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Abstract: This paper proposes an efficient numerical technique for simulating hybrid fiber-reinforced
polymer (FRP) bridge systems. An integrated finite strip method (IFSM) is proposed to evaluate the
free vibration performance of cable-stayed FRP bridges. The structural performance of the ultra-long
span cable-stayed bridge (ULSCSB) is totally different than steel and concrete bridge structures due
to the complexity of the mechanical behavior of the FRP deck. Herein, the anisotropic nature of the
FRP laminated deck is considered in the analysis by introducing so-called laminate spline strips in
the integrated finite strip solution. The structural interactions between all the components of the
bridge can be handled using the proposed method. Column strips and cable strips are introduced
and used to model the towers and cables, respectively. In addition, a straightforward scheme for
modeling boundary conditions is developed. A case study is presented through which the accuracy
and efficiency of the IFSM in modeling such structures, as well as in performing natural frequency
analysis of long-span cable-stayed FRP bridges, are evaluated. The finite strip results are verified
against the finite element analysis, and a significant enhancement in efficiency in terms of reduction
in computational cost is demonstrated with the same level of accuracy.

Keywords: integrated finite strip method; laminate strip; free vibration; fiber-reinforced polymer;
FRP deck; cable-stayed bridge

1. Introduction

The finite strip method (FSM) provides an attractive numerical approach for analyzing
bridge structures. Its high accuracy and efficiency due to its semi-analytical nature as
well as its rapid convergence of iterations owing to the small bandwidth elastic matrices,
along with the simplicity of its input data and simulations, have made FSM outstanding
among conventional numerical techniques for bridge analysis [1]. Despite the merits
of the FSM in structural analysis [1–6], there is currently no comprehensive commercial
FSM software available for engineering calculations. In addition, this method is only
applicable to structural elements with simple shapes such as plates and shells and folded
plate structures. When it comes to a more complicated system, such as a cable-stayed bridge
with numerous structural elements attached together in different orientations, the FSM is
no longer a powerful tool for the 3D modeling and simulation of a structure. Therefore,
until recently, the application of FSM for cable-stated bridges was limited to modeling
bridge decks only, while other structural components such as piers, towers, and cables
were modeled as special boundary conditions of the deck [7]. Alternatively, a combination
of FSM and other numerical solutions such as FEM and the boundary element method
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(BEM) can model the entire bridge system. However, only an iterative process can provide
compatibility and model the interactions between the displacements of the joint knots.
This technique is only effective for structures with simple geometric shapes under static or
quasi-static forces. In the case of complex systems such as a long-span cable-stayed hybrid
fiber-reinforced polymer (FRP) bridge and/or structures under dynamic or aerodynamic
excitations, such as non-uniform seismic waves and self-excited wind forces, the iterative
process is no longer efficient. When external forces are applied to the bridge, the internal
forces are transmitted between structural elements. Particularly, in dynamic phenomena
such as earthquakes, the effects of seismic waves are transmitted from the foundation of
the bridge to the piers and towers, and then to the deck and cables. Therefore, handling the
structural interactions of all elements of a bridge system is a necessary step in performing
accurate dynamic analyses and design of bridges. For all these reasons, the application of
the FSM in bridge analysis had been close to its technical limits for more than a decade.
After a number of years of research on developing and trying different solutions, Cheung
et al. [7–9] created an innovative integrated framework that is capable of 3D modeling an
entire long-span cable-stayed bridge system with the spline finite strip method, where the
effects of structural interactions between different segments of the bridge are also handled.

FRP materials have superior structural specifications over traditional steel and concrete
materials, such as high strength and stiffness to mass ratios, high resistance to corrosion,
and favorable fatigue characteristics. This has encouraged the use of advanced composite
materials in long-span cable-stayed bridges. Among the important factors involved in
designing, maintaining, and constructing long-span cable-stayed bridges are lengthening
the bridge span and lifecycle effectiveness, as well as earthquake and aerodynamic stability.
With the rapid development of advanced hybrid fiber-reinforced polymer (FRP) materials
for use in the construction of cable-stayed bridges, some of these goals, including increasing
the length of main spans of bridges as well as providing better structural conditions of
superstructures, can be achieved. Nevertheless, dynamic and aerodynamic instability has
become a critical issue because of the significant reduction in the weight of the structure,
which makes a bridge more sensitive to the vibration of extreme natural hazards such
as earthquakes and typhoons. Similar to other techniques for dynamic analysis of thin-
walled structures such as the finite element method and generalized beam theory [10–13],
the finite strip method also has the great potential to handle the dynamic and vibration
characteristics of the laminated FRP deck as a thin-walled member. Research shows that
the stiffness of advanced composite materials, including FRP, is coupled with the geometry
of the structure [14,15]. This indicates the importance of accurate simulation of composite
structure geometry, although it is a very expensive computational process.

