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Abstract: In this paper, the thermal instability of rotating convection in a bidispersive porous layer
is analyzed. The linear stability analysis is employed to examine the stability of the system. The
neutral curves for different values of the physical parameters are shown graphically. The critical
Rayleigh number is evaluated for appropriate values of the other governing parameters. Among the
obtained results, we find: the Taylor number has a stabilizing effect on the onset of convection; the
Soret number does not show any effect on oscillatory convection, as the oscillatory Rayleigh number
is independent of the Soret number; there exists a threshold, R∗c ∈ (0.45, 0.46), for the solute Rayleigh
number, such that, if Rc > R∗c , then the convection arises via an oscillatory mode; and the oscillatory
convection sets in and as soon as the value of the Soret number reaches a critical value, (∈(0.6, 0.7)),
and the convection arises via stationary convection.

Keywords: bidispersive porous media; thermal convection; linear stability analysis

1. Introduction

In recent years, great attention has been devoted to the thermal instability in bidis-
persive porous medium (BDPM). A BDPM is an extension of a regular porous medium.
In general, it is considered a regular porous medium where the solid phase is replaced
by another porous medium. A BDPM is composed of clusters of large particles that are
agglomerations of small particles [1,2]. The voids between the clusters are known as
macropores, and the voids within the clusters are known as micropores. In other words,
a BDPM is a porous medium in which fractures or tunnels have been introduced. In the
present model, the f-phase and p-phase are represented by ’fracture phase’ and ’porous
phase’, respectively. Understanding convection in a BDPM is of considerable interest for
geophysical applications [3,4]. The theory of thermal convection in a BDPM was developed
by Nield and Kuznetsov [5–11], Kuznestsov and Nield [12], and Sraughan [13,14]. All
these authors considered two different velocities and two different temperatures in the
macro and micro pores. In their analysis, they found that, in a BDPM, the critical values of
Rayleigh numbers are much larger than those in the regular porous medium. Later, much
research made an effort to investigate the convective instability in a BDPM.

Very recently, Falsaperla et al. [15] and Gentile and Straughan [16,17] studied the
same problem by using a single equation for temperature. In particular, Gentile and
Straughan [16,17] analyzed the non-linear stability theory for the problem of thermal
convection in a BDPM. They proved that the linear and non-linear stability thresholds

Math. Comput. Appl. 2022, 27, 56. https://doi.org/10.3390/mca27040056 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca27040056
https://doi.org/10.3390/mca27040056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-8548-6534
https://orcid.org/0000-0003-3191-7981
https://orcid.org/0000-0001-7648-1523
https://doi.org/10.3390/mca27040056
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca27040056?type=check_update&version=1


Math. Comput. Appl. 2022, 27, 56 2 of 13

coincide. Very recently, Capone et al. [18] have shown that the linear instability and non-
linear stability thresholds for the problem of thermal instability in a rotating BDPM are
different. Later, Capone and De Luca [19] extended their work by considering inertia terms,
and they showed that the effect of the Vadasz number can give rise to an oscillatory mode
at the loss of stability of a thermal motionless state.

On the other hand, double-diffusive instability in porous media is an interesting subject
of research due to its applications in different industries, such as the migration of solutes
in watersaturated soils, the spread of pollutants, drying processes, evaporative cooling of
high-temperature systems, and solar ponds [8]. The study of thermosolutal convection of
a fluidsaturated porous medium has attracted the attention of many researchers [20–28].
In addition, Straughan [29] developed a model for double-diffusive convection in a BDPM.
Later, Straughan [30] extended this work by considering the effect of inertia. He showed
that the inertia term had a very strong effect on the double-diffusive convection in a BDPM.
Badday and Harfash [31] have studied the double-diffusive convection in BDPM with
chemical reaction and magnetic field effects.

In this paper, the coriolis effect on thermosolutal convection in a rotating bidispersive
porous layer is studied. We reconsider the problem investigated in [18] in light of the
Soret effect. The plan of the article is as follows. Section 2 describes the mathematical
problem. In Section 3, we describe the linear stability analysis. The critical values of
Rayleigh numbers at the onset of stationary and oscillatory convection are determined.
The results and discussions are presented in Section 4, which contains a table to provide
some examples in which stationary or oscillatory instability sets in, and figures showing
the neutral stability curves for steady and oscillatory instability. The paper ends with a
conclusion part in Section 5.

