
Citation: El Yazidi, Y.; Ellabib, A. An

Efficient Numerical Scheme Based on

Radial Basis Functions and a Hybrid

Quasi-Newton Method for a

Nonlinear Shape Optimization

Problem. Math. Comput. Appl. 2022,

27, 67. https://doi.org/10.3390/

mca27040067

Academic Editor: Maria Amélia

Ramos Loja

Received: 25 June 2022

Accepted: 2 August 2022

Published: 4 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

An Efficient Numerical Scheme Based on Radial Basis
Functions and a Hybrid Quasi-Newton Method for a Nonlinear
Shape Optimization Problem
Youness El Yazidi * and Abdellatif Ellabib

Laboratory of Applied Mathematics and Computer Science, Faculty of Science and Technology,
Cady Ayyad University, Avenue Abdelkrim El Khattabi B. P., Marrakesh 549, Morocco
* Correspondence: youness.elyazidi@edu.uca.ac.ma

Abstract: The purpose of this work is to construct a robust numerical scheme for a class of nonlinear
free boundary identification problems. First, a shape optimization problem is constructed based on a
least square functional. Schauder’s fixed point theorem is manipulated to show the existence solution
for the state solution. The existence of an optimal solution of the optimization problem is proved.
The proposed numerical scheme is based on the Radial Basis Functions method as a discretization
approach, the minimization process is a hybrid Differential Evolution heuristic method and the
quasi-Newton method. At the end we establish some numerical examples to show the validity of the
theoretical results and robustness of the proposed scheme.

Keywords: differential evolution; free boundary problem; nonlinear inverse problem; radial basis
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1. Introduction

The aim of this paper is to study a shape optimization problem derived from a class
of nonlinear inverse problems, which can describe, for example, chemical reactive flows,
nonlinear heat conduction, climate modeling [1,2].

Let us consider the following class of nonlinear inverse problem: find (Γ, u) such that
−∇(A(x, u)∇u) = f in Ω

(A(x, u)∇u) · ν + βu = g1 on Σ
(A(x, u)∇u) · ν = g2 on Γ

u = j on ∂Ω

(1)

where Ω is an open-bounded set in R2 with ∂Ω = Γ∪ Σ, the boundary part Γ is assumed to
be unknown (Figure 1). f , g1, g2, j and β are given functions. The quasilinear term A(x, t)
is a Caratheodory function assumed to be uniformly elliptic, bounded matrix field and
satisfying some weak Lipschitz continuity-type conditions [3]. Since we are dealing with a
nonlinear problem, Schauder’s fixed point theorem is recommended for such a situation.
To prove the uniqueness we will follow the same steps as in [3].

In the last few years, nonlinear inverse problems have motivated countless scientific
works in twop major ways. The first covers theoretical analysis, where several techniques
were used such as truncation, Schauder’s fixed point and the topological degree. The
second concerns numerical methods: several works proposed different approaches to solve
nonlinear inverse problems. In [4], the nonlinear Necrotic cancer model is considered,
and the authors prove the existence of an optimal solution, although the numerical ap-
proximation is not studied. Zheng and Cui [5] show the existence of an optimal solution
of the shape design problem describing cancer growth with the presence of a nonlinear
boundary condition. Another approach proposed in [6] focuses on solving the shape
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design problem that arises in nonlinear axisymmetric magnetostatics using a combined
finite element inside the ferromagnetic region, and on exterior air they use the boundary
elements. Kolvenbach et al. [7] designed an approach to approximate the solution of a
shape optimization problem with a nonlinear PDE-constraint arising in electrical engines
and of dynamic elastic structures.

Γ

Ω

D

Figure 1. The geometry of the computational domain.

Our contribution aims to establish and show the existence of an optimal solution
for the shape optimization problem associated with the inverse problem (1), besides to
construct a numerical scheme based on the RBF meshless method as a solver for the
state equations. The minimization process will be performed using a hybrid Differential
Evolution heuristic method with the BFGS quasi-Newton. Hybrid methods have been lately
used to solve several applications in inverse problems. In [8], the authors propose conjugate
gradient guided with differential evolution to minimize a shape optimization problem
derived from a bilateral free boundaries problem. The same authors, in [9], manipulate
the genetic algorithm to find the best initial guess for the conjugate gradient, applied to an
optimal control problem of bilateral free boundaries. Mozaffari et al. [10] use the imperialist
competitive algorithm with the conjugate gradient combined with the boundary element
method for the identification of two interfaces. Another hybridization of the gradient
method with the genetic algorithm was proposed in [11] for the computation of a shape
cavity in the electrostatic problem.

This choice of RBFs comes from their simplicity to implement and their ability to
provide efficient approximation. Compared to one of the most used methods in the
literature, the finite element method, RBF methods are accurate, fast, suitable for irregular
boundaries and easier to implement than FEM. The disadvantage of RBF methods is the
difficulty to control the accuracy of the solution systematically. In contrast with FEM, the
error of the approximation became smaller on finer meshes. For RBF methods, increasing
the number of nodes may not always lead to more accurate solution. However, a good
selection of the shape parameter according to each set of nodes may be the solution to
overcame this issue, even if this shape parameter does not have an optimal value known
a priori, and several works have proposed some alternatives to find an optimal shape
parameter for certain PDEs classes [12,13]. We refer some works that used RBF methods in
the approximation of inverse problem [14,15].