Despite the great potential for popularizing FRP materials in ultra-long span cable-
stayed bridges, conventional design methods are not adequate for hybrid FRP cable-stayed
bridges due to the complexity of the failure mechanisms and the anisotropic nature of FRP
laminates. In contrast with traditional steel and concrete materials, which are typically
modeled as isotropic materials, FRP composites are highly anisotropic depending on the
type of fibers, the matrix, and the orientation of each lamina. Taking into account the
above features, the structural performance of long-span cable-stayed hybrid FRP bridges,
especially regarding their dynamic and aerodynamic characteristics, is totally different
from conventional cable-stayed bridges due to their longer spans, lighter weights, and more
flexible structural systems. In addition, the highly non-linear material properties coupled
with the geometrical complexity make the structural analysis and design of cable-stayed
FRP bridges much more challenging.

The first all-composite cable-stayed bridge was the Aberfeldy Footbridge in the UK,
where the main structure was a cable-stayed bridge with a glass fiber reinforced polymer
(GFRP) deck suspended by Parafil aramid ropes and GFRP towers. Salim et al. [16] carried
out research on the analysis and design of FRP composite deck-and-stringer bridges. By
using pultruded FRP shapes, Qiao et al. [17] suggested a systematic approach for the
analysis of FRP deck bridges. Bridge engineering researchers at the University of California,
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San Diego, in collaboration with the Federal Highway Administration, built a four-lane
traffic way composite cable-stayed bridge with a length of 137.2 m and an A-frame pylon
of 57.9 m in height [18]. In spite of the state-of-the-art research on the application of FRP
materials in short-span bridges, there is still a lack of research on FRP-based long-span cable-
stayed bridges. Almansour and Cheung [19–22] proposed a comprehensive multi-scale
design approach for hybrid FRP bridges at both micro and macro levels and performed
a number of case studies which resulted in the development of different types of FRP
deck sections for long-span cable-stayed bridges. The studies by Virlogeux showed that a
very thin FRP deck section can support static and traffic loads applied to a cable-stayed
bridge [23]. Through experimental tests, Burgueno et al. [24] investigated the dynamic
characteristics of FRP composite bridges. Cheung and his research group at the Hong
Kong University of Science and Technology and Sichuan University carried out extensive
analytical and experimental research on micro-scale and macro-scale designs for FRP bridge
decks for a number of existing bridges [25–27]. Their design process was based on the
multi-scale design approach introduced by Cheung and Almansour [21,22], considering
FRP laminated material configurations and micro-material properties.

To the best knowledge of the authors, only a few numerical methodologies have
been proposed in the literature on ULSCSBs [28–30]. In this paper, the integrated finite
strip method, as a very accurate and user-friendly technique, is extended for modeling
hybrid FRP deck bridges. The laminate spline strip is proposed for modeling anisotropic
laminated FRP decks, considering the coupling effects between the flexural and membrane
displacements of the FRP deck, while a rapid convergence rate for the numerical results is
still guaranteed. Integrating the laminate strips with so-called column strips for modeling
towers and piers, cable strips for modeling cables, and transition section elements for
modeling the bearings at the intersection joints will provide the opportunity to model
the entire hybrid FRP bridge in the IFSM. The structural stiffness and mass property
matrices for the whole bridge are obtained in this paper, and a standard eigenvalue analysis
is performed to evaluate the free vibration performance. In the following sections, the
numerical procedure will be explained. The developed methodology will be examined
by performing two case studies, one on an FRP deck slab-girder bridge and one on a
long-span cable-stayed hybrid FRP bridge system. The accuracy and efficiency of the
proposed models in natural frequency analysis of the selected long-span FRP bridge will
be investigated through comparison with the finite element analysis.

2. Methodology
2.1. FRP Deck Modelling

The proposed methodology in this paper for FRP deck modeling is explained in the
following. To model a composite FRP deck, a laminated FRP plate can be selected, which is
itself a collection of FRP lamina arranged in a specified order. Adjacent lamina may be of
the same or different materials, and their fiber orientations with respect to a reference axis
may be arbitrary. In Figure 1, a rectangular multi-layer composite flat FRP plate, divided
by laminate finite strips, is shown. The classical lamination theory is used in the present
study to derive the stiffness matrix of a composite laminated FRP plate in the integrated
finite strip method. In the lamination theory, it is assumed that each lamina is in a state of
plane stress while the interlaminar stresses are neglected. In addition, a perfect bonding
between different laminas is assumed, which means that the laminated FRP plate behaves
as a homogenous anisotropic plate.
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Figure 1. Multi-layer composite plate divided by laminate finite strips.

The displacement of a laminate spline strip is obtained by applying unequally spaced
B3-spline functions in the longitudinal direction of the strip, and polynomials in the
transverse direction. Figure 2 defines the coordinate system, whose origin is assumed to
be at the middle surface of the FRP laminated plate. As a result of assuming the plane
stress condition for each lamina, transverse shear strains are neglected. The in-plane
displacements are linear functions of the z coordinate, and the transverse normal strain
is negligible. The displacements of the FRP laminate at a general point (u, v, w) can be
expressed in terms of:

u(x, y, z) = u(x, y) + zψx(x, y) (1)

v(x, y, z) = v(x, y) + zψy(x, y) (2)

w(x, y, z) = w(x, y) (3)

where ψx and ψy are independent rotations, and u, v, and w are displacements at the middle
surface of the laminate along the x, y, and z axes, respectively.