2. Mathematical Formulation

Let us consider a horizontal fluid saturated bidisperse porous layer confined between
z = 0 and z = d. In this setting, let V f

i and Vp
i be the velocity of the fluid in the macro

pores and the velocity of the fluid in the micro pores, respectively. The fixed temperatures
at z = 0 and at z = d are T0

LC and T0
UC, respectively, with TL > TU > 0. It is rotating at a

constant rate Ω. The axis of rotation is parallel to z-axis. The Boussinesq approximation is
used to account for the density variations.

The hydrodynamic model representing flow behavior in bidisperse porous layer
differs from the classical porous layer theory by exhibiting two different pressures in the
pores, following the multiporosity model. The flow within each type of pores is determined
by its own pressure gradient through Darcy’s law. Hence, four additional equations
corresponding to the micro-pores are considered to make the relevant equations for mass
and momentum balances closed. The governing equations consist of the momentum and
continuity equations (see the references [18,31], and the visual representation in Figure 1).
By adopting the Boussinesq approximation in the macro and micro pores, these equations
can be written as

CO+ΔC 
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g 

CO 

z 

y 
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Figure 1. Physical Configuration.
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∇ ·V f = 0,∇ ·Vp = 0, (1)

− µ

κ f
V f − δ

(
V f −Vp

)
−∇P f − ρgêz −

2ρ0Ω
δ

êz ×V f = 0, (2)

− µ

κp
Vp − δ

(
Vp −V f

)
−∇Pp − ρgêz −

2ρ0Ω
ε

êz ×Vp = 0. (3)

Then, we consider a linear relation for the density of form

ρ = ρ0[1− α(T − T0) + αc(C− C0)]. (4)

The equation of the energy balance can be written as

(ρc)m
∂T
∂t

+ (ρc) f

(
V f + Vp

)
· ∇T = km∇2T, (5)

where c is the specific heat in the porous medium. The coefficients (ρc)m and km are
given by

(ρc)m = (1− ε)(1− δ)(ρc)s + [δ + ε(1− δ)](ρc) f , (6)

km = (1− ε)(1− δ)ks + [δ + ε(1− δ)]k f . (7)

The equation for the concentration field taking into account the Soret effect on the
diffusion coefficient can be written as

ε1
∂C
∂t

+
(

V f + Vp
)
· ∇C = ε2∇2C + Ŝ∇2T, (8)

where

ε1 = δ + ε(1− δ), (9)

ε2 = δk f
c + ε(1− δ)kp

c , (10)

Ŝ = φS f
T + ε(1− φ)Sp

T , (11)

subject to the boundary conditions

V f · êz = Vp · êz = 0, on z = 0, d, (12)

T(x, y, 0, t) = TL, T(x, y, d, t) = TU (TL > TU), (13)

C(x, y, 0, t) = CL, C(x, y, d, t) = CU(CL > CU). (14)

The basic state solution is then

V f
b = 0, Vp

b = 0, Tb = TL − βz, Cb = CL − βcz, (15)

where β = TL−TU
d and βc =

CL−CU
d .

Let V f , Vp, P f , Pp, T, and C be a perturbation to the steady Equation (15).
The perturbations are non-dimensional, with length scale d, velocity scale V, time

scale τ , temperature scale T∗, and concentration scale C∗, where

τ =
(ρc)md2

km
, V =

km

(ρc) f d
,

T∗ =
βV(ρc) f d2

km
, C∗ = βcVd2

ε2
.
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Define the quantities γ, κr, A, η, R, RC, Ta, Le, and S by

γ =
δκ f

µ
, κr =

κ f

κp
, v =

(ρc)m
(ρc) f

,

Ta =
2ρ0Ωκ f

µφ
, R =

ρ0βgαd2(ρc) f κ f

µkm
, RC =

ρ0βcgαcd2κ f

µε2
,

Le =
km

(ρc)mε2
, S =

ŜT∗
ε2C∗ .

