permeable boundary layer. Dawar et al. [32] addressed nonlinear stretching
plates in magnetohydrodynamics pseudo-plastic nanofluid flow with activation energy.
The method of homotopy analysis was performed by Alsaadi et al. [33] to examine the
Arrhenius energy equation in the nanomaterial of magneto-Williamson flow. The influence
of the activation energy, slip, porosity parameter, and entropy approach on the mixed
convective flow of Darcy–Forchheimer along a stretched curved surface was noticed by
Muhammad et al. [34]. Danook et al. [35] investigated the mixed convective heat transfer
in a turbulent flow of nanofluid. Wasim Jamshed et al. [36] worked on the unsteady flow of
a non-Newtonian Casson nanofluid with solar radiation using the Keller box method. The
significance of MHD mixed convective flows Casson nanofluids over an elongating irreg-
ular surface immersed vertically in a Darcy–Brinkman porous medium was exploited by
Alghamdi et al. [37]. Currently, investigators are analyzing the Arrhenius activation en-
ergy [38–48]. Other related studies have been conducted in [49–55].

For heat and mass transfer concepts, stratification is an essential component. Due to
temperature differences, concentration variations, and differing fluid densities, it happens
in inflow distribution. Heat and mass transport occur at the same time in the dual stratifica-
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tion process. Natural and mixed convection in a dual stratification medium are essential to
study because of their applications. Groundwater reservoirs, industrial food, and regulat-
ing hydrogen and oxygen levels in the atmosphere are just a few examples of stratification.
Sreelakshmi et al. [56] examined the steady flow of Maxwell fluid Darcy–Forchheimer
over a stretching surface with thermal and solutal stratification. Darcy–Forchhemer MHD
viscoelastic flow of nanofluid through a nonlinear stretching surface with dual stratification
effects was deliberated by Hayat et al. [57]. Eswaramoorthi et al. [58] tested the impact of
dual stratification and double non-Fourier heat flux model on the mathematical modeling
of a Williamson fluid flow on a Darcy–Forchheimer over a Riga plate. Williamson fluid
flow over a stretching in a linear surface was examined by Ahmed et al. [59] Some recent
thermal and solutal stratification articles were found in [43–48,56–70].

The vast majority of researchers collaborate on the mixed convective Darcy–Forchheimer
flow with the non-Fourier heat flux model via the prescribed boundary layer but have
not handled a dual stratified porous medium in Williamson nanofluid. Here, the gap was
filled by the Williamson nanofluid on the double Cattaneo–Christov theory, radiation, dual
stratification, and the impact of activation energy. The numerical findings were produced
using the MATLAB bvp4c approach. Finally, in Williamson nanofluid flow, all the phys-
ical parameters were represented by a graphical process. This process is widely used in
chemical and thermal engineering fields.

2. Development of the Flow Analysis

Assume a Williamson nanofluid’s steady flow through a linearly stretching surface in
a Darcy–Forchheimer porous material. The Cattaneo–Christov theory, Arrhenius energy,
thermal radiation, and magnetic field are studied. The flow process is revealed by thermal
and solutal stratification. Throughout this work, the x and y directions represent velocity
components of u and v, respectively (see Figure 1). The surface velocity is presumed to
be uw = ax, where a > 0 denotes the stretching surface rate. The flow equation [69] is
as follows:

∂u
∂x

+
∂v
∂y

= 0 (1)

u ∂u
∂x + v ∂v

∂y = ϑ ∂2u
∂y2 + ϑ

√
2∧ ∂u

∂y
∂2u
∂y2 + ϑ

k f
u + CB

x
√

k f
u2 − σB2

0
ρ f

u

+ 1
ρ f

{
(1− c∞)gρ f ∞Λ1(T − T∞)

−g
(
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)
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}
(2)
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∂y + ΓT

(
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∂y2 +

(
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∂x
∂T
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∂y
∂T
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)
+ 2uv ∂T2
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)
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∂x
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∂y
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∞
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(
Dm

(
∂T
∂y

)(
∂C
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)
+ Dn

T∞

(
∂T
∂y

)2
) (3)

u ∂C
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∂y + ΓC
[
u2 ∂2C

∂x2 + v2 ∂2C
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(
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∂x
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+ 2uv ∂2C