Figure 2. Laminate spline finite strip.

The FRP composite deck is discretized into a number of laminate spline strips, as
shown in Figure 2, in which both in-plane and out-of-plane degrees of freedom are con-
sidered. One can consider four degrees of freedom on each knot of a nodal line of a spline
strip: three translational and one rotational. The total potential energy of a flat laminate
spline strip is obtained by algebraic summation of the membrane (in-plane) and bending
(out-of-plane) deformations. The displacement parameters vector of a laminate spline strip
centered at ym is given by:

{δ}m =
[
uim, vim, wim, θim, ujm, vjm, wjm, θjm

]T (4)
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In the formulation of the integrated finite strip method, in order to obtain acceptable
results, it is better that the locations of the supports and the concentrated load coincide with
the knots on the nodal lines. To achieve this goal, unequally spaced B3-spline functions are
used in the present study. Moreover, the introduction of unequally spaced interior knots
allows obtaining a more accurate response in regions with high stress gradients or at the
locations of abrupt geometric changes by spacing the knots more closely. In this case, the
spline function centered at ym can be expressed as:

Φm(y) =



0 y < ym−2

Am(y− ym−2)
3 ym−2 ≤ y < ym−1

Am(y− ym−2)
3 + Cm(y− ym−1)

3 ym−1 ≤ y < ym

Bm(ym+2 − y)3 + Dm(ym+1 − y)3 ym ≤ y < ym+1

Bm(ym+2 − y)3 ym+1 ≤ y < ym+2
0 ym+2 ≤ y

(5)

in which:

Am = [(ym+1 − ym−2)(ym − ym−2)(ym−1 − ym−2)]
−1

Bm = [(ym+2 − ym−2)(ym+2 − ym)(ym+2 − ym+1)]
−1

Cm = −(ym+2 − ym−2)[(ym+2 − ym−1)(ym+1 − ym−1)(ym − ym−1)(ym−1 − ym−2)]
−1

Dm = −(ym+2 − ym−2)[(ym+1 − ym−2)(ym+1 − ym−1)(ym+1 − ym)(ym+2 − ym+1)]
−1s

(6)

The membrane displacement functions u and v and the flexural displacement function
w at the middle surface of the laminate can be expressed as the product of transverse
polynomials and longitudinal B3-splines as follows:

u =
r+1

∑
m=−1

(
N1Φ1m(y)uim + N2Φ5m(y)ujm

)
(7)

v =
r+1

∑
m=−1

(
N1Φ2m(y)vim + N2Φ6m(y)vjm

)
(8)

w =
r+1

∑
m=−1

(
N3Φ3m(y)wim + N4Φ4m(y)θim + N5Φ7m(y)wjm + N6Φ8m(y)θjm

)
(9)

or

{ f } =


u

v

w

 =


N1 N2

N1 N2

N3 N4 N5 N6





[Φ1m]

[Φ2m]

[Φ3m]

[Φ4m]

[Φ5m]

[Φ6m]

[Φ7m]

[Φ8m]





uim

vim

wim

θim

ujm

vjm

wjm

θjm



(10)

where r is the total number of longitudinal sections on a nodal line and:

N1 = 1− X, N2 = X, N3 = 1− 3X2 + 2X3, N4 = x
(

1− 2X + X2
)

, N5 =
(

3X2 − 2X3
)

, N6 = x
(

X2 − X
)

, (11)

in which X = x/b and Φ1m to Φ8m are the longitudinal shape functions and Φ1m, Φ2m, Φ5m
and Φ6m are related to displacements u and v of the nodal lines i and j, respectively, while
Φ3m, Φ4m, Φ7m and Φ8m are related to displacement w. The longitudinal shape functions
consist of (m + 3) local B3-splines. Each longitudinal shape function has the following form:

[Φ] =
[
Φ−1 Φ0 Φ1 Φ2 . . . Φm−2 Φm−1 Φm Φm+1

]
, (12)
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where Φi is an amended local boundary spline with regard to the end boundary conditions
of the strip.

2.2. Towers, Piers, and Cable Modeling

The column strip (CS) is proposed to model cantilever-behaved towers, piers, and
linked beams. The CS is a vertical shell spline strip that is fixed at one end to provide the
support boundary conditions and free at the other end, as illustrated in Figure 3.

Figure 3. Column strip in local coordinate system (CS).

