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Abstract: The generalized half-logistic distribution is ideal to fit the lifetime of some products, such
as ball bearings and electrical insulation. In this paper, we aim to extend this scope by creating a
motivated bivariate version. We thus introduce the bivariate generalized half-logistic distribution
using the Farlie Gumbel Morgenstern (FGM) copula, which is called the FGM bivariate generalized
half-logistic distribution (FGMBGHLD for short). In particular, the FGMBGHLD finds application in
describing bivariate lifetime datasets that have weak correlations between variables. Some statistical
properties and functions of our new distribution, such as the product moments, moment generating
function, reliability function, and hazard rate function, are derived. We discuss the maximum
likelihood estimation method of the FGMBGHLD parameters. As an application of the FGMBGHLD
in reliability, we consider the stress–strength model when the stress and strength random variables
are dependent. We also derive the point and interval estimates of the stress–strength coefficient.
Finally, we use the data from the household income and expenditure survey of KSA 2018 for Saudi
households by administrative region to demonstrate the practicability of the proposed model. A
comparison with a modern bivariate Weibull distribution is performed.

Keywords: Farlie Gumbel Morgenstern (FGM) copula; generalized half-logistic distribution (GHLD);
reliability parameter; Monte Carlo simulation; statistical properties; household financial affordability
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1. Introduction

In various fields, such as life testing, reliability, and biological and engineering sci-
ences, there is a need for flexible lifetime distributions with various probability density
and hazard rate properties. To this end, Mudholkar et al. (1995) [1] introduced the ex-
ponentiated Weibull family of distributions, which includes unimodal distributions with
bathtub hazard rates as well as a broader class of monotone hazard rates. Alternative
distributions have been examined since, presenting slightly different features. Gupta and
Kundu (1999) [2] proposed a generalized exponential distribution. Olopade (2008) [3] con-
sidered two distributions, named type-I and type-III generalized half-logistic distributions.
Kantam et al. (2014) [4] proposed a type-II generalized half-logistic distribution (GHLD-II
for short). For the purpose of this paper, a brief presentation of the GHLD-II is necessary.
On the mathematical plan, the probability density function (PDF), cumulative distribution
function (CDF), and reliability function of the GHLD-II with scale parameter σ and power
parameter µ are given by

f (x) = f (x; σ, µ) =
µ (2 e−

x
σ )

µ

σ
(

1 + e−
x
σ

)µ+1 , 0 < x < ∞, σ > 0, µ > 0 (1)
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F(x) = F(x; σ, µ) = 1−
(

2 e−
x
σ

1 + e−
x
σ

)µ

(2)

and

R(x) = R(x; σ, µ) =

(
2 e−

x
σ

1 + e−
x
σ

)µ

. (3)

Thus, the GHLD-II is developed through the exponentiation of the reliability function of
the half-logistic distribution (see Balakrishnan (1985) [5]).

The flexibility of the GHLD-II is mainly in the mode and tail of the distribution, making
it an interesting distribution for the modeling of lifetime phenomena. It is proven to define
a better model than the exponential, Weibull, and half-logistic models (see Kantam et al.
(2014) [4]).

The first objective of this paper is to derive a comprehensive bivariate generalized
half-logistic distribution (BGHLD for short) using the copula approach and study its
statistical properties, such as PDF, CDF, product moments, moment generating function,
and hazard rate function. Many authors discuss the same idea but other distributions; see
Almetwally et al. (2020) [6], Almetwally and Muhammed (2020) [7], and Muhammed et al.
(2021) [8]. In view of the impact of the GHLD-II in the recent literature, we derive that
bivariate versions have a promising future in terms of modeling and data analysis. Now, in
order to detail and motivate the construction of our BGHLD, let us present some basics
of the notion of the copula. As a first approach, we can say that a copula is a multivariate
CDF for which the marginal distribution of each variable is uniform on the interval (0, 1). It
describes the dependence between random variables. The definitions below provide more
technical details.

Definition 1. Let us consider a random vector (X1, . . . , Xd) and the marginal CDFs denoted by
Fi(x) = P(Xi < x), for i = 1, . . . , d. Then, using probability integral transform (PIT) for each
component, the distribution of the random vector (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)) belongs
to the (uni f (0, 1))d family of distributions, and the copula related to (X1, . . . , Xd) is defined as the
joint CDF of (U1, . . . , Ud), i.e.,

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud), (4)

with (u1, . . . , ud) ∈ [0, 1]d.