All these quantities have been explained in the nomenclature. The non-dimensional
equations (after omitting the asterisks) governing the system are

∇ ·V f = 0,∇ ·Vp = 0, (16)

−V f − γ
(

V f −Vp
)
−∇P f + (Rθ − RCφ)êz − Taêz ×V f = 0, (17)

− κrVp − γ
(

Vp −V f
)
−∇Pp + (Rθ − RCφ)êz − ηTaêz ×Vp = 0, (18)

∂θ

∂t
+
(

V f + Vp
)
· ∇θ =

(
w f + wp

)
+∇2θ, (19)

ε1Le
∂φ

∂t
+ ALe

(
V f + Vp

)
· ∇φ =

(
w f + wp

)
+∇2φ + S∇2θ, (20)

w f = wp = θ = φ = 0 on z = 0, 1. (21)

By taking the third component of curl of Equations (17) and (18), one obtains

w f
3 + γ

(
w f

3 −wp
3

)
− Ta

∂w f

∂z
= 0, (22)

κrwp
3 + γ(wp

3 −w f
3)− ηTa

∂wp

∂z
= 0, (23)

where D = ∂
∂t , w f

3 = ∂v f

∂x −
∂u f

∂y .
By taking the third component of double curl of Equations (17) and (18), one has

∇2w f + γ
(
∇2w f −∇2wp

)
− R∇2

hθ + RC∇2
hφ + Ta

∂w f
3

∂z
= 0, (24)

κr∇2wp + γ
(
∇2wp −∇2w f

)
− R∇2

hθ + RC∇2
hφ + ηTa

∂wp
3

∂z
= 0, (25)

where

∇2
h =

∂2

∂x2 +
∂2

∂y2

and

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 .

Solving Equations (22) and (23) with respect to w f
3 and wp

3 , respectively, one has

w f
3 =

Ta(γ + κr)w
f
z + ηTaγwp

z
γ + κr + γκr

, (26)

wp
3 =

Ta
(

γw f
z

)
+ ηTa(1 + γ)wp

z

γ + κr + γκr
. (27)

Substituting Equations (26) and (27) into Equations (24) and (25), respectively, one obtains
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∇2w f + γ
(
∇2w f −∇2wp

)
− R∇h

2θ + RC∇h
2φ +

Ta2(γ + κr)w
f
zz + ηTa2γwp

zz
γ + κr + γκr

= 0, (28)

κr∇2wp + γ
(
∇2wp −∇2w f

)
− R∇h

2θ + RC∇h
2φ +

ηTa2γw f
zz + η2Ta2(1 + γ)wp

zz
γ + κr + γκr

= 0. (29)

Hence, considering Equations (19), (20), (28) and (29), we see the following problem in
w f , wp, θ, and φ:

∇2w f + γ
(
∇2w f −∇2wp

)
− R∇h

2θ + RC∇h
2φ +

Ta2(γ + κr)w
f
zz + ηTa2γwp

zz
γ + κr + γκr

= 0, (30)

κr∇2wp + γ
(
∇2wp −∇2w f

)
− R∇h

2θ + RC∇h
2φ +

ηTa2γw f
zz + η2Ta2(1 + γ)wp

zz
γ + κr + γκr

= 0, (31)

∂θ

∂t
= w f + wp +∇2θ, (32)

ε1Le
∂φ

∂t
=w f + wp +∇2φ + S∇2θ. (33)

3. Linear Stability Analysis

Let us consider the normal mode solutions in the form of(
w f , wp, θ, φ

)
=
(

w f , wp, θ, φ
)

sin(nπz)ei(lx+my)+σt. (34)

Substituting the above normal mode solution into the Equations (30)–(33), we find

[AΛ(1 + γ) + n2π2Ta2B]w f + [ηγn2π2Ta2 − γΛA]wp − a2RAθ + a2RC Aφ = 0, (35)

[ηγn2π2Ta2 − γΛA]w f + [ΛAB + η2n2π2Ta2(1 + γ)]wp − a2RAθ + a2RC Aφ = 0, (36)

w f + wp + [σ−Λ]θ = 0, (37)

w f + wp − SΛθ − [ε1Leσ + Λ]φ = 0, (38)

where 

a2 = l2 + m2 is the wave number,
σ = ιω,
A = γ + κr + γκr,
B = γ + κr,
Λ = π2 + a2.