The CS displacement function is given by:

u =
r+1

∑
m=−1

(N1Φ1m(z)uim + N2Φ5m(z)ujm) (13)

v =
r+1

∑
m=−1

(N3Φ2m(z)vim + N4Φ4m(z)θim + N5Φ6m(z)vjm + N6Φ8m(z)θjm) (14)

w =
r+1

∑
m=−1

(
N1Φ3m(z)wim + N2Φ7m(z)wjm

)
(15)

In this paper, the piers and the towers of a hybrid FRP long-span cable-stayed bridge
are simulated by a one-dimensional column strip (CS1) which has only one nodal line.
CS1 is similar to the beam element employed in the finite element method, which makes it
computationally very efficient while ensuring accuracy. To achieve compatibility with the
other strips in the overall bridge structure, B3-splines are also used in the displacement
function of CS1. Each knot belonging to a nodal line has three translational degrees of
freedom, and the displacement function is given by:

u =
r+1

∑
m=−1

umΦm(z) (16)

v =
r+1

∑
m=−1

vmΦm(z) (17)

w =
r+1

∑
m=−1

wmΦm(z) (18)
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It should be noted that the strain–displacement relationships for CS1 are simplified to
the following:

ε =
∂v
∂x

, κ1 = −∂2w
∂y2 , κ2 = −∂2u

∂y2 , (19)

in which only the bending in the vertical and transverse directions, as well as the axial
stress, are considered, while the shear stress and torsional moment are assumed to be
negligible, as the amounts of these forces are very low in CS1. This makes the proposed
scheme very efficient in practical applications.

In the integrated finite strip framework, to simulate the bridge cables the cable strip
can be used, which is a simplified CS1 where the strain–displacement relationship is defined
only by the axial stress. In other words, only the first term in Equation (18) defines the
strain–displacement relationship.

2.3. Constitutive Equations

In the proposed IFSM solution, the following constitutive equations relate the stresses
to the strains in an arbitrary lay-up laminate spline strip:

Nx
Ny
Nxy
Mx
My
Mxy


=



A11
A12 A22 Sym
A16 A26 A66
B11 B12 B16 D11
B12 B22 B26 D12 D22
B16 B26 B66 D16 D26 D66





εx
εy

γxy
κx
κy
κxy


(20)

in which εx, εy, γxy and κx, κy, κxy are the mid-surface strains and curvatures, respec-
tively, while Nx, Ny, and Nxy are the membrane and shear forces per unit length, and
Mx, My, and Mxy are the bending and twisting moments per unit length at the middle
surface of the laminate spline strip, while Aij, Bij, and Dij are the components relating to
laminate extensional stiffness, laminate-coupling stiffness, and laminate-bending stiffness
matrices, respectively, and are obtained by the following integrations [31]:

Aij =
∫ t/2

−t/2
(Qij)kdz =

N

∑
k=1

(
Qij

)
k
(zk − zk−1) (21)

Bij =
∫ t/2

−t/2
(Qijkzdz =

1
2

N

∑
k=1

(
Qij

)
k
(z2

k − z2
k−1) (22)

Dij =
∫ t/2

−t/2
(Qij)kz2dz =

1
3

N

∑
k=1

(
Qij

)
k
(z3

k − z3
k−1) (23)

where the subscripts i, j = 1,2, or 6; N are the number of laminas; t is the laminate thickness;
zk, and zk−1 are the distances from the middle surface to the inner and outer surfaces of the
kth lamina, respectively, as illustrated in Figure 4.
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Figure 4. Laminated plate cross-sectional geometry and ply numbering system.

The coupling stiffness matrix couples the in-plane forces with the curvatures and
moments with the mid-plane strains. The coupling at laminate is not related to material
anisotropy but is due to geometric and/or material property asymmetry with respect to
the middle surface. From Equations (21)–(23),

(
Qij

)
k

are components of the transformed
kth lamina stiffness matrix, as follows:

Q11 = Q11c4 + Q22s4 + 2(Q12 + 2Q66)s2c2

Q12 = (Q11 + Q22 − 4Q66)s2c2 + Q12
(
c4 + s4)

Q22 = Q11s4 + Q22c4 + 2(Q12 + 2Q66)s2c2

Q16 = (Q11 −Q12 − 2Q66)c3s− (Q22 −Q12 − 2Q66)cs3

Q26 = (Q11 −Q12 − 2Q66)cs3 − (Q22 −Q12 − 2Q66)c3s
Q66 = (Q11 + Q22 − 2Q12 − 2Q66)s2c2 + Q66

(
s4 + c4)

(24)

where c = cos θ, s = sin θ, and θ are the lamina orientation angles, while Qij are the
components of the lamina stiffness matrix, which are related to the engineering constants,
as follows:

Q11 =
E1

1− ν12ν21
, Q12 =

ν12E2

1− ν12ν21
, Q22 =

E2

1− ν12ν21
, Q66 = G12 (25)

in which E1 and E2 are the moduli of elasticity of the lamina in the longitudinal and
transverse directions, respectively, ν12 and ν21 are the corresponding Poisson’s ratios,
respectively, and G12 is the shear modulus of the lamina.

