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Abstract: In data analysis and signal processing, the recovery of structured functions from the given
sampling values is a fundamental problem. Many methods generalized from the Prony method have
been developed to solve this problem; however, the current research mainly deals with the functions
represented in sparse expansions using a single generating function. In this paper, we generalize the
Prony method to solve the sparse expansion problem for two generating functions, so that more types
of functions can be recovered by Prony-type methods. The two-generator sparse expansion problem
has some special properties. For example, the two sets of frequencies need to be separated from
the zeros of the Prony polynomial. We propose a two-stage least-square detection method to solve this
problem effectively.

Keywords: Prony method; exponential sums; eigenfunctions; eigenvalues; sparse expansion;
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1. Introduction

The Prony method is a popular tool used to recover the functions represented in
sparse expansions using one generating function. For example, the function with the
following form

f (x) =
M

∑
j=1

cje
ixφj (1)

can be recovered from 2M equispaced sampling values f (lh), l = 0, ..., 2M − 1 for an
appropriate positive constant h; however, in many real-world applications, we need to
deal with the functions represented by more than one generating functions. For example,
the harmonic signals with the form

f (x) =
M

∑
j=1

(
cj cos(φjx) + dj sin(β jx)

)
, (2)

are generated by two generating functions (or simply generators): cos(φx) and sin(βx),
where φ and β are generic parameters used as the placeholders for the real parameters
{φj}M

j=1 and {β j}M
j=1 to generate the specific terms in the expansion. In this system, we have

two sets of coefficients {cj}M
j=1 and {dj}M

j=1 and two sets of frequencies {φj}M
j=1 and {β j}M

j=1.
Analogous to the original Prony method, we expect to use 4M equispaced sampling values
f (lh), l = 0, ..., 4M− 1 to recover those four sets of parameters.

There are some existing methods to solve this problem. The first one is to convert it to
a single-generator problem by the following formulas

cos x =
1
2
(eix + e−ix) and sin x =

1
2i
(eix − e−ix),
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which results in problem (1) (see [1]). Another way using the same idea is based on the
even/odd properties for cos x and sin x (see [2]) as follows

f (x) + f (−x) = 2
M

∑
j=1

cj cos(φjx). (3)

However, this approach is very restrictive, because the chance that one can make this
kind of conversion is very small. In this paper, we are interested in solving the general
two-generator sparse expansion problem by a new way of generalized Prony method. More
specifically, we study the functions with the following two-generator sparse expansion

f (x) =
M1

∑
j=1

cju(φjx) +
M2

∑
l=1

dlv(βl x), (4)

where u(φx) and v(βx) are two different functions used as the generators. In order to make
the Prony method work, we need a critical condition for our special technique: There exists
a linear operator, such that u(φx) and v(βx) are both eigenfunctions of this operator.

Another situation that could lead to the two-generator expansion problem is when we
apply some special transforms on a sparse expansion. For example, when we apply the
short time Fourier transform (STFT), i.e.,

STFT{ f (x)}(ω, τ) =
∫ ∞

−∞
f (x)w(x− τ)e−iωxdx (5)

using the Gaussian window function w(x) = 1√
2π

e−
x2

2σ2 on the sparse cosine expansion

f (x) =
M

∑
j=1

cj cos(φjx), (6)

we would obtain a two-generator sparse expansion as follows,

f (x) =
M

∑
j=1

cje
−β(φj−x)2

+
M

∑
j=1

cje
−β(φj+x)2

. (7)

In this example, the two generators are e−β(φ−x)2
and e−β(φ+x)2

with β 6= 0. Actually,
the original single-generator problem (6) can be solved directly. For example, one can
convert cos(φx) to 1

2 (e
iφx + e−iφx) (see [1]), or use a method based on the Chebyshev

polynomials (see [3]). When we solve problem (6) directly, we use the sampling values in
the time domain; when we solve the problem in the form of (7), we use the sampling values
in the frequency domain. (See [4] for a discussion on sampling values in the frequency
domain.) In this paper, we use this example to study the special properties of the two-
generator sparse expansion problem.

Since the signals could take various forms, not necessarily in the exponential form
studied in the classical Prony method, many researchers generalized the Prony method to
handle different types of signals. For example, many results in [1,3,5–12] have been devel-
oped over the last few years. In particular, Peter and Plonka in [1,8] generalized the Prony
method to reconstruct M-sparse expansions in terms of eigenfunctions of some special
linear operators. In [3], Plonka and others reconstructed different signals by exploiting the
generalized shift operator. These results provide us the building blocks for our method in
this paper.

We organize our presentation in the remaining sections as follows. In Section 2, we
quickly review the classical Prony method and one of its generalizations for the Gaussian
generating function to establish the foundation of our method. In Section 3, we describe the
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details of our method using the example with two generators: cosine and sine functions.
In Section 4, we apply our method on two different types of Gaussian generating functions,
so that we can study an interesting property: When the Hankel matrix for finding the coefficients
of the Prony polynomial is singular, what does it really mean? In Section 5, we show two examples
that correspond to the two problems solved in Sections 3 and 4, respectively. Finally, we
make conclusions in Section 6 and describe two related research problems to be solved
in the future.

2. Review of the Prony Method and One of Its Generalizations

Our method is built on top of the Prony method and one of its generalizations. Be-
fore we present our technique, we review these basic methods.

2.1. Classical Prony Method

Let f (x) be a function in the form of

f (x) =
M

∑
j=1

cje
−ixφj (8)

with M ≥ 1. Then the coefficients {cj}M
1 and the frequencies {φj}M

1 can be recovered from
the sampling values f (lh), l = 0, ..., 2M− 1, where h is some positive constant. To solve
this problem, a special polynomial called the Prony polynomial can help us convert the
relatively hard non-linear problem (8) to two linear problems and a simple non-linear problem
(finding zeros of a polynomial). The Prony polynomial for (8) is defined as

Λ(z) =
M

∏
j=1

(z− e−ihφj) =
M

∑
l=0

λlzl , (9)

where λl , l = 0, ..., M are the coefficients of the monomial terms in (9) with the leading
coefficient λM = 1. The technique is based on the following critical property:

M

∑
l=0

λl f (h(l + m)) =
M

∑
l=0

λl

M

∑
j=1

cje
−ih(l+m)φj =

M

∑
j=1

cje
−ihmφj

M

∑
l=0

λle
−ihlφj

︸ ︷︷ ︸
=0

= 0 (10)

for any m = 0, 1, . . . , M− 1, which can be written as the following linear system

[
f (h(l + m))

]M−1

l,m=0

 λ0
...