∂x∂y + u ∂v
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∂C
∂y

+v ∂v
∂y

∂C
∂y
]
= Dm

∂2C
∂y2 + Dn

T∞
∂2T
∂y2 − k2

r (C− C∞)
(

T
T∞

)n
exp
(
− EA

kT

) (4)

The boundary conditions are

u = Uw(x) = ax, v = −Vw(x), T = Tw(x) = T0 + bx, C = Cw(x) = C0 + c1x at y = 0,
u→ 0, ∂u

∂y → 0, T → T∞ = T0 + b1x, C → C∞ = C0 + c2x at y→ ∞ (5)
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Consider

η =

√
a
ϑ

y, u = ax f ′(η),v = −
√

aϑ f (η) θ(η) =
T − T∞

Tw − T0
, φ(η) =

C− C∞

Cw − Co
(6)
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Equations (2)–(4) can be modified as follows by using (6):

f ′′′ + f f ′′ − f ′
2
+ Wi f ′′ f ′′′ − K f ′ + λ(θ − BNφ)− Fc f ′

2 −M f ′ = 0 (7)

1
Pr

(
1 + 4

3 Rd
)

θ′′ −ωθ

(
f 2θ′′ + θ f ′

2
+ f ′

2
Sθ − f f ′θ′ − f f ′′ θ − f f ′′ Sθ

)
+NBφ′θ′ + NTθ′

2
+ HAθ − f ′θ + f θ′ − Sθ f ′ = 0

(8)

1
SC φ′′ + f φ′ −ωφ

(
f 2φ′′ − f f ′′ Sφ − f f ′′φ + f ′

2
φ + f ′

2
Sφ − f f ′φ′

)
− f ′φ + f ′Sφ + NT

SCNB
θ′′

−σoφ(1 + θδo)
n exp

(
−E

1+θδo

)
= 0

(9)

The boundary conditions are

η → 0, f (0) = f w; f ′(0) = 1; θ(0) = 1− Sθ ; φ(0) = 1− Sφ

η → ∞, f ′(∞) = 0; θ(∞) = 0; φ(∞) = 0
(10)

E = EA
kT∞

, Fc= CB√
k f

, Gr =

(
(gβ(1−C∞)(Tw−T∞)x3)

ϑ2

)
, HA = Q1

ρ f Cpa , f w = − Vw√
aϑ

, M =
σB2

0
ρ f a ,

Sc = ϑ
DB

, NB = τDBC∞
ϑ , BN =

(
(ρp−ρ f∞)C∞

ρ f∞∧1(1−C∞)(Tw−T0))

)
, Pr =

k f
(ρc) f

, Rex = Uwx
ϑ ,
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Wi = ∧x
√

2a3

ϑ , λ =
(

Gr
Re2

x

)
=
(
(g∧1(1−C∞)(Tw−T∞))

a2x

)
, NT =

(
τDT(Tw−T0)

T∞ϑ

)
, R = 4σ∗T3

∞
kpk f

,

δ =
(
(Tw−T0)

T∞

)
.

Physical quantities for skin friction, Nusselt, and Sherwood number are obtained as
follows:

C f =
2τω

ρU2
ω

, Nu =
xqω

k f (Tw − T0)
, Shx =

xjω
Dm(Cw −C0)

(11)

where

τω = µ

(
∂u
∂y

[
1 +

∧√ 1
2

∂u
∂y

])
qω = −

(
k f

∂T
∂y + 16σ∗T3

∞
3kp

∂T
∂y

)
jω = −Dm

∂C
∂y

The following are the dimensionless parts of local skin friction, heat, and mass
transfer rates.

1
2 C f Re

1
2 = f ′′ (0) + Wi

2 f ′′ (0)2,

Re−
1
2 Nu = −

(
1 + 4

3 Rd
)

θ′(0),

Re−
1
2 Shx = −φ′(0).

(12)

3. The Solution Methodology

A system of nonlinear ODEs (7)–(9) with boundary conditions (10) is solved via
the MATLAB bvp4c code. The problems are converted into first-order ODEs using the
mathematical algorithm described below (Figure 2).