2.4. Transition Elements and Final Assembling

The concept “element” in the longitudinal direction is not defined in the finite strip
method. In order to solve this issue, a special transition section has been developed within
the IFSM which is applied to connect the FRP deck and the piers, tower, and cables. The
transition section is developed by using unequal spaced B3-spline functions. The bearings
can be modeled as special boundary conditions for the transition section. Two typical
transition sections, one for connecting the deck with the pier and the other for connecting
the tower, deck, and cables, are shown in Figure 5. Assuming that the width of the normal
and transition sections are H and h, respectively, one can consider the vertical line as a
nodal line on the pier or tower strip and the horizontal line as a nodal line on the laminated
FRP deck strip. The vertical and horizontal lines overlap at knots 3 and 8 of the deck and
the pier (tower) strips, respectively. To model a fixed bearing, which allows rotations but
restricts translations, knots 3 and 8 should have the same displacement values to achieve
compatibility. In order to have identical displacements at knots 3 and 8, the ratio of h/H
should be extremely small. Using the developed transition section, compatibility for the
displacements of the different components of the bridge is satisfied in the IFSM.
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Figure 5. Typical transition section elements for tower (left) and pier (right).

The principle of minimum potential energy can be used to derive the bending and
dynamic properties of the laminate strips, column strips, and cable strips. For instance, the
stiffness matrix [kFRP] of a laminate FRP strip i are given by:

[kFRP] =
∫
[B]Ti [DFRP][B]idV (26)

in which [B] and [DFRP] are the strain and material property matrices of the laminate
strip, respectively. In a similar manner, the mass matrix of a laminate FRP strip [mFRP] is
presented by:

[mFRP] =
∫
[N]Ti ρ[N]idV (27)

in which ρ is the mass density of the strip and t is the thickness of the strip.
In the IFSM, the strip properties are converted to knots along the nodal lines during

the simulation process; however, the number of required knots is significantly reduced
compared to the FEM due to the semi-analytical nature of the IFSM. The stiffness and mass
matrices of all the strips are assembled using the conventional assembling procedure from
which the global stiffness matrix [K] and global mass matrix [M] are formed. Therefore, the
entire 3D model of the hybrid FRP bridge is built using IFSM. The boundary conditions are
then applied as described in the following section.

2.5. Boundary Conditions

The strip in the finite strip method must be accompanied by predefined boundary
conditions. In spite of the advantages of the spline finite strip method over the finite element
method in terms of computational efficiency, however, handling a complex amended
scheme of local splines for considering the end and internal boundary conditions makes the
solution untidy. In other words, the current amended schemes for boundary conditions are
unable to be generalized and dealing with boundary conditions using standard techniques
such as penalty functions is complicated.

Therefore, a straightforward method for modeling boundary conditions based on
replacing the spline displacement parameters with physical degrees of freedom is proposed
herein. This will result in a general unified formulation of otherwise very complex and
tedious amended schemes for local splines in the vicinity of the boundary supports and at
any internal support. This makes the method more versatile and adjustable with regard to
other numerical techniques such as finite element and boundary element methods.

Dividing a spline strip into m equal sections will give 8(m + 3) spline parameters that
define the displacement function of the shell spline strip. Similarly, the displacements
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and rotations of the intermediate knots are also presented by the spline parameters. The
transformation matrix corresponding to each degree of freedom ui, vi, wi, θi, uj, vj, wj, and
θj is expressed by:

T =



−1
2h 0
1
6

4
6

1
2h
1
6

1
6

4
6

1
6

zero

. . .

zero
1
6

4
6

1
6

1
6
−1
2h

4
6

1
6

0 1
2h


(28)

where h is the spline section length and T is an 8 × 8 (m + 3) matrix. The global transforma-
tion matrix of a flat shell spline strip is presented as:

Tt =



T
T

T
T

T
T

T
T


(29)

Therefore, the transformed stiffness and mass matrices [Kt] and [Mt] can be obtained by:

[Kt] = [Tt]
T [K][Tt] (30)

[Mt] = [Tt]
T [M][Tt] (31)

After transferring all degrees of freedom to the physical coordinate system, for each
restrained degree of freedom a corresponding zero value is imposed on the physical dis-
placement vector, which means that the corresponding rows and columns in the structural
and aerodynamic properties matrices are eliminated. The proposed amended scheme is
more applicable to equal section splines, while for unequal section splines the penalty
function is used.

2.6. Frequency Analysis of FRP Bridge Using IFSM

A standard eigenvalue analysis between the transformed mass matrix [Mt] and stiff-
ness matrix [Kt] of the FRP bridge provides the natural frequencies and mode shapes of the
structure:

[Mt]
{ ..

δ
}
+ [Kt]{δ} = 0 (32)

where {δ} is the displacements vector and
{ ..

δ
}

is the vector of the second derivative
of the displacements. The eigenvalues and eigenvectors of Equation (32) correspond
to the natural frequency and mode shapes of the FRP bridge. Accurate free vibration
estimation is an essential factor in complicated dynamic analyses of bridge structures
such as earthquake-resistant and aerodynamic flutter designs. The dynamic characteristics
are highly influenced by the free vibration behavior of the hybrid FRP bridge. In bridge
structures, especially in long-span cable-stayed and suspension bridges, in some cases, the
dominant mode shape can occur in the towers instead of the deck [7]. The IFSM is capable
of considering the vibration mode shapes not only of the deck but also of tower dominant
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modes. This is another advantage of using the IFSM in bridge analysis, including FRP
bridge systems.