λM−1

 = −

 f (hM)
...

f (h(2M− 1))

. (11)

The coefficient vector λ = [λ0, λ1, . . . , λM−1]
T can be calculated from the 2M sampling

values f (lh), l = 0, ..., 2M − 1. The linear system (11) is guaranteed to have a unique
solution under the condition that all φj’s are distinct in (−K, K) ⊂ R for some K > 0 (with
h in the range 0 < h < π

K ), and c1, . . . , cM are nonzero in C, which is a natural requirement
for problem (8). This property is a direct result of the following matrix factorization[

f (h(l + m))

]M−1

l,m=0
= V Tdiag(c1, ..., cM)V , (12)
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where V := [e−ilhφj ]
l=M−1,j=M
l=0,j=1 is a Vandermonde matrix, which is non-singular for distinct

φj’s and hφj ∈ (−π, π] for j = 1, ..., M. The frequencies can be extracted from the zeros of
Λ(z) (in the form of zj = e−ihφj ) using the formula

φj =
−Im(ln(zj))

h
, j = 1, ..., M. (13)

Finally, the coefficients cj, j = 1, ..., M can be determined by solving the following
overdetermined linear system (with M unknowns and 2M equations)

f (lh) =
M

∑
j=1

cje
−ilhφj , l = 0, ..., 2M− 1. (14)

The redundant equations in this overdetermined linear system will play a critical role
in our two-generator method to help us separate the frequencies associated with the two
generators (see Section 3).

2.2. Sparse Expansions on Shifted Gaussian

In order to solve the two-generator sparse expansion problem (7), we need to apply
the technique presented in [3], which solves a single-generator sparse expansion problem
with the following form

f (x) =
M

∑
j=1

cje
−β(x−φj)

2
, (15)

where β ∈ C\{0}. The technique relies on the following generalized shift operator

SK,h f (x) = K(x, h) f (x + h), (16)

where h 6= 0, and K(·, ·) has the property

K(x, h1 + h2) = K(x, h1)K(x + h1, h2) = K(x, h2)K(x + h2, h1).

The K(x, h) function in (16) is chosen to be eβh(2x+h), so that we have the following
critical property

(SK,he−β(φ−·)2
)(x) = e2βφhe−β(φ−x)2

, (17)

which means that e−β(φj−x)’s are eigenfunctions of SK,h for all φj ∈ R.

The sparse expansion f (x) in (15) can be reconstructed using 2M sampling values
f (x0 + hk), k = 0, ..., 2M− 1, and x0 is an arbitrary real number. If Re β 6= 0, then h ∈ R\{0};
while if Re β = 0, then 0 < h ≤ π

2|Imβ|L with φj ∈ (−L, L) for j = 1, ..., M for some given L.
(See [3].) The Prony polynomial for the problem in (15) can be defined as:

Λ(z) :=
M

∏
j=1

(z− e2hβφj) =
M

∑
l=0

λlzl (18)

with λM = 1. Then, we have the following linear system

M−1

∑
l=0

λleβh(l+m)(2x0+h(l+m)) f (x0 + h(l + m)) = −eβh(m+M)(2x0+h(m+M)) f (x0 + h(m + M)) (19)

for m = 0, 1, ..., M− 1, which can be represented as an inhomogeneous system

Hλ = −G, (20)
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where G :=
[
(SK,(M+m)h f )(x0)

]M−1
m=0 , and H :=

[
(SK,(l+m)h f )(x0 + (l + m)h)

]M−1
l,m=0. This

H matrix is a Hankel matrix, and it has the following structure

H :=
[
(SK,(l+m)h f )(x0 + (l + m)h)

]M−1
l,m=0 =

[
K(x0, (l + m)h) f (x0 + (l + m)h)

]M−1

l,m=0

= Vdiag(cje
−β(φj−x0)

2
)V T ,

(21)

with the Vandermonde matrix

V :=


1 1 . . . 1

e2βhφ1 e2βhφ2 . . . e2βhφM

...
... . . .

...
e2(M−1)βhφ1 e2(M−1)βhφ2 . . . e2(M−1)βhφM

.

Thus, H is invertible for distinct φj’s in (−L, L) ⊂ R for L > 0, and the vector of the
coefficients λ := [λ0, ..., λM−1]

T are obtained by solving the system (20), which can be used
to calculate the parameters {φj}’s.

Finally, the coefficients cj’s in the expansion (15) can be computed by solving the
following overdetermined linear system:

f (x0 + lh) =
M

∑
j=1

cje
−β(x0−φj+lh)2

, l = 0, ..., 2M− 1. (22)

3. The Sparse Expansion Problem with Two Generators: Cosine and Sine

In this section, we present our method for solving the two-generator sparse expansion
problem in the following form

f (x) =
M1

∑
j=1

cj cos(φjx) +
M2

∑
l=1

dl sin(βl x) (23)

through a modified Prony method. We present our method in the following theorem.

Theorem 1. Assume that a function f (x) has the two-generator sparse expansion form of (23),
where the number of terms for two generators M1 and M2 are known, but the two sets of co-
efficients in {c1, . . . , cM1} and {d1, . . . , dM2} and the two sets of frequencies in {φ1, . . . , φM1}
and {β1, . . . , βM2} are unknown. If 4(M1 + M2) − 1 equispaced sampling values of the form
f (x0 + kh) for k = −2(M1 + M2) + 1, . . . ,−1, 0, 1, . . . , 2(M1 + M2)− 1 are provided, then the
original function f (x) can be uniquely reconstructed under the following conditions:

1◦ All the coefficients {c1, . . . , cM1 , d1, . . . , dM2} are nonzero in C.
2◦ All the frequencies {φ1, . . . , φM1 , β1, . . . , βM2} are distinct in a range [0, K) ⊂ R for some

K > 0. Furthermore, h is selected from the range 0 < h <
π

K
.