Let f = y(1), f ′ = y(2), f ′′ = y(3), θ = y(4), θ′ = y(5), φ = y(6), and φ′ = y(7). The
following is a list of first-order ODEs:

y′(1) = y(2),
y′(2) = y(3),
y′(3) = yy1 =

(
1

1+Wi y(3)

)
∗
(
−y(1)y(3) + y(2)2 + K y(2) + Fc y(2)2 + M y(2)

−λ (y(4)− BN y(6))),
y′(4) = y(5),

y′(5) = yy2 =

(
1

1+( 4
3 )Rd

− Pr ωθ y(1)2
)

∗(−Pr y(1) y(5) + Pr y(2)y(4) + Pr Sθ y(2)
+Pr ωθ

(
y(4) y(2)2 + y(2)2 Sθ − y(1) y(2) y(5)− y(1) y(3) y(4)

−y(1) y(3) Sθ)−Pr HA y(4)− Pr NB y(7) y(5)− Pr NT y(5)2
)

,
y′(6) = y(7),

y′(7) = yy3 =
(

1/
(

1− Sc ωφ y(1)2
))
∗ (−Sc y(1) y(7) + Sc y(2) y(6) + Sc Sφ y(2)

+Sc ωφ (y(6) y(2)2 + y(2)2Sφ − y(1) y(2) y(7)− y(1) y(3) y(6)
−y(1) y(3)Sφ)− (NT/NB) ∗ yy2
+Sc σo(1 + δo y(4))n y(6) exp(−E/(1 + δo y(4))))

with boundary condition

y0(1) = f w, y0(2) = 1, y0(4) = (1− Sθ), y0(6) =
(
1− Sφ

)
,

yinf(2) = 0, yinf(4) = 0, yinf(6) = 0
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4. Results and Discussion

Table 1 shows the association between Nusselt numbers taken from Mustafa et al.’s
results and our results. We were able to match our results identically to Mustafa’s re-
sults. The quantitative data of the skin friction drag force (1/2C f Re1/2), heat transfer
rate ( NuRe−1/2), and Sherwood number (ShxRe1/2) for the several values of Richardson
number λ, Weissenberg number Wi, Forchheimer number Fc, Magnetic parameter M, and
suction/injection parameter fw were presented in Table 2. Moreover, it was discovered
that as Wi and λ values grow, the skin friction coefficient also increases, whereas it was
significantly decreased when Fc, fw, and M increased. Tables 3 and 4 incorporated the
effects of the embedded parameters Radiation R, Thermal relaxation time parameter ωθ ,
Thermal stratification Sθ , Thermophoresis parameter NT , Mass relaxation parameter ωφ,
Mass stratification Sφ, and Schmidt number Sc on heat and mass diffusion rates. The higher
variation of ωθ , Sθ , NT , and Sφ was related to the reduced mass and heat transfer rates. It
was also accelerated as the thermal radiation, Schmidt number, and mass relaxation time
were increased.
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Table 1. Correlation of Nusselt number
(

NuRe−
1
2

)
when Wi = Fc = K = R = ωθ = HA = ωφ = 0,

M = BN = NB = 0.5, Sc = 5, and δ0 = 1.

Pr NT E σ0 n λ
NuRe−1/2

Mustafa et al. [69] Present

2 0.5 1 1 0.5 0.5 0.706605 0.706604

4 0.5 1 1 0.5 0.5 0.935952 0.935955

7 0.5 1 1 0.5 0.5 1.132787 1.132788

10 0.5 1 1 0.5 0.5 1.257476 1.257482

5 0.1 1 1 0.5 0.5 1.426267 1.426269

5 0.5 1 1 0.5 0.5 1.013939 1.013938

5 0.7 1 1 0.5 0.5 0.846943 0.846928

5 1.0 1 1 0.5 0.5 0.649940 0.649939

5 0.5 0 1 0.5 0.5 0.941201 0.941209

5 0.5 1 1 0.5 0.5 1.013939 1.013943

5 0.5 2 1 0.5 0.5 1.064551 1.064563

5 0.5 4 1 0.5 0.5 1.114549 1.114191

5 0.5 1 0 0.5 0.5 1.145304 1.145301

5 0.5 1 1 0.5 0.5 1.013939 1.013938

5 0.5 1 2 0.5 0.5 0.926282 0.926281

5 0.5 1 5 0.5 0.5 0.798671 0.798669

5 0.5 1 2 −1 0.5 1.030805 1.030804

5 0.5 1 2 −0.5 0.5 0.999470 0.999468

5 0.5 1 2 0 0.5 0.964286 0.964285

10 0.5 1 2 1 0.5 0.886830 0.886830

10 0.5 1 2 0.5 0 1.032281 1.032280

10 0.5 1 2 0.5 0.5 1.056704 1.056706

10 0.5 1 2 0.5 3 1.154539 1.154538

10 0.5 1 2 0.5 5 1.215937 1.215938

Table 2. Numerical analysis of 1/2C f Re1/2, NuRe−1/2, and ShxRe1/2 for different parameters Wi, Fc,
λ, M, and fw.