3. Numerical Examples

In this section, two test cases are presented. The first test case is meant to demonstrate
the accuracy of the proposed scheme in comparison with highly accurate finite element
methods, and the second case is an application of the method to a real-life engineering
example of a ULSCSB system.

3.1. Accuracy Test of Integrated Finite Strip Procedure

To verify the accuracy and efficiency of the proposed integrated spline finite strip
technique and the integrity of the laminate spline strips with a transition element as well as
columns strips, a short-span hybrid FRP slab-girder bridge, as shown in Figure 6, is studied.
The layout of the FRP-laminated deck consists of 10 layers of 2 cm-thickness carbon fiber
reinforced polymer (CFRP) lamina with orientation configurations of 0, 90, 0, 90, 0, 0, 90, 0,
90, and 0 degrees. The FRP is made of CFRP (IM6G/3501-6) with the following properties:
mass density ρ = 1600 (kg/m3), E1 = 147 GPa, E2 = 10 GPa, G12 = 7 GPa, and ν12 = 0.25.
The pier is made from concrete with a modulus of elasticity of E = 3.0 × 104 MPa, a
Poisson’s ratio of 0.2, and a material density of 2500 kg/m3. Both IFSM and FEM are
adopted to model the free vibration behavior of the structure, and the results are compared.
For finite element modeling and analysis, SAP 2000 [32] software has been used.

Figure 6. A simple FRP bridge.

The full bridge model is constructed using laminate strips for the FRP deck, 3D column
strips (CS) for the pier, and transition section elements for the bearings. The deck is divided
into four equal strips, and the pier is divided into two CSs. Each deck strip is composed
of 32 sections in addition to two transition sections. Each pier strip is composed of four
sections and one transition section. For the FEM, the mass and stiffness of a bridge are
considered as having five degrees of freedom shell elements throughout the structure. The
deck is meshed with 32 by 4 elements, and the pier is meshed with 4 by 2 elements.

Table 1 compares the first seven natural bending frequencies of the models obtained
by the IFSM and FEM. The very small deviation of the modal frequencies between the
two methods demonstrates that the integrated approach is capable of capturing the free
vibration characteristics of an FRP bridge, whereas the minor deviation is likely to be
caused by slight differences in mass distribution within different elements. The deformed
shapes of the FRP slab girder bridge for the first seven natural modes are illustrated in
Figure 7.
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Figure 7. Mode shapes of the FRP deck bridge.

Based on this case study, executed on a personal computer for free vibration analysis
using similar IFSM and FEM meshes, a 10% reduction in computation time was achieved.
It should be noted that the number of sections for each strip in the IFSM model could have
been further reduced without losing accuracy and consequently, the computation time
could be even further reduced. In addition, this study was only a simplified bridge model
while for a large complicated structural model and under complex computations such
as smart structural health monitoring in which a continuous real-time iterative vibration
analysis is required, the efficiency of the proposed integrated finite strip solution will be
more highlighted.
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Table 1. Natural frequency of the FRP deck bridge.

Mode Number
Frequency (Hz) Mode Shape

IFSM FEM

1 2.08 2.00 Heave (deck) antisymmetrical

2 3.38 3.11 Heave (deck) symmetrical

3 8.08 7.90 Heave (deck) antisymmetrical

4 10.78 9.90 Heave (deck) symmetrical

5 17.59 17.33 Torsional (deck) antisymmetrical

6 19.60 19.96 Torsional (deck) symmetrical

7 29.47 29.38 Heave (deck) antisymmetrical

3.2. Long-Span Cable-Stayed Hybrid FRP Bridge

In order to evaluate the accuracy of the proposed integrated finite strip modeling for
the free vibration analysis of hybrid FRP long-span cable-stayed bridges, the Kap Shui
Mun Bridge, shown in Figure 8, is taken as the reference model. In addition, to examine
the integrated finite strip results and the performance of the proposed system, a 3D finite
element model is constructed with SAP 2000 [32]. The composite laminated FRP deck is
modeled by shell layered linear finite elements.
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Figure 8. Kap Shui Mun Bridge [33].

The Kap Shui Mun Bridge, located in the Lantau Link, provides direct access to Hong
Kong International Airport. The total length of the bridge is 820 m, which classifies the Kap
Shui Mun Bridge as the world’s second-longest cable-stayed bridge carrying both road and
rail traffic. It is a double-decked bridge that has a dual three-lane expressway on the upper
deck and two railway tracks and two sheltered single-lane carriageways on the lower deck.
The bridge is supported by two concrete pylons with heights of 145 m and 133 m on the
west and east sides, respectively. The legs of each tower were constructed by a jump form
process and were joined together with post-tensioned struts [33]. The tops of the towers
were also post-tensioned to resist the bursting forces caused by the stay cable anchorages.
The entire bridge is supported by 176 stay cables made up of 51 to 102 high-tensile steel
strands. The bridge was opened to traffic in May 1997 after 54 months of construction. The
IFSM and FEM models of the original Kap Shui Mun Bridge have been constructed and
calibrated using site experiment data which are highly idealized [7].
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3.2.1. Specifications of Carbon Fiber Reinforced Plastic (CFRP) Deck System