Requiring zero determinant of the above system, one has

R =
ξ1 + ω2ξ2 + ι

(
ξ3 + ω2ξ4

)
ξ5

, (39)

with
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ξ1 = Λ2[−a2ΛRC(S− 1)(x1 + AΛ(1 + B + 3γ)) + Λ(x2 + x3Λ + x4Λ2)],
ξ2 = x[a2 ARC(x1 + AΛ(1 + B + 3γ)) + xΛ(x2 + x3Λ + x4Λ2)],
ξ3 = a2 AΛRC(1− x + Sx)[x1 + AΛ(1 + B + 3γ)] + Λ2[x2 + x3Λ + x4Λ2],
ξ4 = x2(x2 + x3Λ + x4Λ2),
ξ5 = a2 A(ω2x2 + Λ2)[π2Ta2(B + η(γη − 2γ + η)) + AΛ(1 + B + 3γ)],
x1 = π2Ta2(B + η2 + η2γ− 2ηγ),
x2 = π4Ta4(B + Bγ− γ2)η2,
x3 = Aπ2Ta2(B2 + 2ηγ2 + (1 + γ2)η2),
x4 = A2(B + Bγ− γ2),
x = Leε1.

3.1. Stationary Convection:

Substituting ω = 0 in Equation (39), one obtains

RTsc =
ξ6 + ξ7Λ + ξ8Λ2 + ξ9Λ3

ξ10 + ξ11Λ
, (40)

where 

ξ6 = a2π2Rc(1− S)Ta2(κr + γ(−1 + η)2 + η2),
ξ7 = a2 ARc(1− S)(1 + k + 4γ) + π4Ta4η2,
ξ8 = π2Ta2((κr + γ)2 + 2ηγ2 + (1 + γ)2η2),
ξ9 = A2,
ξ10 = a2π2Ta2(κr + γ(−1 + η)2 + η2),
ξ11 = a2 A(1 + k + 4γ).

In the absence of rotation and the Soret effect, the above-stationary Rayleigh number
reduces to

Rasc =
δ4(γ + κr + γκr)

q2(1 + κr + 4γ)
, (41)

which, on comparison, satisfies [16] (Equation (31)).
The case of a monodispersive porous layer rotating about a vertical axis with the Darcy

model has been considered in Capone and Rionero [32]. As κr → ∞, γ → 0 Rc → 0, and
η → ∞ in Equation (40), we find

Rasc =
δ2(π2Ta2 + δ2)

q2 . (42)

After some calculations, we find

Rascl = π2(1 +
√

1 + Ta2)2, (43)

which is in good agreement with [32] (Equation (4.24), p. 195).

3.2. Oscillatory Convection

To study the oscillatory stability, we consider the real and imaginary parts of R.
The Rayleigh number at the onset of oscillatory convection is

RToc =
ξ12 + ξ13Λ + ξ14Λ2 + ξ15Λ3

ξ16 + ξ17Λ
, (44)

where
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ξ12 = a2π2RcTa2(κr + γ(−1 + η)2 + η2),
ξ13 = a2 ARc(1 + k + 4γ) + π4Ta4(1 + x)η2,
ξ14 = π2Ta2(1 + x)((κr + γ)2 + 2ηγ2 + (1 + γ)2η2),
ξ15 = (1 + x)A2,
ξ16 = xa2π2Ta2(κr + γ(−1 + η)2 + η2),
ξ17 = xa2 A(1 + k + 4γ).

4. Discussion

The numerical results and discussions are presented in this section. The critical
Rayleigh number at the onset of stationary convection, Rac

TSC
; at the onset of oscillatory

convection, Rac
TOC

; the critical wave number at the onset of stationary convection, qc
sc; and

at the onset of oscillatory convection, qc
oc, are obtained for the prescribed values of other

parameters. Figures 2–8 show the neutral curves in the parametric plane (q, RT) with
different values of the Ta, S, RC, and κr.

0 5 10 15 20
0

100

200

300

400

500

600

a

R
T

sc
Ta=2,4,6,8,10,12

Figure 2. Neutral curves for the different values of Ta and for the fixed values of γ = 0.5, η = 0.2, κr = 1,
RC = 50, and S = 0.5 for the stationary mode.