Wi Fc λ M fw 1/2CfRe1/2 NuRe−1/2 ShxRe−1/2

0 0.4 0.5 0.5 0.3 −1.493123 1.667677 0.688683

0.1 0.4 0.5 0.5 0.3 −1.455877 1.661396 0.681731

0.2 0.4 0.5 0.5 0.3 −1.41351 1.653626 0.673835

0.3 0.4 0.5 0.5 0.3 −1.362763 1.643289 0.664469

0.2 0 0.5 0.5 0.3 −1.329383 1.662128 0.682787

0.2 0.2 0.5 0.5 0.3 −1.372209 1.657807 0.678189

0.2 0.4 0.5 0.5 0.3 −1.41351 1.653626 0.673835

0.2 0.6 0.5 0.5 0.3 −1.45342 1.649575 0.669706

0.2 0.4 0 0.5 0.3 −1.470747 1.646644 0.666783

0.2 0.4 0.2 0.5 0.3 −1.44786 1.64946 0.669584

0.2 0.4 0.4 0.5 0.3 −1.424968 1.652245 0.672411
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Table 2. Cont.

Wi Fc λ M fw 1/2CfRe1/2 NuRe−1/2 ShxRe−1/2

0.2 0.4 0.6 0.5 0.3 −1.402068 1.655 0.675269

0.2 0.4 0.5 0 0.3 −1.167756 1.642785 0.789742

0.2 0.4 0.5 0.5 0.3 −1.41351 1.653626 0.673835

0.2 0.4 0.5 1 0.3 −1.56368 1.632112 0.646948

0.2 0.4 0.5 1.5 0.3 −1.696232 1.612796 0.626083

0.2 0.4 0.5 0.5 −0.3 −1.13794 1.366538 0.605637

0.2 0.4 0.5 0.5 −0.1 −1.22469 1.476979 0.612521

0.2 0.4 0.5 0.5 0.1 −1.316926 1.576889 0.632016

0.2 0.4 0.5 0.5 0.3 −1.41351 1.653626 0.673835

Table 3. Numerical study of NuRe−1/2 for various parameters R, ωθ , and Sθ .

R ωθ Sθ NuRe−1/2

0 0.1 0.2 1.292138

0.5 0.1 0.2 1.653626

1 0.1 0.2 1.877266

1.5 0.1 0.2 1.926091

0.5 −0.1 0.2 1.64429

0.5 0 0.2 1.662016

0.5 0.1 0.2 1.653626

0.5 0.2 0.2 1.561214

0.5 0.1 0 1.849146

0.5 0.1 0.1 1.753203

0.5 0.1 0.2 1.653626

0.5 0.1 0.3 1.550338

Table 4. Numerical results of ShxRe1/2 for different parameters Sc, NT , ωφ, and Sφ.

Sc NT ωφ Sφ ShxRe−1/2

0.5 0.5 0.1 0.2 0.015548

1 0.5 0.1 0.2 0.673835

1.5 0.5 0.1 0.2 1.186802

2 0.5 0.1 0.2 1.628294

1 0.2 0.1 0.2 1.038076

1 0.3 0.1 0.2 0.911577

1 0.4 0.1 0.2 0.790267

1 0.5 0.1 0.2 0.673835

1 0.5 0 0.2 0.591323

1 0.5 0.1 0.2 0.673835

1 0.5 0.2 0.2 0.759523

1 0.5 0.3 0.2 0.848478

1 0.5 0.1 0 0.899109
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Table 4. Cont.