The design of the cross-section of the laminated FRP deck is influenced by some
major considerations, including long-span cable-stayed bridge requirements and advanced
material properties, and macro/structural design requirements. Although glass fiber
reinforced polymer (GFRP) can satisfy the strength requirement at a much lower cost, the
deflection of the middle span is too large for its low Young’s modulus, as reported in [16].
After testing different types of FRP materials, carbon fiber reinforced polymer with the
following properties was proposed by Cheung et al. [17] as the core material for the deck
section, i.e., CFRP (IM6G/3501-6) with a mass density of ρ = 1600 (kg/m3), modulus of
elasticity along the longitudinal direction of E11 = 147 GPa, modulus of elasticity along
the transverse direction of E11 = 10 GPa, shear modules of G12 = 7 GPa, and the major
Poisson ratio of ν12 = 0.25. A square tube-based FRP box girder deck system, as illustrated
in Figure 9, is suggested to replace the steel-concrete deck [25].

Figure 9. Design of the FRP bridge deck system (dimensions are in meters) [25].

3.2.2. Integrated Finite Strip Modelling of FRP Cable-Stayed Bridge

Here, a thin laminated flat FRP deck has been chosen for the bridge composite deck
and has been modeled such that it has properties compatible with the deck designed by
Chaw [25] in terms of cross-section area, FRP material properties, and angles of lamina
orientation in the FRP laminated deck system. The composite hybrid FRP deck is modeled
by using the laminate spline strips developed in this paper. There are 38 CFRP lamina layers
of 1.0 cm thickness, as introduced in the previous section, with orientation configurations
in the sequence 0, 90, 0, 0, 90, and 0 degrees.

The concrete pylons and other piers and linked beams are modeled by one-dimensional
column strips, while the cables are modeled by one-dimensional cable strips. The pre-stress
condition in the cables is also included in the current analysis. All the interaction points
between the different structural elements, including the hybrid FRP deck, pylons, piers,
and link beams are modeled by transition section elements.
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3.2.3. Free Vibration Analysis of the FRP Cable-Stayed Bridge

One of the most important factors in the dynamic and aerodynamic performance of
cable-stayed bridges originates from the free vibration and natural frequency properties
of the bridge. For instance, identification of the dominant mode shape of a cable-stayed
bridge can predict the aeroelastic behavior of the bridge in flutter or buffering responses. In
this section, a free vibration analysis of the selected long-span cable-stayed FRP bridge in
the IFSM is performed through which the natural frequencies, as well as dominant mode
shapes of the FRP structure, are identified.

Using the overall mass and stiffness matrices, eigenvalue analysis can estimate the
natural frequency of an FRP bridge system as well as any deformed shape of the bridge
structure through the eigenvalue and eigenvectors, respectively. The first five dominant
frequencies of each mode shape, including towers and lateral, vertical, and torsional modes,
are classified and presented in Table 2, Table 3, Table 4, Table 5, respectively. The frequencies
obtained by the integrated finite strip method are compared with the free vibration finite
element analysis, and the percentage of the difference between the results is listed in the
tables. In all cases, a good agreement is witnessed between the results, although the natural
frequencies predicted by the IFSM are slightly higher than those obtained by the FE analysis.
In the case of torsional mode shapes, as seen in Table 5, the difference between the results
is significantly greater. The reason for the difference between the results could be because
of different distributions of the mass properties between the elements of the FE model.
In general, however, the percentage of error in most cases is less than 10%. According to
the results, the best agreement between the results is observed in the cases of the vertical
bending and tower modes. It can be concluded that the tower dominant modes are well
predicted in the IFSM. The deformed shapes of the first symmetric and antisymmetric
mode shapes of each specific vibration mode of the FRP cable-stayed bridge are displayed
in Figures 10–17.

Table 2. Natural frequencies of the tower dominant modes.

Mode Number IFSM (Hz) FEM (Hz) Error %

1 0.19 0.19 0.0
2 0.22 0.21 4.5
3 1.13 1.10 2.6
4 1.13 1.10 2.6
5 1.33 1.27 4.5

Table 3. Natural frequencies of the deck lateral dominant modes.

Mode Number IFSM (Hz) FEM (Hz) Error %

1 0.57 0.55 3.5
2 1.00 0.98 2.0
3 3.92 3.70 5.6
4 5.62 5.30 5.6
5 5.97 5.73 4.0

Table 4. Natural frequencies of the deck vertical dominant modes.

Mode Number IFSM (Hz) FEM (Hz) Error %

1 0.33 0.32 3.0
2 0.40 0.38 5.0
3 0.67 0.66 1.4
4 0.79 0.77 2.5
5 0.88 0.87 1.1
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Table 5. Natural frequencies of the deck torsional dominant modes.