In the stationary mode, the neutral curves are displayed in Figures 2–5. Figure 2
shows the neutral curves in the parametric plane (q, RT) with different values of the Taylor
number. From this figure, one can observe that, as Ta increases, the curves shift upward,
indicating a delay in the onset of instability. This can be explained as follows: Vorticity is
introduced into the fluid when it rotates. As a result, the fluid travels faster in horizontal
planes. The velocity of the fluid perpendicular to the planes decreases as a result of this
motion, therefore Rac

TSC
rises with Ta.

The effect of the Soret parameter on the onset of instability is shown in Figure 3. In it,
we see that Rc

Tsc
decreases with the Soret parameter, which means that the Soret parameter

destabilizes the system. For various values of solute Rayleigh number, with changing
values of wave number and then Rayleigh numbers, the neutral curves are obtained in
Figure 4. We can see from this figure that Rc

Tsc
increases as Rc increases, indicating that the

presence of Rc suppresses the onset of convection.
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2 6 10 13
240

280

320

360

400

a

R
T

sc

S=0.1,0.2,0.3,0.4,0.5,0.6

Figure 3. Neutral curves for the different values of S and for the fixed values of γ = 0.5, η = 0.2,
κr = 1, RC = 50, and Ta = 20 for the stationary mode.

4.9 8.4 11.9 14
950

1000

1050

1100

a

R
T

sc

R
C

=5,10,15,20,25,30

Figure 4. Neutral curves for the different values of RC and for the fixed values of γ = 0.5, η = 0.2,
κr = 1, S = 0.2, and Ta = 50 for the stationary mode.

Figure 5 depicts the neutral curves at the onset of stationary convection for various
values of κr. According to this figure, Rc

Tsc
decreases as κr increases, indicating that the

presence of a solute Rayleigh number advances the onset of convection. The neutral curves
at the onset of oscillatory convection are displayed in Figures 6–8. Figure 6 displays the
neutral curves for different values of Ta. According to this figure, increasing Ta causes Rc

Toc
to increase, indicating that Ta has the effect of stabilizing the system.
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1 6 11 16 20
400

800

1200

1600

2000

a

R
T
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κ
r
=1,2,3,4,5,6

Figure 5. Neutral curves for the different values of κr and for the fixed values of γ = 0.5, η = 0.2,
RC = 50, S = 0.2, and Ta = 50 for the stationary mode.

0 5 10 15 20
0

100

200

300

400

500

a

R
T

sc

Ta=2,4,6,8,10,12

Figure 6. Neutral curves for the different values of Ta and for the fixed values of γ = 0.5, η = 0.2,
RC = 50, and κr = 1 for the oscillatory mode.

Figure 7 depicts the neutral curves for different values of RC at the onset of oscillatory
convection, and it is found that the neutral curves move upward with an increase in the
value of RC, thus RC stabilizes the oscillatory convection.

Figure 8 shows the effect of κr. In particular, we observe that the effect of κr advances
the onset of convection. This can be understandable, mathematically, because κr =

κ f
κp

,
κr increases as κp decreases (κ f is assumed to be fixed here). In other words, as microp-
ermeability declines, fluid movement in micropores becomes more difficult. As a result,
convective motions become more difficult, yielding more stability to the system.
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980
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R
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R
C

=100,200,300,400,500,600

Figure 7. Neutral curves for the different values of RC and for the fixed values of γ = 0.5, η = 0.2,
Ta = 50, and κr = 1 for the oscillatory mode.

1 5 9 13 17 20
400

800

1200

1600

2000

a

R
T
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κ
r
=1,2,3,4,5,6

Figure 8. Neutral curves for the different values of κr, and for the fixed values of γ = 0.5, η = 0.2, Ta = 50
and RC = 100 for the oscillatory mode.

In Tables 1–3, we present some examples in which steady or oscillatory instability sets
in for the constant values of physical parameters. According to Table 1, there is a threshold
R∗c (∈ 0.45, 0.46) for the solute Rayleigh number, such that, if Rc > R∗c , then the convection
arises via an oscillatory mode. According to Table 2, oscillatory convection occurs initially,
and as soon as the value of S reaches a critical value (∈(0.6, 0.7)), the convection ceases to
be oscillatory, and stationary convection occurs as the first bifurcation. Table 3 shows that,
as the value of κr increases, convection always occurs via stationary mode.
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Table 1. Critical stationary and oscillatory Rayleigh numbers for different values of Rc and the fixed
values of κr = 1, Ta = 5, and S = 0.5.