3◦ The value of x0 ∈ R is selected to make the (M1 + M2) numbers cos(φ1x0), . . . , cos(φM1 x0),
sin(β1x0), . . . , sin(βM2 x0) nonzero.

Proof. First, we choose an appropriate linear operator, such that our two generating
functions cos(φx) and sin(βx) in (23) are both the eigenfunctions of this operator. We
consider the symmetric shift operator (see [3])

Sh,−h f (x) :=
(
S−h + Sh

2

)
f (x) =

f (x− h) + f (x + h)
2

. (24)
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When we apply this operator on cos(φx) and sin(βx), we obtain

(Sh,−h) cos(φx) = cos(φh) cos(φx),

(Sh,−h) sin(βx) = cos(βh) sin(βx),
(25)

where cos(φh) and cos(βh) are the eigenvalues. Now we define the Prony polynomial for
problem (23) using all the eigenvalues {cos(φjh)}M1

j=1 and {cos(βlh)}M2
l=1 as follows:

Λ(z) =
M1

∏
j=1

(
z− cos(hφj)

) M2

∏
l=1

(z− cos(hβl)), (26)

which can be written in terms of the Chebyshev polynomials as

Λ(z) =
M1+M2

∑
k=0

λkTk(z), (27)

where Tk(z) := cos(k cos−1(z)). (See [3] for more information on this technique.) Since
the leading coefficient of the Chebyshev polynomial Tk(z) is 2k−1, we choose λM1+M2 =

21−(M1+M2), so that Λ(z) in (27) has the leading coefficient 1. This Prony polynomial has
the following critical property:

M1+M2

∑
k=0

λkTk(cos(φjh)) = 0 and
M1+M2

∑
k=0

λkTk(cos(βlh)) = 0

for j = 1, 2, . . . , M1 and l = 1, 2, . . . , M2, respectively, which is essential to help us derive
the following linear system.

To derive a linear system for {λk}
M1+M2−1
k=0 , we need to calculate the following expression

M1+M2

∑
k=0

λk

(
Skh,−khSmh,−mh f (x0)

)
,

which can be shown to be zero. That is,

1
4

M1+M2

∑
k=0

λk

(
f (x0 + (m + k)h) + f (x0 − (m + k)h) + f (x0 + (m− k)h) + f (x0 − (m− k)h)

)
= 0 (28)

for m = 0, 1, . . . , M1 + M2− 1. Indeed, using the right-hand-side expression in (23) for f (x)
in (28) and for a fixed m ∈ {0, 1, . . . , M1 + M2 − 1}, we obtaining

1
4

M1+M2

∑
k=0

λk

[ M1

∑
j=1

2cj

(
cos(φj(x0 + mh)) + cos(φj(x0 −mh))

)
cos(φjkh)

]

+
1
4

M1+M2

∑
k=0

λk

[ M2

∑
l=1

2dl

(
sin(βl(x0 + mh)) + sin(βl(x0 −mh))

)
cos(βlkh)

]

=
M1

∑
j=1

cj cos(φjx0) cos(φjmh)
( M1+M2

∑
k=0

λk cos(φjkh)
)
+

M2

∑
l=1

dl sin(βl x0) cos(βlmh)
( M1+M2

∑
k=0

λk cos βl(kh)
)

=
M1

∑
j=1

cj cos(φjx0) cos(φjmh)
( M1+M2

∑
k=0

λkTk(cos(φjh))︸ ︷︷ ︸
=0

)
+

M2

∑
l=1

dl sin(βl x0) cos(βlmh)
( M1+M2

∑
k=0

λkTk(cos(βlh))︸ ︷︷ ︸
=0

)

= 0.
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We can reformulate the system (28) as

(M1+M2)−1

∑
k=0

λk

(
f (x0 + (m + k)h) + f (x0 − (m + k)h) + f (x0 + (m− k)h) + f (x0 − (m− k)h)

)
= −21−(M1+M2)

(
f (x0 + ((M1 + M2) + m)h) + f (x0 − ((M1 + M2) + m)h)

+ f (x0 + ((M1 + M2)−m)h) + f (x0 − ((M1 + M2)−m)h)
) (29)

for m = 0, 1, . . . , M1 + M2 − 1. To solve this system, we need 4(M1 + M2)− 1 sampling
values in the form of f (x0 + kh) for k = −2(M1 + M2)+ 1, . . . ,−1, 0, 1, . . . , 2(M1 + M2)− 1.

In order to see that the linear system in (29) has a unique solution, we study the
(M1 + M2) × (M1 + M2) coefficient matrix in (29), which we denote as H. As in the
classical Prony method, we can factorize H in the following structure

H : =
[

f (x0 + (m + k)h) + f (x0 − (m + k)h) + f (x0 + (m− k)h) + f (x0 − (m− k)h)
](M1+M2)−1

m,k=0

= 4
[ M1

∑
j=1

cj cos(φjx0) cos(φjmh) cos(φjkh) +
M2

∑
l=1

dl sin(βl x0) cos(βlmh) cos(βlkh)
](M1+M2)−1

m,k=0

= 4V hDV T
h ,

where the Vandermonde Block matrix V h can be written as

V h :=
[
A B

]
, (30)

with

A :=


1 . . . 1

T1(cos φ1h) . . . T1(cos φM1 h)
... . . .

...
T(M1+M2)−1(cos φ1h) . . . T(M1+M2)−1(cos φM1 h)


(M1+M2)×M1

(31)

and

B :=


1 . . . 1

T1(cos β1h) . . . T1(cos βM2 h)
... . . .

...
T(M1+M2)−1(cos β1h) . . . T(M1+M2)−1(cos βM2 h)


(M1+M2)×M2

, (32)

and the diagonal block matrix D can be written as

D :=

[
D1 0
0 D2

]
(33)

where

D1 :=

c1 cos(φ1x0)
. . .

cM1 cos(φM1 x0)

 (34)
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and

D2 :=

d1 sin(β1x0)
. . .

dM2 sin(βM2 x0)

. (35)

Thus, H is guaranteed to be invertible by the conditions 2◦ and 3◦ of the theorem.
Then, we can find the unique solution for {λk}

M1+M2−1
k=0 from the linear system (29).