To start, let us assume the next parametrization of Γ and Ω; similarly to [16], we write

Γ(ϕ) = {(x, ϕ(x))/x ∈ [a, b]}
and Ω(ϕ) = {(x, y) : y ∈]0, ϕ(x)[ and x ∈]a, b[} ⊆ D,

D is a fixed box in R2. Then the set of admissible shapes Π reads

Π =
{

Ω(ϕ) : ϕ ∈ C0([a, b]), ∃H, L > 0 : 0 ≤ ϕ(x) ≤ H,

and | ϕ(x)− ϕ(x′) |≤ L | x− x′ | x, x′ ∈ [a, b]
}

.
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Π is equipped with the convergence of characteristic function as a topology. For a given
admissible shape Ω ∈ Π, we consider the following state equations:{

−∇(A(x, u)∇u) = f in Ω,
u = jδ on ∂Ω,

(2)

jδ is noisy data, which satisfy:
‖jδ − j‖H1/2(∂Ω) ≤ δ.

The other state equation is given as follows
−∇(A(x, u)∇u) = f in Ω,

(A(x, u)∇u) · ν + βu = g1 on Σ,
(A(x, u)∇u) · ν = g2 on Γ.

(3)

Then, consider the shape functional

Jδ(Ω, u1, u2) =
1
2

∫
Ω
(u1 − u2)

2dx, (4)

with u1 and u2 being the solutions of (2) and (3) respectively.
To this end, the shape optimization problem can be written as follows:min

Ω∈Π
Jδ,ρ(Ω) := Jδ(Ω, u1, u2) + ρP(Ω),

s.t. u1 ∈ U1 and u2 ∈ U2,
(5)

with ρ > 0 is a penalty coefficient and P(Ω) =
∫

∂Ω ds is the regularization term, the space
U1 and U2 are given by the following

U1 =
{

u ∈ H1(Ω), u solution of(2)
}

,

U2 =
{

u ∈ H1(Ω), u solution of(3)
}

.

The rest of this work is organized as follows. In the next section we discuss the
existence of an optimal solution to the optimization problem (5). The description of the
proposed algorithm is detailed in Section 3. At the end, some numerical illustrations are
established in Section 4 to prove the validity of the proposed algorithm.

2. Analysis of the Shape Optimization Problem

This section is divided into two parts, in the first one we prove the unique existence of
state equation solutions. In the second part we will show the existence of optimal solution
of the constrained optimization problem (5).

2.1. Existence of the State Equation Solution

Let η, µ ∈ R such that 0 < η < µ, we consider the set

M(η, µ, D) =
{

A ∈ M2(R) : (A(x)λ, λ) ≥ η|λ|2 and |A(x)λ| ≤ µ|λ|∀λ ∈ R2 and a.e. D
}

,

withM2(R) is the space of 2× 2 measurable matrix functions.
First we introduce some assumptions to help with the existence of unique solution of

the state problems:

H1 Consider the regularity

1. f ∈ L2(D) and g1, g2, j ∈ L2(D),
2. β ∈ L∞(D) and there exists Cβ such that 0 < Cβ ≤ β a.e. in D.

H2 A is a Caratheodory function, such that:
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1. x 7→ A(x, t) is measurable for all t ∈ R,
2. t 7→ A(x, t) is continuous for almost every x ∈ D,
3. A(·, t) ∈ M(η, µ, D) for all t ∈ R,
4. t 7→ A(x, t) is differentiable for almost every x ∈ D.

H3 There exists a function ϑ : R 7→ R that satisfies

1. ϑ continuous, nondecreasing and non negative function,
2. |A(x, ξ1)− A(x, ξ2)| ≤ ϑ(|ξ1 − ξ2|) a.e., x ∈ D, for ξ1 6= ξ2,

3. for any t > 0, lim
x→0+

∫ t

x

dξ

ϑ(ξ)
= +∞.

Example 1 (function A satisfies assumptions H2 and H3). Consider the nonlinear diffusion
function A(x, u(x)) = exp(u(x)), it is obvious that A satisfies the assumptions H2.

Let u and v be two elements of H1(D), we write

A(x, u(x))− A(x, v(x)) = exp(u(x))− exp(v(x)).

With the mean value inequality theorem applied on the exponential function on the interval[
min{u(x), v(x)}, max{u(x), v(x)}

]
,

we obtain the existence of a constant C = max
x∈I

exp(x) > 0 such that

|A(x, u(x))− A(x, v(x))| ≤ C|u(x)− v(x)|,

with

I =
]

min{u(x), v(x)}, max{u(x), v(x)}
[
⊂ Î =

]
min{um, vm}, max{uM, vM}

[
,

where um and uM (resp. vm and vM) are the min and max values of u (resp. v) on D. Thereafter
C ≤ Ĉ = max

x∈ Î
exp(x), we write then

|A(x, u(x))− A(x, v(x))| ≤ ϑ(|u(x)− v(x)|) := Ĉ|u(x)− v(x)|,

which means that ϑ(ξ) = Ĉξ, then ϑ satisfies the assumptions H3-1 and H3-2.
From another hand we have for any t > 0∫ t

x

dξ

ϑ(ξ)
=
∫ t

x

dξ

Ĉξ
=

1
Ĉ
(ln(t)− ln(x)),

thus

lim
x→0+

∫ t

x

dξ

ϑ(ξ)
= +∞.