Sc NT ωφ Sφ ShxRe−1/2

1 0.5 0.1 0.1 0.786382

1 0.5 0.1 0.2 0.673835

1 0.5 0.1 0.3 0.561474

The embedded parameters with fixed values Wi = 0.2, δo = ωθ = 0.1, ωφ = 0.1,
Pr = 2, Fc = 0.4, K = 0.2,σo = 1, BN = 0.5, R = 0.5, HA = −0.5, NB = 0.5,
NT = 0.5, n = 0.5, f w = 0.3, Sθ = 0.2, Sc = 1.0, M = 0.5, λ = 0.5, E = 1 and Sφ = 0.2 are
existence in velocity f ′, temperature θ and concentration φ profiles. Specifications of the
suction/injection parameter f w on velocity field f with the range of 0 ≤ η ≤ 4 the fluid
velocity profile of the nanofluid while comparing the values of Fc and K were noted in
Figure 3. In the graph flow between Fc and K, then values of f w varied from f w = −0.3 to
+0.3 increase, and the velocity profile f ′ of the graph automatically decreases. The influence
of mixed convection parameters λ on the velocity field for various values of the parameters
is shown in Figure 4. As shown in Figure 4, the velocity field decays with raising values
of λ = 0 to 0.6. Supporting flow is represented on a warm surface by λ values greater
than zero, whereas resisting flow is shown on a cold surface by λ values less than zero.
The influence of the Forchheimer number Fc on the velocity profile is seen in Figure 5 for
varied Wi = 0.0 and 0.4 values. It is determined that the velocity field diminishes when the
Forchheimer number rises. The effect of the Weissenberg number Wi on velocity flow is
seen in Figure 6 for both magnetic field parameter scenarios. Figure 6 shows that increasing
Wi depreciates the velocity field. The relaxation time is prolonged, which restricts fluid
motion. The Weissenberg number is used in physical studies of viscoelastic flows to test the
impact of elastic to viscous forces. As a result of lowering the velocity of the boundary layer,
the Forchheimer number Fc and the porous medium K have different parameter values. In
Figures 7 and 8, we present the variation of the Weissenberg number Wi and the magnetic
field M of the base flow of the velocity profile. Figures 7 and 8 show that increasing Wi and
M lowers the velocity distribution. The Lorentz force is formed when the magnetic field is
strengthened. This force aids in reducing the velocity distribution as well as Wi.
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Specifications of the heat absorption HA on temperature profile θ within the range
of 0 ≤ η ≤ 8 were established in Figure 9. In the graph, the flow depends on thermal
radiation values. When the values of HA increase, the temperature field also increases.
Figure 10 demonstrates the impact of the suction/injection parameter on temperature for
different parameters of the Forchheimer number Fc. The temperature field reduces for
higher values of fw. Figure 11 reveals the influence of the radiation parameter R on the
temperature profile. In these cases, the temperature profile was increased for various values
of the thermal radiation grown by varying the thermal relaxation time parameters ωθ . For
various Brownian motion and chemical reaction parameters, Figures 12 and 13 indicate
the performance of growing levels of thermal and solutal stratification parameters. The
stratification parameter is the ratio of free stream temperature to fluid surface temperature.
A significantly larger stratification parameter causes a rise in free stream temperature or
a decrease in a nanofluid stream, whereas the concentration profile exhibits the inverse
correlation. Temperature and concentration distribution within the boundary layer and
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the ambient fluid were reduced as the Sθ and Sφ values increased. The profiles of non-
dimensional temperature and concentration against thermal relaxation time ωθ and mass
relaxation time parameter ωφ were plotted in Figures 14 and 15. The temperature field
shrinks for NT = 0.0 and 0.5 as ωθ increases. For E = 0.0, 0.5, an upsurge in ωφ decreases
the concentration gradient. Figure 16 shows the effect of Sc on the concentration profile
with the range of 0 ≤ η ≤ 8 when NT = 0.0. It was discovered that concentration decreased
as Sc increased. Because of this, the Schmidt number has an opposite relation with mass
diffusivity. The characteristics of the thermophoresis parameter NT on the profile of
concentration were observed in Figure 17 for Sφ = 0.0 and 0.2. The concentration here rises
as a function of Sφ. The presence of a high value of NT helps reduce the concentration
boundary layer.
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Figures 18–20 show the role of numerous parameters on skin friction coefficients
and heat and mass transfer rates. We concluded from Figure 18a,b that the skin friction
coefficient rises at fw and Wi while also increasing in Ri and Wi. Figure 19a,b display a lower
Nusselt number due to a lower R and ωθ as well as diminished NT and Sθ . Figure 20a,b
depict the mass diffusion rate for various estimates of fw and Sφ. The mass diffusion rate
increased in this case as the values of fw and Sφ increased, and Sc and ωφ also increased.
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5. Conclusions