With these λk values for Λ(z) as in (26), we can determine φj’s and βl ’s from the zeros
of Λ(z); however, this step is non-trivial, because we do not know what zeros correspond
to φj’s and what zeros correspond to βl’s. In order to resolve this ambiguity, we consider
all the possible cases: Among M1 + M2 zeros of Λ(z), M1 of them correspond to φj’s. Thus,
there are a total (M1+M2

M1
) possible choices for φj’s, among which there is exactly one choice

for the solution; however, how do we select the right one? We need to go to the next
overdetermined linear system for the answer.

When we determine the coefficients cj’s and dl’s in (23), we have the following
linear system

f (x0 + hn) =
M1

∑
j=1

cj cos(φj(x0 + hn)) +
M2

∑
l=1

dl sin(βl(x0 + hn)) (36)

for n = −2(M1 + M2) + 1, . . . ,−1, 0, ..., 2(M1 + M2)− 1 corresponding to all the sampling
values, which has 4(M1 + M2)− 1 equations and M1 + M2 unknowns. This overdetermined
linear system gives us the extra information we need to select the true-solution case from
the remaining non-solution cases.

Our method is based on an observation: The sampling values { f (x0 + nh)}2(M1+M2)−1
n=−2(M1+M2)+1

are calculated using the original φj’s and βl’s (corresponding to the true-solution case),
which means that all the 4(M1 + M2)− 1 equations in (36) are completely satisfied for the
true-solution case. In other words, the least-square solution of (36) for the true-solution case
should have this property: Its error term is zero theoretically (or very close to zero due to
rounding errors in computation). While the least-square solution for any non-solution case
would have a significant (with respect to the rounding errors) nonzero error term, which
makes the true solution stand out clearly.

Our experiments have verified this phenomenon. Based on this observation, we
develop a two-stage least-square detection method to minimize the computing cost, and in
Section 5, we demonstrate the effectiveness of this method using a simple example.

Remark 1. The overdetermined linear system (36) plays an important role in determining the
true solution from certain number of possible cases. Typically, this situation happens in the multi-
generator sparse expansion problem. For the single-generator case, we can select same number of
linearly independent equations from the overdetermined system as the number of unknowns to find
the solution; however, for the multi-generator case, the redundant equations are very useful in the
least-square method.

4. The Sparse Expansion Problem with Two Gaussian Generators

In this section, we solve another two-generator sparse expansion problem as in (7)
that uses the two Gaussian generating functions, e−β(φ−x)2

and e−β(φ+x)2
, in the form of

f (x) =
M

∑
j=1

cje
−β(φj−x)2

+
M

∑
j=1

cje
−β(φj+x)2

(37)

for some constant β ∈ C\{0}. In order to recover the coefficients cj ∈ C\{0} and the
parameters φj’s, we need 4M sampling values f (x0 + kh), k = 0, ..., 4M− 1, where x0 ∈ R,
and h satisfies the same condition as in Section 2.2.
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This two-generator sparse expansion problem has a special property: When φj0 = 0

for some j0 ∈ {1, ..., M}, the two functions e−β(φj0−x)2
and e−β(φj0+x)2

are the same. This
property would cause some problem for our method presented in the previous section.
In order to make the discussion easier, we separate these two cases, and consider the case
that φj ∈ R\{0} for all j = 1, ..., M first.

Theorem 2. Assume that a function f (x) has the two-generator sparse expansion form of (37),
where the number of terms M and the constant β ∈ C\{0} are known, but the coefficients in
{c1, . . . , cM} and the parameters in {φ1, . . . , φM} are unknown. If 4M equispaced sampling values
of the form f (x0 + kh) for k = 0, 1, . . . , 4M− 1 are provided, then the original function f (x) can
be uniquely reconstructed under the following conditions:

1◦ The coefficients {c1, . . . , cM} are nonzero in C.
2◦ The parameters {φ1, . . . , φM} are nonzero in (−L, L) ⊂ R for some L > 0, and they are

distinct.
3◦ If Re β 6= 0, then h ∈ R\{0}; while if Re β = 0, then 0 < h ≤ π

2|Imβ|L .

Proof. Our method relies on existence of some critical linear operator, such that both gen-
erating functions are its eigenfunctions. Here we use the operator SK,h as defined in (16)
with K(x, h) := eβh(2x+h), which has the following properties:

(SK,he−β(φ−·)2
)(x) = e2βφhe−β(φ−x)2

,

(SK,he−β(φ+·)2
)(x) = e−2βφhe−β(φ+x)2

.
(38)

Clearly e−β(φj−·)2
and e−β(φj+·)2

are eigenfunctions of SK,h for all φj ∈ R\{0} with
corresponding eigenvalues e2βφjh and e−2βφjh, respectively, for j = 1, ..., M. Hence we can
define the Prony polynomial using all these eigenvalues:

Λ(z) =
M

∏
j=1

(z− e2hβφj)
M

∏
j=1

(z− e−2hβφj) =
2M

∑
l=0

λlzl (39)

with λ2M = 1. Since the real number φj 6= 0, we can assume that φj > 0 for all j = 1, ..., M
based on the structure in (37) to improve the certainty without loss of generality.

Then for m = 0, 1, ..., 2M− 1, we calculate

2M

∑
l=0

λl(SK,(l+m)h f )(x0) =
2M

∑
l=0

λleβh(l+m)(2x0+h(l+m)) f (x0 + h(l + m))

=
2M

∑
l=0

λleβh(l+m)(2x0+h(l+m))
M

∑
j=1

cje
−β(φj−(x0+h(l+m)))2

+
2M

∑
l=0

λleβh(l+m)(2x0+h(l+m))
M

∑
j=1

cje
−β(φj+(x0+h(l+m)))2

=

(
M

∑
j=1

cje
−β(x0+hm−φj)

2
eβhm(2x0+hm)

)(
2M

∑
l=0

λle
2βhlφj

)
︸ ︷︷ ︸

=0

+

(
M

∑
j=1

cje
−β(x0+hm+φj)

2
eβhm(2x0+hm)