Let us define the next space:

U =
{

u ∈ H1(Ω) u = jδ on ∂Ω
}

.

Using H1–H2, the weak formulation of (2) reads Find u ∈ U such that: for all v ∈ H1
0(Ω)∫

Ω
A(x, u)∇u∇vdx +

∫
Σ

βuvds =
∫

Ω
f vdx.

(6)
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Similarly we write the weak formulation of (3) Find u ∈ H1(Ω) such that: for all v ∈ H1(Ω)∫
Ω

A(x, u)∇u∇vdx +
∫

Σ
βuvds =

∫
Ω

f vdx +
∫

Σ
g1vds +

∫
Γ

g2vds.
(7)

We have the next existence result:

Theorem 1. For any Ω ∈ Π, under assumptions H1–H3, the weak Formulations (6) and (7)
admit unique solutions in U and H1(Ω), respectively. Moreover, those solutions are bounded
independently from Ω.

Proof. The proofs of the existence of u1 and u2 are quite similar, thus we only concentrate
on the existence of u2. To establish this proof we will manipulate the Schauder’s fixed point
theorem. For that, let us consider the following mapping

T : w ∈ L2(Ω) 7−→ T(w) = u ∈ U2.

For a fixed w ∈ L2(Ω) we shall prove the solution existence of the next problem Find u ∈ H1(Ω) such that: for all v ∈ H1(Ω)∫
Ω

A(x, w)∇u∇vdx +
∫

Σ
βuvds =

∫
Ω

f vdx +
∫

Σ
g1vds +

∫
Γ

g2vds.
(8)

with the fact that A(x, w) belongs to M(η, µ, Ω), then there exists a solution of the varia-
tional problem (8), we refer the reader to [17].

Now we choose the test function in (8) to be u, and taking into account H2-3 it
follows that:

η‖∇u‖2
0,Ω ≤

∫
Ω

A(x, w)|∇u|2dx +
∫

Σ
βu2ds,

≤
∫

Ω
f udx +

∫
Σ

g1uds +
∫

Γ
g2uds.

With the uniform Poincaré inequality [18], there exists C0 independent from Ω such that

‖u‖2
1,Ω ≤ C0‖∇u‖2

0,Ω,

we deduce the estimate

η

C0
‖u‖2

1,Ω ≤ (‖ f ‖0,Ω + C1‖g1‖0,Σ + C2‖g2‖0,Γ)‖u‖1,Ω. (9)

Thus we obtain

‖T(w)‖1,Ω = ‖u‖1,Ω ≤ C3 with C3 =
C0(‖ f ‖0,D + C1‖g1‖0,D + C2C′2‖g2‖0,D)

η
. (10)

The constant C′2 comes from the continuity of the uniform trace operator [19], in
addition it is independent from Ω, which implies that C3 is also independent from Ω. Now,
let the convex set be

W =
{

u ∈ L2(Ω) : ‖u‖1,Ω ≤ C3

}
.

We ought to show that the mapping T is continuous and compact from W into W.
From the definition of W and the estimate (10) we can easily see that T(W) ⊆W.

Consider then a sequence {wn} from W, we set {un} = {T(wn)}, we have∫
Ω

A(x, wn)∇un∇vdx +
∫

Σ
βunvds =

∫
Ω

f vdx +
∫

Σ
g1vds +

∫
Γ

g2vds. (11)
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Since {wn} and {un} are bounded in H1(Ω), there exist w and u such that

(i) {un} converges weakly to u in H1(Ω),

(ii) {wn} converges weakly to w in H1(Ω).

By Rellich theorem un converges strongly to u as a subsequence in L2(Ω). Thus
{T(wn)} is relatively compact, thereafter T is compact.

Now we focus on the continuity of the mapping T. Again with Rellich theorem, there
exists a subsequence of {wn} denoted again {wn}, such that

∃w ∈ L2(Ω) : wn → w strong in L2(Ω).

To end up the continuity proof we pass to limit in (11), first we mention that{
A(x, wn) −→ A(x, w) a.e in Ω,

|A(x, wn)∇v| ≤ µ|∇v| a.e in Ω.

With the Lebesgue dominated convergence theorem we obtain

A(x, wn)∇v −→ A(x, w)∇v a.e. in Ω.

Using the fact that ∇un converges weakly to ∇u in L2(Ω) we derive

lim
n→∞

∫
Ω

A(x, wn)∇un∇vdx =
∫

Ω
A(x, w)∇u∇vdx.

Thereafter we obtain u = T(w), which implies that T is continuous. Hence, Schauder’s
fixed point theorem ensures that T admits a fixed point in W.