Rc Stationary R Stationary a Oscillatory R Oscillatory a Instability

0 61.6464 3.9578 62.7612 3.9578 Stationary
1 62.1464 3.9578 62.7793 3.9578 Stationary
2 62.6464 3.9578 62.7973 3.9578 Stationary
3 63.1464 3.9578 62.8154 3.9578 Oscillatory
4 63.6464 3.9578 62.8335 3.9578 Oscillatory
5 64.1464 3.9578 62.8516 3.9578 Oscillatory

Table 2. Critical stationary and oscillatory Rayleigh numbers for the different values of S and the
fixed values of κr = 1, Ta = 50, and Rc = 50.

S Stationary R Stationary a Oscillatory R Oscillatory a Instability

0.1 1018.7706 8.2527 992.2842 8.2527 Oscillatory
0.2 1013.7706 8.2527 992.2842 8.2527 Oscillatory
0.3 1008.7706 8.2527 992.2842 8.2527 Oscillatory
0.4 1003.7706 8.2527 992.2842 8.2527 Oscillatory
0.5 998.7706 8.2527 992.2842 8.2527 Oscillatory
0.6 993.7706 8.2527 992.2842 8.2527 Oscillatory
0.7 988.7706 8.2527 992.2842 8.2527 Stationary
0.8 983.7706 8.2527 992.2842 8.2527 Stationary
0.9 978.7706 8.2527 992.2842 8.2527 Stationary

Table 3. Critical stationary and oscillatory Rayleigh numbers for the different values of κr and the
fixed values of S = 0.8, Ta = 50, and Rc = 50.

κr Stationary R Stationary a Oscillatory R Oscillatory a Instability

1 983.7706 8.2540 992.2842 8.2540 Stationary
2 691.3454 6.4421 694.5709 6.4421 Stationary
3 588.8136 5.5171 590.1849 5.5171 Stationary
4 546.4455 4.9469 547.0506 4.9469 Stationary
5 531.2631 4.5668 531.5936 4.5668 Stationary

5. Conclusions

In this study, we investigated the onset of rotating convection in a horizontal bidis-
persive porous layer that is uniformly heated and salted from below. The behaviour of
various parameters, such as the Ta, S, RC, and κr, has been analysed. The results can be
summarized as follows:

• Rc
Tsc

and Rc
Toc

increase as the Taylor number increases, indicating that Ta has a stabiliz-
ing effect on the onset of convection.

• Rc
Tsc

and Rc
Toc

are increasing functions of Rc and decreasing functions of κr.
• S does not show any effect on Rc

Toc
, as Rc

Toc
is independent of S.

• There exists a threshold R∗c ∈ (0.45, 0.46) for the solute Rayleigh number such that,
if Rc > R∗c , then the convection arises via an oscillatory mode.

• The oscillatory convection sets in and, as soon as the value of S attains a critical value
(∈(0.6, 0.7)), the convection ceases to be oscillatory, and stationary convection occurs
as the first bifurcation.
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Nomenclature

Ca Acceleration coefficient
κ f Permeability in macro pores
κp Permeability in micro pores
ζ Interaction coefficient
µ Fluid viscosity
g Gravity
α Coefficient of thermal expansion
αc Density coefficient for salinity
σ Heat capacity ratio
ε Macro porosity
δ Micro porosity
ρ Density
ks Thermal conductivity of the solid
k f Thermal conductivity of the fluid
(ρc)s Product of density and specific heat in the solid skeleton
(ρc) f Product of density and specific heat in the pores
ρ0 Reference density
km Thermal conductivity
P f Pressure in macro pores
Pp Pressure in micro pores
T Temperature
C Salt concentration field
R Rayleigh number
RC Solutal Rayleigh number
Ta Taylor number
Le Lewis number
S Soret number
d Length
Superscripts
′ Perturbated quantity
c Critical value
Subscripts
b Base state
0 Reference valve
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