)(
2M

∑
l=0

λle
−2βhlφj

)
︸ ︷︷ ︸

=0

= 0,

which can be written as the following linear system

2M−1

∑
l=0

λleβh(l+m)(2x0+h(l+m)) f (x0 + h(l + m)) = −eβh(m+2M)(2x0+h(m+2M)) f (x0 + h(m + 2M)) (40)
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for m = 0, 1, ..., 2M− 1. To solve this system, we need 4M sampling values: f (x0 + kh) for
= 0, 1, . . . , 4M− 1. To study existence of the solution for this linear system, we would like
to simplify it with respect to the unknown vector λ := [λ0, ..., λ2M−1]

T as follows,

Hλ = −G, (41)

with G :=
[
(SK,(M+m)h f )(x0)

]2M−1
m=0 and

H :=
[
(SK,(l+m)h f )(x0)

]2M−1
l,m=0 . (42)

The invertibility of H can be seen from the following matrix factorization:

H =

[
K(x0, h(l + m)) f (x0 + h(l + m))

]2M−1

l,m=0

=

[
M

∑
j=1

cjeβh(l+m)(2x0+h(l+m))e−β(φj−(x0+h(l+m)))2
+

M

∑
j=1

cjeβh(l+m)(2x0+h(l+m))e−β(φj+(x0+h(l+m)))2

]2M−1

l,m=0

=

[
M

∑
j=1

cje
−β(φj−x0)

2
e2βh(l+m)φj +

M

∑
j=1

cje
−β(φj+x0)

2
e−2βh(l+m)φj

]2M−1

l,m=0

= Vhdiag
(

cje
−β(φj−x0)

2
+ cje

−β(φj+x0)
2
)

VT
h

= V hDV T
h

(43)

where the Vandermonde block matrix V h has the following form

V h :=
[
A B

]
(44)

with

A :=


1 . . . 1

e2βhφ1 . . . e2βhφM

... . . .
...

e2(2M−1)βhφ1 . . . e2(2M−1)βhφM


(2M)×M

(45)

and

B :=


1 . . . 1

e−2βhφ1 . . . e−2βhφM

... . . .
...

e−2(2M−1)βhφ1 . . . e−2(2M−1)βhφM


(2M)×M

, (46)

and the diagonal block matrix D is given by

D :=

[
D1 0
0 D2

]
(47)

with

D1 :=


c1eβ(φ1−x0)

2

. . .
cMeβ(φM−x0)

2

 (48)
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and

D2 :=


c1eβ(φ1+x0)

2

. . .
cMeβ(φM+x0)

2

. (49)

From this structure, we can see that the Vandermonde matrix Vh in (44) is invertible
by conditions 2◦ and 3◦ of the theorem, and hence H in (42) is also invertible by condition
1◦, which results in the unique solution for λ.

With all the λl values found from the above linear system, we can find all the φj values
by calculating the zeros of the Prony polynomial of (39). In this case, we do not need to
deal with the ambiguity that we encountered in the previous section due to the special
structure of the pairs (φj,−φj)’s. Finally, the coefficients cj’s of the sparse expansion (37)
can be computed by solving the following overdetermined linear system:

f (x0 + lh) =
M

∑
j=1

cj

(
e−β(φj+x0−lh)2

+ e−β(φj+x0+lh)2
)

(50)

for l = 0, ..., 4M− 1.

Remark 2. Our method above only works for the case when φj 6= 0 for all j in {1, 2, . . . , M};
however, in the real-world situation, when we solve a problem of (37) using 4M sampling values,
how do we know if there exists any φj = 0 in it or not? We need a detection method to tell us if all
the φj’s are nonzero before we apply the above method.

Let us investigate the existence of a solution for the linear system (41), which is deter-
mined by the invertibility of H in (42). We notice that when φ1 = 0, the first column of (45)
and the first column of (46) are the same, which causes the matrix V h in (44) to be singular.
Then, we conclude that H in (43) is singular if any φj = 0. In other words, by checking the
invertibility of H, we can tell if there is any φj = 0 for problem (37). If H in (42) is singular,
our current method does not work. Fortunately we can modify our method to solve the
problem for this special situation.

Let us assume that φ0 = 0, and the remaining φj’s are positive numbers. In this case,
we modify (37) to

f (x) = c0e−βx2
+

M

∑
j=1

cje
−β(φj−x)2

+
M

∑
j=1

cje
−β(φj+x)2

, (51)

and its corresponding Prony polynomial is defined as

Λ(z) = (z− 1)
M

∏
j=1

(z− e2hβφj)
M

∏
j=1

(z− e−2hβφj) =
2M+1

∑
l=0

λlzl (52)

with λ2M+1 = 1. Since Λ(1) = 0, it leads to

2M+1

∑
l=0

λl = 0. (53)

Then we can show that

2M+1

∑
l=0

λl(SK,(l+m)h f )(x0) = 0, for m = 0, 1, ..., 2M, (54)

because we can split the above left-hand-side summation into the following three summa-
tions with zero value each:
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2M+1

∑
l=0

λleβh(l+m)(2x0+h(l+m))c0e−β(x0+h(l+m))2
= c0e−βx2

0

2M+1

∑
l=0

λl︸ ︷︷ ︸
=0

= 0,

2M+1

∑
l=0

λleβh(l+m)(2x0+h(l+m))
M

∑
j=1

cje
−β(φj−(x0+h(l+m)))2

=

(
M

∑
j=1

cje
−β(x0+hm−φj)

2
eβhm(2x0+hm)

)(
2M+1

∑
l=0

λle
2βhlφj

)
︸ ︷︷ ︸

=0

= 0,

and

2M+1

∑
l=0

λleβh(l+m)(2x0+h(l+m))
M

∑
j=1

cje
−β(φj+(x0+h(l+m)))2

=

(
M

∑
j=1

cje
−β(x0+hm+φj)

2
eβhm(2x0+hm)

)(
2M+1

∑
l=0

λle
−2βhlφj

)
︸ ︷︷ ︸

=0

= 0.