Now we have proved the solution existence of (3), we move on to show its uniqueness.
Consider then u and v two elements of U2, we shall show that u = v. Taking the function ϑ
in H3-3, following the same manner as in [20] we set∣∣∣∣∣∣∣

Fy(x) =
∫ x

y

dt
ϑ2(t)

and Gy(x) =
∫ x

y

ds
ϑ(s)

if x ≥ y,

Fy(x) = Gy(x) = 0, otherwise .

with y > 0 tending to 0. Moreover, we have the next proprieties [3,20]:∣∣∣∣∣Fy(u− v), Gy(u− v) ∈ H1(Ω),

∇(X(u− v)) = X′(u− v)∇(u− v) with X = Fy, Gy.

Let us define the set : Ξ = {x ∈ Ω : (u − v)(x) > y}. The idea is to show that
meas(Ξ) = 0.

Using the fact that u, v ∈ U2 we have∫
Ω

A(x, u)∇u∇wdx +
∫

Σ
βuwds =

∫
Ω

A(x, v)∇v∇wdx +
∫

Σ
βvwds,

we choose Fy(u− v) as a test function in the last equation, we obtain:∫
Ω

A(x, u)∇u∇(Fy(u− v))dx =
∫

Ω
A(x, v)∇u2∇(Fy(u− v))dx−

∫
Σ

β(u− v)(Fy(u− v))ds,
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adding the term
∫

Ω
A(x, u)∇v∇

(
Fy(u− v)

)
dx with the definition of Fy, it follows that

∫
Ξ

A(x, u)
ϑ2(u− v)

|∇(u− v)|2dx =
∫

Ξ

(A(x, v)− A(x, u))
ϑ2(u− v)

∇u2∇(u− v)dx

−
∫

Σ
β(u− v)(Fy(u− v))ds.

Manipulating the assumption H2-3 we obtain

η
∫

Ξ

1
ϑ2(u− v)

|∇(u− v)|2dx ≤
∫

Ξ
A(x, u)

1
ϑ2(u− v)

|∇(u− v)|2dx

≤
∫

Ξ
[A(x, v)− A(x, u)]

1
ϑ2(u− v)

∇u2∇(u− v)dx

−
∫

Σ
β(u− v)(Fy(u− v))ds.

The integral
∫

Σ
β(u− v)(Fy(u− v))ds is positive, it follows

η
∫

Ξ

1
ϑ2(u− v)

|∇(u− v)|2dx ≤
∫

Ξ

∣∣∣∣A(x, v)− A(x, u)
ϑ2(u− v)

∇u2∇(u− v)
∣∣∣∣dx.

Taking into consideration H3-2 we deduce

η
∫

Ξ

1
ϑ2(u− v)

|∇(u− v)|2dx ≤
∫

Ξ

∣∣∣∣ 1
ϑ(u− v)

∇v∇(u− v)
∣∣∣∣dx

≤‖∇v‖0,Ξ

∥∥∥∥∇(u− v)
ϑ(u− v)

∥∥∥∥
0,Ξ

.

Thus ∥∥∥∥∇(u− v)
ϑ(u− v)

∥∥∥∥
0,Ξ
≤ C4 with C4 =

C3

η
.

Using now the function G again, it yields∥∥∇(Gy(u− v)
)∥∥

0,Ξ ≤ C4,

Hence we obtain

‖Gy(u− v)‖1,Ξ ≤ C5 with C2
5 =

C2
4

C0
.

With the results of [20], we have the existence of a sequence {ym} that tends to 0 and a
function G ∈ H1(Ω) such that in term of subsequence Gym(u− v) converges to G weakly
in H1(Ω) and strongly in L2(Ω).

Thereafter, lim
m→+∞

Gym(u− v)(x) < +∞ a.e. in Ω. From the definition of Gy and the

assumption H3-3 we deduce

lim
ym→0

Gym(u− v)(x) = lim
ym→0

∫ (u−v)(x)

ym

ds
ϑ(s)

= +∞ a.e. in Ξ.

Consequently, meas(Ξ) = 0 so that u ≤ v a.e. in Ω.
To end up the proof we repeat the same technique by changing the roles of u and v

which leads to v ≤ u, hence the equality.

We have proved that there exists a unique solution u2 of (7) which is bounded by C3 in
H1(Ω) with C3 being an independent constant from Ω. Similarly we have the existence of
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a unique solution u1 of (6) and there exists C6 > 0 independent constant from Ω such that
‖u1‖1,Ω ≤ C6. We shall highlight that those estimates are held in H1(D). If we consider ũ
denotes the uniform extension of u in H1(D) [19], from the classical theory we have that
‖ũ‖1,D = ‖u‖1,Ω.

2.2. Existence of an Optimal Shape Design

In this part we prove the next existence theorem:

Theorem 2. The shape optimization problem (5) admits an optimal solution in F .