Definition 2. C: [0, 1]d → [0, 1] is a d-dimensional copula if it is a CDF with

C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0, C(1, . . . , u, 1, . . . , 1) = u, (5)

with (u1, . . . , ud) ∈ [0, 1]d and u ∈ [0, 1]. In the bivariate case, C : [0, 1]2 → [0, 1] is a
bivariate copula if C(0, u) = C(u, 0) = 0, C(1, u) = C(u, 1) = u and C(u2, v2)− C(u2, v1)−
C(u1, v2) + C(u1, v1) ≥ 0 for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1.

The Sklar theorem, established by Sklar (1959) [9], is pivotal in copula theory. It states
that, for two random variables X1 and X2 with marginal CDFs F1(x1) and F2(x2) and
marginal PDFS f1(x1) and f2(x2), respectively, the CDF and PDF of (X1, X2) are given by

F(x1, x2) = C(F1(x1), F2(x2)) (6)

and
f (x1, x2) = f (x1) f (x2)c(F1(x1), F2(x2)), (7)

respectively, where c(u1, u2) denotes the copula density related to C(u1, u2), i.e., c(u1, u2) =
∂2C(u1, u2)/(∂u1∂u2).
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Gumbel (1960) [10] discussed one of the most popular parametric families of copulas,
called the Farlie Gumbel Morgenstern (FGM) copula. The FGM copula and its density are
specified by

C(u1, u2) = u1 u2(1 + θ(1− u1)(1− u2)), −1 ≤ θ ≤ 1, (8)

and
c(u1, u2) = 1 + θ(1− 2u1)(1− 2u2), (9)

respectively. The parameter θ can be thought of as a dependence parameter that is depen-
dent on the underlying random variables, with the independent case being θ = 0. The FGM
copula is thus simple, flexible, and can be adapted when dealing with the construction of
bivariate distributions with complicated marginal distributions in terms of functions. It is
used in our study to create our BGHLD, which we naturally call the FGMBGHLD.

The second objective is to develop the maximum likelihood (ML) estimation method
of the FGMBGHLD parameters. Finally, the third goal is to derive the corresponding
stress–strength model, but when and how this makes sense: in the dependent case, which
can occur in engineering, operations research, quality control, education, economics, and
insurance. Domma and Giordano (2013) [11] provided an example. In this paper, we are
interested in economics, where X and Y are household income and consumption, and
R = P(Y < X) is a measure of household financial affordability.

This paper is organized as follows. In Section 2, the FGMBGHLD is described. In
Section 3, we derive some statistical properties of the FGMBGHLD. In Section 4, we exploit
the copula approach to take into account the dependence of stress and strength variables in
evaluating R. In Section 5, the ML estimation method for the FGMBGHLD parameters is
discussed. In Section 6, point and interval estimations for R are elaborated. In Section 7, a
Monte Carlo simulation study is performed to study the behavior of different estimates. In
Section 8, the estimation of R is applied to KSA data (year 2018) to measure the household
financial affordability for Saudi households by administrative region, with comparison to a
modern bivariate Weibull distribution. The conclusion of this paper appears in Section 9.

2. FGM Bivariate Generalized Half-Logistic Distribution (FGMBGHLD)

Applying the Sklar theorem as stated in Equations (6) and (7) with Equations (1) and (2),
and the FGM copula in Equations (8) and (9), we obtain the CDF and PDF of a random
vector (Y1, Y2) following the FGMBGHLD. They are given by

F(y1, y2) =

1−

 2 e−
y1
σ1

1 + e−
y1
σ1

µ1
1−

 2 e−
y2
σ2

1 + e−
y2
σ2

µ2
1 + θ

 2 e−
y1
σ1

1 + e−
y1
σ1

µ1
 2 e−

y2
σ2

1 + e−
y2
σ2

µ2
 (10)

and

f (y1, y2) =
µ1 (2 e−

y1
σ1 )

µ1

σ1

(
1 + e−

y1
σ1

)µ1+1
µ2 (2 e−

y2
σ2 )