Mode Number IFSM (Hz) FEM (Hz) Error %

1 0.50 0.45 10.0
2 0.62 0.57 8.0
3 1.13 1.05 7.0
4 1.29 1.23 4.6
5 1.43 1.35 5.5

Figure 10. Symmetric lateral mode shape of the FRP cable-stayed bridge (0.5725 Hz).

Figure 11. Antisymmetric lateral mode shape of the FRP cable-stayed bridge (1.003 Hz).
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Figure 12. Symmetric torsional mode shape of the FRP cable-stayed bridge (0.5027 Hz).

Figure 13. Antisymmetric torsional mode shape of the FRP cable-stayed bridge (0.6290 Hz).
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Figure 14. Symmetric tower dominant mode shape of the FRP cable-stayed bridge (0.1986 Hz).

Figure 15. Antisymmetric tower dominant mode shape of the FRP cable-stayed bridge (0.2245 Hz).



Math. Comput. Appl. 2022, 27, 47 19 of 22

Figure 16. Symmetric bending mode shape of the FRP cable-stayed bridge (0.3354 Hz).

Figure 17. Antisymmetric bending mode shape of the FRP cable-stayed bridge (0.4009 Hz).

In order to investigate the effects of an FRP deck under the vibration behavior of a
long-span cable-stayed bridge, a comparison study is made between the natural frequencies
and mode shapes of the original model of the Kap Shui Mun Bridge with those of the FRP
bridge model. The first ten mode shapes and corresponding natural frequencies of the
original Kap Shui Mun Bridge and the hybrid FRP version are presented in Table 6. As can
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be seen, the dominant mode in both cases is the tower (pylon) swaying mode. Additionally,
it appears that the torsional mode is more likely to occur at lower frequencies in the hybrid
FRP bridge than in the original Kap Shun Mun Bridge. The torsional free vibration mode is
an important factor in the aerodynamic flutter stability of long-span cable-stayed bridges,
and therefore, special considerations need to be provided in the design of hybrid FRP
cable-stayed bridges for the flutter phenomenon.

Table 6. Vibration specifications of original and FRP bridges.

Mode Number FRP Bridge Mode Shape Original Bridge [8] Mode Shape [8]

1 0.19 tow 1 0.21 tow 1
2 0.22 tow 2 0.24 tow 2
3 0.33 V1 0.42 V1
4 0.40 V2 0.52 L1
5 0.50 T1 0.75 T1
6 0.57 T2 0.85 V2
7 0.62 L1 0.93 L2
8 0.67 V3 1.00 V3
9 0.79 V4 1.13 tow 3
10 0.88 V5 1.14 tow 4

Herein, the natural frequencies of the hybrid FRP cable-stayed bridge are found to
be generally lower than those of the original Kap Shui Mun Bridge. The total weight of
the bridge deck is reduced due to the use of FRP materials instead of steel-concrete and
it is expected to provide relatively high stiffness which is compatible with a conventional
concrete-steel cable-stayed bridge. Therefore, the stiffness to mass ratio and subsequently
the natural frequencies are expected to be higher in the case of an FRP bridge. It can be
concluded that the stiffness of the proposed FRP deck needs to be modified by increasing
the thickness of the laminated FRP deck or by considering alternative sequences of ply
angles or by adopting another type of FRP material. Regardless of the concluding remarks
of the results, the present study proves that the dynamic behavior of the cable-stayed FRP
bridge is different from the existing Kap Shui Mun Bridge with a concrete deck.

4. Concluding Remarks

An efficient integrated finite strip framework was deployed for hybrid FRP bridges in
the environment of the spline finite strip method. The laminate strip was introduced, which
can model an FRP deck considering the coupling effects between the in-plane and out-of-
plane degrees of freedom as well as the anisotropic material properties of the laminated FRP
deck. The other components of the bridge can also be modeled by spline-based finite strips.
The 1D column strips model the piers and towers, while cable strips model the cables.
Transition section elements combine strips with different orientations. A straightforward
method for modeling boundary conditions based on replacing the spline displacement
parameters with physical degrees of freedom was proposed as well. The application of the
laminate strip along with the integrated finite strip method resulted in a very precise and
efficient numerical technique for modeling cable-stayed hybrid FRP bridges. The proposed
finite strip scheme was extended for the free vibration analysis of hybrid FRP bridges.
The finite strip results for the natural frequencies and mode shapes of a cable-stayed FRP
bridge were compared with those obtained by the finite element method, and a very good
agreement was witnessed.

Among the advantages of the proposed solution are its high efficiency and accuracy
as well as the minimal computational time and simplicity of the input data. Moreover, the
structural interactions between different bridge components can be handled. Consequently,
dynamic analysis of an FRP bridge for occurrences such as earthquakes, in which there are
significant structural interactions between towers, piers, linked beams, cables, and decks
can be easily performed.
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The present methodology can be expanded to nonlinear and time-history analyses
of FRP bridge structures, as well as flutter and buffeting of FRP bridges. Last but not
least, this IFSM can be merged well with smart structural health monitoring systems of
long-span bridges as well as high-rise buildings such as telecommunication towers, where a
continuous real-time vibration analysis and iterative dynamic analysis must be performed.
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