F = Π × U1 × U2 are the feasible solutions spaces of the optimization (5). Before
proving this theorem, we need first to define some topology on the space F :

Definition 1. Consider a sequence {Ωn, u1,n, u2,n}n = {Ω(ϕn), u1,n, u2,n}n and an element
(Ω, u1, u2) b of F . Let’s define the following topology on F :

{Ωn, un} −→n−→∞
{Ω, u} ⇔ Ωn −→n−→∞

Ω, u1,n ⇀
n−→∞

u1 and u2,n ⇀
n−→∞

u2. (12)

The convergence of Ωn to Ω is in the sense of their characteristic functions, ui,n is assumed
to converge weakly to ui in H1(Ω), which is equivalent to the convergence of their uniform
extensions [21] ũi,n to ũi in H1(D), for i = 1, 2.

Remark 1. The convergence of Ωn to Ω implies the uniform convergence of ϕn and ϕ′n to ϕ and
ϕ′, respectively, in [a, b].

With respect to this topology we have the next compactness result.

Lemma 1. The space of feasible solutions F is compact.

Proof. Let {(Ωn, u1,n, u2,n)} be a sequence of F , we shall prove the existence of a subse-
quence of {(Ωn, u1,n, u2,n)} that converges in F .

First we have Ωn = Ω(ϕn), using Ascoli-Arzéla theorem [22] we ensure that (ϕn)
converges uniformly as a subsequence to an element ϕ, yields Ω = Ω(ϕ) ∈ Π.

Since ũi,n are bounded, we can use the Rellich theorem [22] to show the existence of ũi
such that ũi,n converges weakly to ũi in H1(D). This means that there exists subsequence
of {(Ωn, u1,n, u2,n)} that converges to (Ω, u1, u2), we only need to show that ui ∈ Ui for
i = 1, 2. We will only show that u2 ∈ U2, to do so we ought to prove that

E(Ωn, u2,n) −→n→∞
E(Ω, u2) (13)

with
〈E(O, φ), v〉 =

∫
O

A(x, φ)∇φ∇vdx +
∫

Σ
βφvds.

We will prove only that

lim
n→∞

∫
Ωn

A(x, u2,n)∇u2,n∇vdx =
∫

Ω
A(x, u2)∇u2∇vdx,

the others term will be shown in a similar way. First we have again

A(x, ũ2,n) −→ A(x, ũ2) a.e in D and ∇ũ2,n ⇀ ∇ũ2 weak in L2(D).

With the Lebesgue-dominated convergence theorem we infer that

A(x, ũ2,n)∇ũ2,n ⇀ A(x, ũ2)∇ũ2 weak in L2(D).
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Now, we write∫
Ωn

A(x, u2,n)∇u2,n∇vdx−
∫

Ω
A(x, u2)∇u2∇vdx =

∫
D
[χΩn − χΩ]A(x, ũ2,n)∇ũ2,n∇vdx

+
∫

D
χΩn [A(x, ũ2,n)∇ũ2,n − A(x, ũ2)∇ũ2]∇vdx.

With the above convergence, it follows that

lim
n→∞

∫
Ωn

A(x, u2,n)∇u2,n∇vdx−
∫

Ω
A(x, u2)∇u2∇vdx = 0.

Finally there exists a subsequence of {(Ωn, u1,n, u2,n)} that converges to (Ω, u1, u2) in
F , which implies that F is compact.

Lemma 2. The cost functional Jδ,ρ is semi lower continuous on F .

Proof. Let {(Ωn, u1,n, u2,n)} be a sequence in F that converges to (Ω, u1, u2) in F . With
Rellich theorem we have the strong convergence of ũi,n to ũi in L2(D) as a subsequence for
i = 1, 2, from another side we have χΩn converging to χΩ in L1(D). Thereafter

lim
n→∞

∫
Ωn

(u1,n − u2,n)
2dx = lim

n→∞

∫
D

χΩn(ũ1,n − ũ2,n)
2dx =

∫
Ω
(u1 − u2)

2dx.

From another hand, Ωn converges to Ω hence [23]

P(Ωn) ≤ lim inf
n→∞

P(Ω).

Finally we obtain

Jδ,ρ(Ω, u1, u2) ≤ lim inf
n→∞

Jδ,ρ(Ωn, u1,n, u2,n).

To conclude this section, we shall mention that the proof of Theorem 2 is based on
the compactness of the space F and the lower semi-continuity of functional J , which is
guaranteed with the last two lemmas.

3. Description of the Proposed Scheme

In this section we concentrate on the description of the proposed scheme to solve the
shape optimization problem (5). As mentioned before, the radial basis functions method
is chosen to discretize the state equations. For the minimization process, we develop a
hybrid method that we split into two phases: the first deals with the use of the differential
evolution heuristic method to find a best initial guess, that will be used to run the second
phase which concerns the application of the BFGS quasi-Newton.

3.1. RBF Discretization

Consider Ωh a uniform grid of size h of an admissible shape Ω ∈ Π

Ωh = {xc
i }1≤i≤N ∈ Πh =

{
Ω(ϕh), ϕh = (ϕ1, . . . , ϕN), 0 ≤ ϕi ≤ H,

|ϕi+1 − ϕi| ≤ Lh ∀i ∈ {1, . . . , N − 1}
}.