The numerical and analytical results of the Darcy–Forchheimer Williamson nanofluid
flow through a linear stretched surface were observed in this paper. In addition, the effects
of thermal and solutal stratification, activation energy, and the Cattaneo–Christov dual flux
were all considered. The following are the outcomes of this work.

i. The velocity profile was reduced by the Weissenberg number and Forchheimer
number, while the mixed convective parameter shows the increasing tendency in
velocity profile.

ii. The temperature distribution was raised with a high thermal relaxation time and
radiation values.

iii. For higher estimations of Schmidt number and mass relaxation time, the concentra-
tion profile diminished.

iv. Increases in the thermal and mass stratification parameters reduce the temperature
and concentration profile.

v. Heat and mass transfer rates were declined for large values of thermal radiation,
thermal relaxation time, mass stratification, and suction parameter.

The findings discussed in this work should benefit scientists and engineers in various
chemical and thermal engineering applications such as nuclear reactors, cooling systems,
and hybrid power systems.
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Abbreviations

List of Symbols
a Stretching rate

(
s−1)

CB Drag coefficient
Cp Specific heat (Jkg−1k−1)
B0 Magnetic field (kgs−2A−1)
Cw Surface concentration (kgm−3)
lg Acceleration due to gravity (ms−2)
C∞ Ambient fluid concentration (kgm−3)
lDB Mass diffusivity (m2s−1)
C Fluid concentration (kgm−3)
DT Thermophoretic diffusion coefficient (m2s−1)
E = (EA/kT∞) Activation energy Dimensionless

Fc=
(

CB/
√

k f

)
Forchheimer number Dimensionless

Gr =
(
(gβ(1−C∞)(Tw−T∞)x3)

ϑ2

)
Local Grashof number Dimensionless

HA =
(

Q1/ρ f Cpa
)

Heat generation parameter Dimensionless

k Thermal conductivity
(

Wm−1k−1
)

k f Permeability of porous medium Dimensionless

f w = −
(

Vw/
√

aϑ
)

Suction/injection parameter Dimensionless

kp Mean absorption coefficient Dimensionless
kr Reaction rate Dimensionless

M =
(

σB2
0/ρ f a

)
Magnetic parameter Dimensionless

n Fitted rate Dimensionless
NB=(τDBC∞/ϑ) Brownian diffusion parameter Dimensionless

BN =

(
(ρp−ρ f∞ )C∞

ρ f∞∧1(1−C∞)(Tw−T0))

)
Buoyancy ratio parameter Dimensionless

Pr =
(

k f /(ρc) f

)
Prandtl number Dimensionless

Rex = (Uwx/ϑ) Local Reynolds number Dimensionless

λ =
(

Gr
Re2

x

)
=
(
(g∧1(1−C∞)(Tw−T∞))

a2x

)
Richardson number Dimensionless

Sc = (ϑ/DB) Schmidt number Dimensionless
T Fluid temperature (K)

Wi =
(
∧x
√

2a3/ϑ
)

Weissenberg number Dimensionless

T∞ Ambient temperature (K)
u and v Velocity components (ms−1)
Uw Stretching surface velocity (ms−1)
Sθ Thermal stratification Dimensionless
x and y Direction coordinates (m)
Sφ Solutal stratification Dimensionless
Tw Wall temperature (K)

NT =
(

τDT(Tw−T0)
T∞ϑ

)
Thermophoresis parameter Dimensionless

R =
(

4σ∗T3
∞/kpk f

)
Thermal Radiation Dimensionless

ρ f Cp Heat capacity (Jk−1m−3)

Greek Symbols
ωθ = (aΓT) Thermal relaxation time parameter Dimensionless

δ =
(
(Tw−T0)

T∞

)
Temperature difference parameter Dimensionless

ωφ = (aΓC) Mass relaxation parameter Dimensionless
ρ f Fluid density (kgm−3)

α Thermal diffusivity (m2s−1)

∧ Williamson parameter Dimensionless
θ Non dimensional temperature Dimensionless
φ Non dimensional concentration Dimensionless
σ0 Dimensionless reaction rate Dimensionless
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