The linear system (54) for λ := [λ0, ..., λ2M]T can be written as

Hλ = −G, (55)

with G :=
[
(SK,(2M+m+1)h f )(x0)

]2M
m=0 and

H :=
[
(SK,(l+m)h f )(x0)

]2M
l,m=0. (56)

We use (4M + 2) sampling values: f (x0 + kh) for k = 0, 1, . . . , 4M + 1 to solve the
system. Similar to (43), we still have

H = V hDV T
h ,

but we need to modify V h to
1 1 . . . 1 1 · · · 1
1 e2βhφ1 . . . e2βhφM e−2βhφ1 . . . e−2βhφM

...
... . . .

...
... . . .

...
1 e4Mβhφ1 . . . e4MβhφM e−4Mβhφ1 . . . e−4MβhφM


(2M+1)×(2M+1)

,

which is invertible for positive distinct {φ1, . . . , φM} ⊂ (0, L), and the diagonal block matrix
D becomes

D =

 c0e−βx2
0 0 0

0 D1 0
0 0 D2


with D1 and D2 maintaining the same forms of (48) and (49), respectively.

After we solve the linear system of (55), we obtain the Prony polynomial that contains
one zero at z = 1 and the remaining zeros appear in pairs of (zj, z−1

j )’s, which corre-
spond to the parameter values 0 and (φj,−φj) pairs. Finally, we will solve the following
overdetermined linear system for c0, c1, . . . , cM values

f (x0 + lh) = c0e−β(x0−lh)2
+

M

∑
j=1

cj

(
e−β(φj+x0−lh)2

+ e−β(φj+x0+lh)2
)

(57)

for l = 0, ..., 4M + 1. From this example, we can see that the value of det(H) can give us
some important information, that is, which of the two systems in (37) and (51) we should
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work on. This property could be useful when we consider a problem in which the M value
in (51) is unknown, but restricted in certain range. (See discussion in Section 6).

5. Numerical Experiments

In this section, we use two simple examples to illustrate the implementation details
of our method for the two-generator sparse expansion problem described in the previous
sections. The first example is for version (23) in Section 3. The second example is for version
(37) in Section 4.

Example 1. We consider a function f (x) (see Figure 1) that is a two-generator expansion with
each generator producing 5 terms in the following form

f (x) =
5

∑
j=1

cj cos(φjx) +
5

∑
j=1

dj sin(β jx), (58)

and the 20 parameters we used are listed in the table below to generate the sampling values.
How to use the 39 equispaced sampling values (where 39 comes from 4 (5 + 5)− 1) in the

form of f (x0 + kh), k = −19, . . . , 0, . . . , 19 to recover the original parameters in Table 1?

Table 1. Original parameters of the function f (x) in (58).

j cj dj φj βj

1 −2 5 2 3
2 3 −6 4 5
3 −4 4 7 6
4 8 −3 8 9
5 7 2 10 11

-3 -2 -1 0 1 2 3 4 5
-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

f(x)

39 sampling points

Figure 1. The signal f (x) in (58) with 39 equispaced sampling values.

There are 20 original parameters in two sets: {c1, . . . , c5, φ1, . . . , φ5} and
{d1, . . . , d5, β1, . . . , β5} corresponding to the two generators, respectively. To recover them,
first we solve the following linear system for the coefficients of the Prony polynomial
{λ0, . . . , λ9} based on the Equation (29)

Hλ = −G,

where
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H =



−36.3064 24.4399 35.5543 −40.2183 −16.8633 18.9503 −0.7573 18.8146 4.4668 −52.7171
24.4399 −0.3760 −7.8892 9.3455 −10.6340 −8.8103 18.8824 1.8548 −16.9513 −9.4925
35.5543 −7.8892 −26.5849 21.6951 17.3985 −10.7019 −6.1982 −16.8834 −12.1046 24.6062
−40.218 39.3455 21.6951 −18.5319 21.6273 20.0106 −46.4677 −20.1576 24.6741 11.4779
−16.8633 −10.6340 17.3985 21.6273 −15.9198 −14.1386 6.0512 −4.9102 3.4249 17.8445
18.9503 −8.8103 −10.7019 20.0106 −14.1386 −29.8792 27.4189 29.6337 −11.7398 −2.7658
−0.7573 18.8824 −6.1982 −46.4677 6.0512 27.4189 −6.2967 20.5893 23.4431 −32.0445
18.8146 1.8548 −16.8834 −20.1576 −4.9102 29.6337 20.5893 −12.4873 0.2846 0.1035
4.4668 −16.9513 −12.1046 24.6741 3.4249 −11.7398 23.4431 0.2846 −35.8269 11.5787
−52.7171 −9.4925 24.6062 11.4779 17.8445 −2.7658 −32.0445 0.1035 11.5787 −9.3042


and

G =
[
0.0458 0.0218 −0.0275 −0.0347 −0.0103 0.0048 0.0510 0.0405 −0.0520 −0.0412

]T .

We obtain

λ =
[
−0.0088 0.0275 −0.0639 0.1254 −0.2113 0.3180 −0.4300 0.5316 −0.6010 0.3135

]T ,

which corresponds to the following Prony polynomial

Λ(z) = z10 + 0.3135z9 − 0.6010z8 + 0.5316z7 − 0.4300z6 + 0.3180z5 − 0.2113z4 + 0.1254z3 −−0.0639z2 + 0.0275z− 0.0088.

From the 10 zeros of this polynomial, we obtain 10 parameter values:

{11.0000, 2.0000, 3.0000, 10.0000, 4.0000, 5.0000, 9.0000, 6.0000, 7.0000, 8.0000}, (59)

which correspond to {φ1, . . . , φ5, β1, . . . , β5}, but the explicit order is unknown. We must
resolve the ambiguity: What five parameter values are for {φ1, . . . , φ5} (with the remaining
five parameter values for {β1, . . . , β5})?

To separate the φj’s from βl ’s, we consider the following overdetermined linear system:


cos(φ1x0) · · · cos(φ5x0) sin(β1x0) · · · sin(β5x0)
cos(φ1x1) · · · cos(φ5x1) sin(β1x1) · · · sin(β5x1)

...
...

... · · ·
...