The RBF interpolant writes

u(x) =
N

∑
j=1

ψj(x)ξ j with ψj(x) = φε

(∥∥∥x− xc
j

∥∥∥
2

)
, (14)
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where ‖·‖2 is the Euclidean norm, φ is a radial basis function, the coefficient ε is the shape
parameters, ξ1, . . . , ξN are the freedom coefficients, they are computed by solving the next
matrix system φε

(∥∥x1 − xc
1

∥∥) · · · φε

(∥∥x1 − xc
N
∥∥)

...
. . .

...
φε

(∥∥xN − xc
1

∥∥) · · · φε

(∥∥xN − xc
N
∥∥)

 ξ1

...
ξN

 =

 u1
...

uN

. (15)

It is known that the RBF interpolation matrix is symmetric, and generally nonsingular
which is an issue depending on the choice of the RBF function φε, in a way to be positive
definite. All the choices of RBF given in Table 1 are strictly conditionally positive definite
except for the multiquadric RBF, which needs some other arguments to yield a positive
definite matrix.

The choice of this parameter affects the accuracy of the interpolation with RBF, such
that a bad choice will lead to an ill-conditioned linear system [24]. However, the choice
of an optimal shape parameter is one of the delicate problems in RBF approximation;
some studies show that it can be done by varying the shape parameter in a range then
taking the optimal as the argument with best approximating in error [25]. Others [26] have
proposed to take ε = 0.815dm where dm is the minimum distance between two collocation
points. In [13], the choice of a shape parameter is made with respect to the variation of
the condition number of the linear system. A few choices of radial basis functions [27] are
given in Table 1.

Table 1. Some choices of radial basis function.

Name RBF

Multiquadric (MQ) φε(r) =
√

r2
ε + 1

Inverse Multiquadric (IMQ) φε(r) = 1√
r2

ε+1

Gaussian (GA) φε(r) = exp
(
−r2

ε

)
Thin plate spline (TPS) φε(r) = rε ln(rε)

First, we write the state Equations (2) and (3) as

Lui = f in Ω and Biui = li on ∂Ω.

where L is the nonlinear operator L = −∇(A(x, ·)∇·), B1 is the identity and B2 is the mixed
Robin and identity mapping, the right-hand sides are l1 = jδ on ∂Ω, l2 = g1 on Σ and g2 on
Γ. Then we can write the following

F1(u1) = 0 and F2(u2) = 0.

The discrete form of the cost functional is given by the following

Jδ,ρ(Ωh) =
1
2
〈M(Ωh)(u1 − u2), u1 − u2〉+ ρR(Ωh). (16)

with M(Ωh) being the mass matrix given by

M(Ωh) =

(∫
Ωh

ψi(x)ψj(x)dx
)

i,j
.

Then we summarize the optimization problem as next

min
Ωh∈Πh

Jδ,ρ(Ωh) s.t. F1(u1) = 0 and F2(u2) = 0. (17)
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To solve the nonlinear equations Fi(ui) = 0 we use the nonlinear conjugate gradient
method, which is presented below in Algorithm 1.

Algorithm 1: Nonlinear Conjugate Gradient
Input: Choose u0, s−1, Nmax, tol. set i = 0 and err = 1.

1 while iter < Nmax and err > tol do
2 if i = 0 then
3 γi = 1

4 else

5 γi =
‖∇F(ui)‖2

‖∇F(ui−1)‖2

6 Compute si = −∇F(ui) + γisi−1
7 Use a line search to find αi
8 Update ui+1 = ui + αisi

Output: u solution of F(u) = 0

3.2. Computation of the Discrete Gradient

In this part, we will establish the discrete expression of the cost functional gradient.
First we write

Jδ,ρ(Ωh) := Jδ(Ωh, u1(Ωh), u2(Ωh)) + ρR(Ωh).

Then for any admissible direction V we have

J ′δ,ρ(Ωh)(V) = (∇Ω Jδ(Ωh, u1, u2))
>V + (∇u1 Jδ(Ωh, u1, u2))

>u′1(Ωh)

+(∇u2 Jδ(Ωh, u1, u2))
>u′2(Ωh) +R′(Ωh)

>V.

Additionally, we have the following

∇Jδ(Ωh) =

(
∂Jδ(Ω(ϕ))

∂ϕi

)N

i=1
=

1
2
〈M′(Ωh)(u1 − u2), u1 − u2〉+ 〈M(Ωh)(u1 − u2), u′1 − u′2〉,

where

M′(Ωh) =

(
∂M(Ω(ϕ))

∂ϕi

)N

i=1
, u′1(Ωh) =

(
∂u1(Ω(ϕ))

∂ϕi

)N

i=1
and u′2(Ωh) =

(
∂u2(Ω(ϕ))

∂ϕi

)N

i=1
.

Since we have F1(u1) = 0 and F2(u2) = 0 then we can write using the chain rule:

F′1(u1)u1 + F1(u1)u′1 = 0 and F′2(u2)u2 + F2(u2)u′2 = 0.