µ2

σ2

(
1 + e−

y2
σ2

)µ2+1

1 + θ

2

 2 e−
y1
σ1

1 + e−
y1
σ1

µ1

− 1

2

 2 e−
y2
σ2

1 + e−
y2
σ2

µ2

− 1

, (11)

respectively, with the restrictions of the variables and parameters already mentioned.
In order to illustrate the effect of the dependence parameter θ on the shape of these

functions, Figure 1 shows the three-dimensional plots of the PDF and CDF with different
values of θ (positive and negative).
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Figure 1. Three-dimensional plots for the PDF and CDF of the FGMBGHLD with different values of
θ (for µ1 = µ2 = 0.5, σ1 = 0.2 and σ2 = 0.1).

From Figure 1, we see that the variable variations of θ play a significant role; the PDF
can take different forms in the space, with various skewness and kurtosis.

3. Statistical Properties of the FGMBGHLD

Here, we discuss some statistical properties of the FGMBHLD as defined by
Equations (10) and (11). The marginal distributions, product moments, moment gen-
erating function, conditional distribution, generating random variables, and reliability
function are derived.

3.1. Marginal PDFs

From a random vector (Y1, Y2) following the FGMBHLD, for i = 1, 2, the distribution
of Yi has the following PDF:

fi(yi) =
∫ ∞

0
f (yi, yj)dyj, i 6= j, j = 1, 2. (12)

Thus, more concretely, Y1 has the following PDF:

f1(y1) =

µ1

(
2 e−

y1
σ1

)µ1

σ1

(
1 + e−

y1
σ1

)µ1+1 , y1 > 0, µ1, σ1 > 0 (13)

and Y2 has the following PDF:

f2(y2) =

µ2

(
2 e−

y2
σ2

)µ2

σ2

(
1 + e−

y2
σ2

)µ2+1 , y2 > 0, µ2, σ2 > 0. (14)
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On the other hand, for i 6= j with i, j = 1, 2, the general formula for the conditional
PDF of Yi given Yj = yj is

f
(
yi
∣∣yj
)
= fi(yi)

[
1 + θ(1− 2 Fi(yi))

(
1− 2 Fj

(
yj
))]

, −1 ≤ θ ≤ 1, (15)

where Fi(yi) and Fj
(
yj
)

denote the CDFs of Yi and Yj, respectively.
Similarly, the conditional CDF of Yi given Yj = yj is

F
(
yi
∣∣yj
)
= Fi(yi)

[
1 + θ(1− Fi(yi))− 2 Fj

(
yj
)
+ 2 Fi(yi)Fj

(
yj
)]

. (16)

We omit their analytical expressions for the FGMBHLD for the sake of brevity.

3.2. Moment Generating Function

The moment generating function of (Y1, Y2) following the FGMBHLD is obtained as

M(Y1,Y2)(t1, t2) = E
(

et1Y1 et2 Y2
)
=
∫ ∞

0

∫ ∞

0
et1y1 et2 y2 f (y1, y2)dy1dy2

=
µ1 µ2 2µ1+µ2

(1 + t1 σ1)(1 + t2 σ2)

[
21+µ1 θ W1

(
21+µ2 W2 −W3

)
−
(

W4

(
21+µ2W2 − (1 + θ)W3

))]
, (17)

where
W1 =2 F1(−1− 2µ1,−1− t1σ1;−t1σ1;−1), (18)

W2 =2 F1(−1− 2µ2,−1− t2σ2;−t2σ2;−1), (19)

W3 =2 F1(−1− µ2,−1− t2σ2;−t2σ2;−1) (20)

and
W4 =2 F1(−1− µ1,−1− t1σ1;−t1σ1;−1), (21)

where 2F1(a, b; c; z) refers to the (generalized) hypergeometric function.
The parameters t1 and t2 must be selected such that the above quantities exist in

the mathematical sense, which is the case for t1 ≤ 0 and t2 ≤ 0 among other more
technical cases.