...
cos(φ1x19) · · · cos(φ5x19) sin(β1x19) · · · sin(β5x19)





c1
...

c5
d1
...

d5


=


f0
f1
...

f19

, (60)

where we use the shorthand notations

xn = x0 + nh and fn = f (x0 + nh)

for n = 0, 1, . . . , 19. Note: In this linear system, we only use 20 out of 39 original sampling
values, which is adequate for this particular example. It is a trade-off issue between the
accuracy of computation and the cost of computation (in time). In general, the more
redundant equations we use, the more accuracy we can achieve in searching for the true
solution. In other words, if we can obtain adequate accuracy, we focus on cutting the
computation cost to the minimum. We do not solve this overdetermined linear system by
the least-square method directly. We split these 20 equations into two parts: In the first part,
we approximate the coefficients {c1, . . . , c5, d1, . . . , d5} in (60) by the least-square method.
Then we apply these derived coefficients to the equations in the second part so as to filter
out the true solution.

Among the 10 values in (59), every time we select 5 of them for {φ1, . . . , φ5}, the re-
maining 5 numbers are automatically for {β1, . . . β5}. We will have total 252 possible
choices (which is the combinatorial number (10

5 )) as the candidates for the solution. Notice
that this combinatorial number is a relatively big number. In order to speed up the pro-
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cessing, we reduce the redundant computation to the minimum. Let us use the notations
{φi

1, . . . , φi
5, βi

1, . . . βi
5} with i = 1, 2, . . . , 252 representing those 252 candidates. Our method

is based on the property that the information given in the sampling values has a lot of
redundancy for selecting the true solution, and we only use just enough information from
the given sampling values so as to save the computation time.

First, when we calculate the coefficients {c1, . . . , c5, d1, . . . , d5} by the least-square
method, we use exactly 10 equations (the same number of the coefficients) out of the 20
equations in (60). Based on our experiments, we do not have to use an overdetermined sys-
tem for a good approximation by the least-square method. A determined system can give us
excellent approximation for the least-square problem, while any underdetermined system
usually does not approximate the data well through the least-square solution. For conve-
nience, we select 10 consecutive equations in (60) somewhere in the middle, which we call
the least-square block in our discussion, to approximate the coefficients {c1, . . . , c5, d1, . . . , d5}.
Specifically, our least-square block takes the subscripts from 6 through 15, and the corre-
sponding sampling values { f6, f7, . . . , f15} should be selected as a reduced linear system
given below,


cos(φ1x6) · · · cos(φ5x6) sin(β1x6) · · · sin(β5x6)
cos(φ1x7) · · · cos(φ5x7) sin(β1x7) · · · sin(β5x7)

...
...

... · · ·
...

...
cos(φ1x15) · · · cos(φ5x15) sin(β1x15) · · · sin(β5x15)





c1
...

c5
d1
...

d5


=


f6
f7
...

f15

. (61)

Even if our new linear system (61) is a determined system, we still solve it for a least-
square solution, because the determinant of the square matrix in (61) could be very close to
zero. Then the remaining equations in (60) together with the coefficients derived from (61)
will be used to detect which candidate is the true solution based on the error information.

For each set of values {φi
1, . . . , φi

5, βi
1, . . . , βi

5} among the 252 candidates, the least-
square solution for the linear system (61) would produce the 10 coefficients
[ci

1, . . . , ci
5, di

1, . . . , di
5]

T , and we evaluate the following vector


f i
0

f i
1
...

f i
19

 :=


cos(φi

1x0) · · · cos(φi
5x0) sin(βi

1x0) · · · sin(βi
5x0)

cos(φi
1x1) · · · cos(φi

5x1) sin(βi
1x1) · · · sin(βi

5x1)
...

. . .
...

...
. . .

...
cos(φi

1x19) · · · cos(φi
5x19) sin(βi

1x19) · · · sin(βi
5x19)





ci
1
...

ci
5

di
1
...

di
5


,

which is in general different from the original sampling vector [ f0, f1, . . . , f19]
T . Then we

will calculate the difference of these two vectors, and see how close they are. We define the
error vector as follows: 

εi
0

εi
1
...

εi
19

 :=


| f i

0 − f0|
| f i

1 − f1|
...

| f i
19 − f19|

. (62)

To search for the true solution among the 252 candidates, we discover an intrin-
sic property, shown in Figures 2 and 3, that can clearly separate the true solution from
other candidates.

In Figure 2, we plot the error vector for one of the 252 candidates to view its typical
behavior. The error values in the least-square block (with subscripts from 6 to 15) are
very close to zero for a typical candidate; however, the error values that are out of the
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least-square block (with subscripts from 0 to 5 and from 16 to 19) are not close to zero in
general for a candidate that is not the true solution.

This behavior can be explained in this way: The errors in the least-square block are
usually very small due to the fact that the least-square solution of the determined system
approximates the targeting sampling values { f6, f7, . . . , f15} quite well; however, when we
consider an error for a sampling value out of the least-square block, since the corresponding
equation is not involved in the least-square approximation, there is no reason for this
equation to generate a value that is very close to the targeting sampling value.

While for the true solution case, the behavior is different in the sense that the errors for
all the equations in the linear system (60) are very close to zero (see Figure 3, and ignore the
two reference points at the ends). Let us summarize the key property that helps us to find
out the true solution among all the candidates: For a candidate, if the coefficients generated
from the determined linear system (61) by the least-square method cannot approximate just one
sampling value out of the least-square block well, then it cannot be the true solution.

However, if the coefficients for one candidate can approximate one particular sampling
value out of the least-square block well, we can only say that it is highly likely that this
candidate could be the true solution, because the probability for a non-solution candidate
to approximate some sampling value out of the least-square block well is very small.
Based on this observation from our experiments, we design the following strategy for the
solution search.