The adjoint state solutions can be expressed as next

F>1 (u1)p1 = ∇u1 Jδ(Ωh) = M(Ωh)(u1 − u2),

F>2 (u2)p2 = ∇u2 Jδ(Ωh) = −M(Ωh)(u1 − u2).
(18)

Thus we have the discrete gradient

∇Jδ,ρ(Ωh) = (∇Ω Jδ(Ωh))
>V − p>1 F1(u1)u′1 − p>2 F2(u2)u′2 + ρR(Ωh). (19)

3.3. Differential Evolution Heuristic Method

In this part, we put some light on one of the contemporary heuristic methods, the
Differential evolution (DE). It was originated by Storn and Price [28]. As in all heuristic
methods, DE searches the best solution of an optimization problem by improving a number
of candidate solutions until a prescribed stopping criteria is satisfied. Nevertheless, such
an optimization method does not guarantee the existence of an optimal solution. Its role in
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our approach is to search for the best initial guess to initialize the quasi-Newton method,
which ensures the existence of an optimal solution in case if it exists.

DE is a population-based method. With an initial population P0 of M candidate
solutions, Xi usually called agents. The fitness of Xi is equal to the value of the cost
functional at Xi. Applying three operators mutation, crossover and selection, DE moves
a current population to the new future population. It starts by performing the mutation
operator, that consists to generate a new agent according to the next:

Yn+1
i = Xn

k1
+ ς(Xn

k2
− Xn

k3
) for each i ∈ {1, ..., M}, (20)

with n is the current generation number. k1, k2 and k3 are random indexes generated
randomly in {1, .., i− 1, i + 1, ..M}. The scaling coefficient ς is chosen from [0, 2].

The offspring agent generated by crossover operator is obtained as follows. For each
Xi ∈ Pn, generate the new agent

Zn+1
ik =

{
Xn

ik if dk > υ

Yn+1
ik if dk ≤ υ

for each k ∈ {1, ..., K}, (21)

where K is the length of Xi, dk is a number chosen randomly in [0, 1] for each k, Yn+1
i is the

offspring of the mutation operation (20), υ is the ratio of the crossover.
We come to the last operation, the selection. It is the stage where the decision—which

agents will live to the future generation—is made. Based on the fitness of Xn
i and Zn+1

i the
fittest one will live, meaning the one with the smallest cost value will continue in the future
generation Pn+1.

This choice of this particular heuristic method is due to its efficiency and fast conver-
gence in comparison with the famous heuristic methods used in the literature, such as for
example the genetic algorithm, which applies almost the same operators.

3.4. Quasi-Newton Method

Here, we describe a quasi-Newton variant method, the Broyden, Fletcher, Goldfarb
and Shanno method (BFGS) [29], which is based on the approximation of Hessian matrix.
First, with an initial guess Ω0, the iteration is considered:

Ωn+1 = Ωn + $ndn, (22)

where $n is the step size, dn is the direction of descent, obtained as solution of the lin-
ear system:

Lndn = −∇Jδ,ρ(Ωn), (23)

where L is a matrix updated according to the formula

Ln+1 = Ln +
Λn(Λn)T

< tn, Λn >
− Ln[tn(tn)T ]Ln

< Lntn, tn >
, (24)

L0 is the identity matrix and

tn = ∇Jδ,ρ(Ωn+1)−∇Jδ,ρ(Ωn), and Λn = Ωn+1 −Ωn. (25)

All the steps of the proposed scheme are summarized in Algorithm 2.
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Algorithm 2: Differential Evolution/Quasi-Newton
Input: Choose tol1, tol2 Nmax1, Nmax2, ς, υ, N and M. set err = 1 and iter = 0.

1 Generate an initial population P0
2 while iter < Nmax1 and err > tol1 do
3 for i = 1 to M do
4 Apply the mutation with (20) and generate Yn

i
5 Perform the crossover to create Zn

i according to (21)
6 Compute the state solutions u1,i and u2,i for Yn

i and Zn
i

7 Apply the selection, to generate the new population
8 Extract the best agent Ωbest in this new population.
9 Set iter = iter + 1 and err = Jδ,ρ(Ωbest)

10 set Ω0 = Ωbest and n = 0
11 while n < Nmax2 and err > tol2 do
12 Compute u1,n and u2,n state solutions using Algorithm 1
13 Find p1,n and p2,n adjoint states using (18)
14 Compute the shape gradient ∇Jδ,ρ(Ωn) with (19)
15 Compute Pn solution of Lndn = −∇Jδ,ρ(Ωn)

16 Use a line search to find ρn
17 Update Ωn+1 = Ωn + $ndn
18 Compute tn and wn by (25)
19 Update Ln+1 using formula (24)
20 Set n = n + 1, and err = Jδ,ρ(Ωn+1)

Output: The optimal solution (Ω, u1, u2)

4. Numerical Results

This section is dedicated to establish some numerical experiments to prove from one
hand the validity of the theoretical results, the robustness of the proposed numerical scheme
from the other hand. All codes are written in MATLAB R2018b. The experiments are run on
a laptop of Intel core i5 10th generation 1.60 GHz with 16 GB of RAM. The data in the state
problem is constructed with the analytical solution for state Equations (2) and (3) which
is given by ue(x, y) = 1

x+y+4 . For the nonlinear operator A we consider the next example
A(x, u) = exp(u(x)).