Strategy: Eliminate as many as possible candidates in the first round filtering in two
steps: Step 1. Select a determined linear system from the overdetermined linear system
in (60) (as the least-square block), and approximate the coefficients {c1, . . . , c5, d1, . . . , d5}
by the least-square method for each of the 252 candidates. Step 2. Apply the derived coef-
ficients in Step 1 on one of the linear equations out of the least-square block to approximate
the targeting sampling value and calculate the error with the targeting sampling value.
If the error is greater than certain threshold (we use 0.1 as our threshold), we drop this
candidate from the consideration; otherwise, this candidate passes the first round filtering.
If only one candidate survives the first round filtering, it must be the true solution. If more
than one candidates pass the first round filtering, we need to do the second round filtering.
In the second round filtering, we simply apply the derived coefficients on another linear
equation out of the least-square block, and calculate the error for the targeting sampling
value. If the error is greater than the threshold, we eliminate this candidate. We keep
doing these cycles until we identify the true solution. Since we have plenty of redundant
equations out of the least-square block, we should be able to determine the true solution
without going through too many cycles in general. Furthermore, those linear equations
corresponding to the original sampling values that are not included in the linear system
(60) can still be used for the above steps when necessary, but the probability to use those
equations out of the linear system (60) will be extremely small. This simple strategy is
designed to allow us to detect the true solution without unnecessary computation, while
we still preserve the option to use the redundant information when necessary.

Figure 2. Display the error vector for one of the 252 candidates.
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Figure 3. Display the error vector for the true solution with two reference points at the ends.

Here we would like to point out that as soon as we select values in φ-group or β-group,
the order of those values in each group is not important, because their corresponding
coefficients (cj’s or dl’s) will also be aligned with them accordingly when we solve the
determined linear system (61) using the least-square method.

Example 2. Our second function to be recovered has the following form

f (ω) =
c1

2
(
e−

1
2 (φ1−ω)2

+ e−
1
2 (φ1+ω)2)

+
c2

2
(
e−

1
2 (φ2−ω)2

+ e−
1
2 (φ2+ω)2)

+
c3

2
(
e−

1
2 (φ3−ω)2

+ e−
1
2 (φ3+ω)2)

,

(63)

which is derived by applying the STFT on the following function

g(x) =
3

∑
j=1

cj cos(φjx), (64)

with the parameters of (64) listed in the following Table 2.

Table 2. Parameters of the function f (x) in (64).

j cj φj

1 0.5000 1.0000
2 0.2500 3.0000
3 1.0000 4.0000

To solve this problem, we need to use 12 (i.e., 4M) sampling values. After we applied
the method described in Section 4, we solved a linear system with 6 unknowns, and derived
the Prony polynomial of degree 6 as follows

Λ(z) = 1.0000(z6 + 1)− 14.4845(z5 + z) + 65.9809(z4 + z2) + 108.8070z3.

The symmetric structure of this polynomial tells us that its zeros appear in (zj, z−1
j )

pairs for j = 1, 2, 3, which correspond to three pairs of parameters: (1.0000,−1.0000),
(3.0000,−3.0000), and (4.0000,−4.0000) for (φj,−φj), j = 1, 2, 3. Finally, we can solve
another linear system for the coefficients cj’s with the errors listed in the Table 3.
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Table 3. Parameters of the function f (x) in (64) and approximate errors using 12 sampling values
with h = 0.5.

j cj φj |cj− c∗j | |φj−φ∗j |

1 0.5000 1.0000 3.7970.10−2 5.2824.10−13

2 0.2500 3.0000 5.0987.10−14 4.5652.10−13

3 1.0000 4.0000 5.8065.10−14 1.4211.10−14

6. Conclusions

In this paper, we introduce a method that extends the Prony method to solve the
two-generator sparse expansion problem. This method relies on the existence of a special linear
operator for which the two generators must be the eigenfunctions. This two-generator
problem has a special property: The zeros of its Prony polynomial correspond to two
sets of parameters, and there is no straightforward way to separate them. We propose a
two-stage least-square detection method on an overdetermined linear system for each candidate
to extract the true solution, which relies on an intrinsic property for the true solution: Only
the true solution can use the coefficients derived from the least-square block to approximate the
targeting sampling values out of the least-square block well. Our method is designed to minimize
the computation cost, while still maintain the computation accuracy.

It seems that the idea can be extended to the k-generator sparse expansion problem for
k > 2; however, for the general k-generator case, the requirement that there exists a linear
operator such that all the generators must be its eigenfunctions becomes extremely hard to
achieve. For example, in the following sparse expansion problem,

f (x) =
M1

∑
j=1

cj cos(φjx) +
M2

∑
l=1

dleβl x, (65)

it is not easy to find a linear operator, such that both cos(φx) and eβx are its eigenfunctions.
One may argue that the problem could be solved by converting cos(φx) to 1

2 (e
iφx + e−iφx),

and then it becomes a one-generator problem. Notice that converting a two-generator
problem to a one-generator problem may not work most of the time. We are interested in
developing a general method that can solve the two-generator sparse expansion problem
including the one in (65). We can see that there are many difficult problems to be solved in
this multi-generator sparse expansion problem, and we would like to see more researchers
contribute in this direction.

Our method for the two-generator sparse expansion problem can handle certain degree
of uncertainty. For example, in problem (23), if we know the total number of terms (i.e.,
the value of M1 + M2), but we do not know the number of terms in each summation (i.e.,
the individual values of M1 and M2), we can still solve the problem using our two-stage
least-square detection method described in Sections 3 and 5. If we increase the uncertainty a
little more, can we still solve the problem?

For example, in the problem we considered in Section 4, if we do not know the exact
number of terms (it is referred to unknown order of sparsity M in [1]) in the following expansion,

f (x) =
M

∑
j=1

cje
−β(φj−x)2

+
M

∑
j=1

cje
−β(φj+x)2

,

and we are given K equispaced sampling values for some positive integer K. If we are
told that these sampling values are sufficient to recover the signal, how do we recover it?
In other words, we know that the number of terms M is in the range 1 ≤ M ≤ bK/4c,
but we do not know the exact number M, can we solve the problem? The answer is yes,
because we can try all the possible cases: M = 1, 2, . . . , bK/4c, and for each case, we apply
our two-stage least-square detection method to tell us if the true solution can be extracted.
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However, we are not satisfied with this kind of exhaustive search type solution due to its
high cost. We plan to develop an efficient term number detection method, so that when we
make a term number prediction, this method can tell us if it is correct or not immediately.
In [1], two methods are proposed: One is based on the rank of the H matrix, and the other
is based on the singular values of the H matrix. The main issue is: How to obtain a reliable
method to determine the M value in the sparse expansion? Only after we obtain the correct
term number we will pay the computation cost to go through all the necessary details to
find the solution.
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