In the present study, the inverse multi-quadratic is used as the radial basis function,
with a grid of size 20× 20. To control the condition number of the linear system, which
is influenced by the shape parameter ε, we adapt the approach in [26], where they have
proposed that ε = 0.815dm where dm is the minimum distance between two collocation
points. To measure the error for the RBF approximation, we compute the well-known Root
Mean Square (RMS) error using:

RMS =

√√√√ 1
N

N

∑
i=1

(ui − zδ)
2. (26)

In the literature, most works take the exact solution in place of zδ; our consideration
comes from the fact that we are dealing with an inverse problem that we seek to solve by
controlling the construction of the missing boundary from the given observation only.

Now, we tune the Differential evolution heuristic method. For that, we consider the
settings in Table 2.
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Table 2. Differential evolution parameters.

Population Size tol1 Max Iterations γ υ

30 0.5 10 0.05 0.75

As described before, after DE achieves the prescribed tolerance or exceeds the maxi-
mum of number iterations, its optimal solution is taken as the initial guess for the BFGS
algorithm. To tune the BFGS process, we set two criteria, a tolerance tol2 = 10−4 and that
the difference between two successive iterations Γn and Γn+1 must be smaller than 10−6.

We test our algorithm for three different types of boundaries Γi that are characterized
by the parametrization ϕi, with i = 1, 2 and 3. The first and the second examples deal with
the approximation of the smooth exact boundaries defined by ϕi

ϕ1(x) = 1− 0.2sin(2πx), and ϕ2(x) = 1 + 0.5(1− x)(x− 0.5), x ∈ [0, 1].

For the first and second examples we can easily see in Figures 2 and 3 that the approx-
imated boundary is of relatively good quality. Even with noisy data, the approximated
optimal boundary, obtained with the proposed algorithm, is still close enough to the exact
boundary. This confirms the efficiency of the proposed approach in approximating such
kinds of free boundaries.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

After BFGS

After DE

Exact Boundary

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1%
5%
10%
Exact

Figure 2. Results for example 1 without noise (left), with different noise level (right).
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Figure 3. Results for example 2 without noise (left), with different noise level (right).

The third example has a particularity, we assume that it has a jump in the neighborhood
of 0.5. We consider the function

ϕ3(x) = 1.2− 0.1x if x ∈ [0, 0.5], ϕ3(x) = 1.4 + 0.2x otherwise.
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In Figure 4 we have plotted the obtained results for this last example. Where the
DE exceed the 50 iterations without reaching a good precision, the BFGS continued the
minimization process; this leads to an accurate approximation of Γ3, as shown in the right
of Figure 4. When the data became noisy, the solution lost its accuracy, but still delivered
an acceptable approximation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

After BFGS
After DE
Exact Boundary

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1%
5%
10%
Exact

Figure 4. Results for example 3 without noise (left), with different noise level (right).

We summarize in Table 3 the optimal RMS error, the final cost and the elapsed time,
as well as the total of number of iterations. In Table 4 we record the optimal cost for each
example with different noise level. The CPU is very similar for the first and the second
examples, but in the third it takes longer due to the complex configuration of the exact
boundary; however, the optimal results are of good quality. When the data are noisy, the
optimal cost increases with respect to the noise level, although the optimal boundaries are
still closer enough to the exact one. Thereupon the proposed scheme is efficient to solve
such a nonlinear shape optimization problem.

Table 3. Results with exact data.

RMS Error Cost CPU Iterations

Example 1 0.0121 0.0074 225.12 27

Example 2 0.0085 0.0089 281.35 34

Example 3 0.0287 0.0065 372.61 35

Table 4. The optimal cost with noisy data.

Noise Level Example 1 Example 2 Example 3

0% 0.00739 0.00891 0.00655

1% 0.04079 0.00893 0.01397

5% 0.06152 0.04258 0.04328

10% 0.08949 0.05992 0.07012

As we mentioned in the beginning of this section, we seek to control the condition
number with adjusting the shape parameter. In Figure 5 we plot the variation of the
condition number with respect to the iterations. We easily see that it converges to values
less than 1014, which means that the approximation is accurate.
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Figure 5. The condition number with respect to iteration number for each example.

5. Conclusions

In this paper, a nonlinear free boundary problem has been considered. The shape
optimization technique with regularization was used to write the inverse problem as a
constrained optimization problem, and we have shown the existence of its solution. The
numerical scheme proposed in this work is the combination of radial basis functions with
hybrid Differential evolution and quasi-Newton methods. The shape parameter of the RBF
method was controlled with a dynamic formula to ensure that the obtained linear system
is well-conditioned. The role of the heuristic differential evolution method was to help
with finding the best initial guess for quasi-Newton method. The obtained results show
that this hybridization succeeded in achieving an optimal solution with a few iterations.
All these results were demonstrated with different numerical examples. At this stage, the
proposed scheme is a robust alternative to solve such a nonlinear inverse problem. For
future works, we suggest establishing a comparison of the presented scheme based on RBF
versus another based on finite element method, and using it in a realistic application.
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