3.3. Product Moments

To obtain the product moments about the origin of (Y1, Y2) following the FGMBHLD,
for any positive real numbers r1 and r2, we calculate

`
µr1r2 = E

(
Yr1

1 Yr2
2
)
=
∫ ∞

0

∫ ∞

0
yr1

1 yr2
2 f (y1, y2)dy1dy2 =

µ1 µ2 2µ1+µ2

σ1 σ2
(A + B + C + D), (22)

where

A = (1 + θ)

[
∞

∑
s1=0

(
1 + µ1

s1

)(
−1 + s1

σ1

)−1−r1

Γ(1 + r1)

][
∞

∑
s2=0

(
1 + µ2

s2

)(
−1 + s2

σ2

)−1−r2

Γ(1 + r2)

]
, (23)

B = θ22+(µ1+µ2)

[
∞

∑
s3=0

(
1 + 2µ1

s3

)(
−1 + s3

σ1

)−1−r1

Γ(1 + r1)

][
∞

∑
s4=0

(
1 + 2µ2

s4

)(
−1 + s4

σ2

)−1−r2

Γ(1 + r2)

]
, (24)

C = −θ2(µ1+1)

[
∞

∑
s3=0

(
1 + 2µ1

s3

)(
−1 + s3

σ1

)−1−r1

Γ(1 + r1)

][
∞

∑
s2=0

(
1 + µ2

s2

) (
−1 + s2

σ2

)−1−r2

Γ(1 + r2)

]
(25)

and
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D = −θ2(µ2+1)

[
∞

∑
s1=0

(
1 + µ1

s1

)(
−1 + s1

σ1

)−1−r1

Γ(1 + r1)

][
∞

∑
s4=0

(
1 + 2µ2

s4

)(
−1 + s4

σ2

)−1−r2

Γ(1 + r2)

]
. (26)

It is understood that Γ(x) refers to the standard gamma function, with Γ(m + 1) = m! for
any integer m. From the product moments, various measures of moment skewness and
kurtosis can be presented. On this topic, see, for instance, Almetwally et al. (2020) [6],
Almetwally and Muhammed (2020) [7], and Muhammed et al. (2021) [8].

3.4. Reliability and Hazard Rate Functions

The reliability function of a bivariate distribution with an associated copula is defined
by the copula composed with its marginal reliability functions. See Osmetti and Chiodini
(2011) [12]. Hence, based on (Y1, Y2) following the FGMBHLD, it is expressed as

R(y1, y2) = C(R1(y1), R2(y2)), (27)

where R1(y1) and R2(y2) denote the reliability functions of Y1 and Y2, respectively. Accord-
ing to the FGM copula, we obtain

R(y1, y2) = R1(y1)R2(y2)[1 + θ(1− R1(y1))(1− R2(y2))], −1 ≤ θ ≤ 1. (28)

For the FGMBHLD, the reliability function is

R(y1, y2) =

 2 e−
y1
σ1

1 + e−
y1
σ1

µ1
 2 e−

y2
σ2

1 + e−
y2
σ2

µ2
1 + θ

1−

 2 e−
y1
σ1

1 + e−
y1
σ1

µ1
1−

 2 e−
y2
σ2

1 + e−
y2
σ2

µ2
. (29)

Moreover, Basu (1971) [13] defined the bivariate hazard rate function as

h(y1, y2) =
f (y1, y2)

R(y1, y2)
. (30)

For the FGMBHLD, the hazard rate function is indicated as

h(y1, y2) =
µ1 µ2

σ1 σ2

(
1 + e−

y1
σ1

) (
1 + e−

y2
σ2

) 1 + θ

(
2

(
2 e
− y1

σ1

1+e
− y1

σ1

)µ1

− 1

)(
2
(

2 e
− y2

σ2

1+e
− y2

σ2

)µ2

− 1

)

1 + θ

(
1−

(
2 e
− y1

σ1

1+e
− y1

σ1

)µ1
)(

1−
(

2 e
− y2

σ2

1+e
− y2

σ2

)µ2
) . (31)

4. Reliability for Dependence Stress–Strength Model

Domma and Giordano (2013) [11] introduced the concept of dependence via the stress–
strength model. They calculated the reliability measure under the hypothesis that the
bivariate distribution of the stress and strength variables, modeled by the random variables
X and Y, is defined by joining their respective marginal CDFs F(x) and G(y) for any copula.
In this setting, the measure R for dependent X and Y can be defined as

R = P(Y < X) =
∫ ∞

0

∫ x

0
c(F(x), G(y)) f (x)g(y)dy dx, (32)

where f (x) and g(y) denote the PDFs of X and Y, respectively, and c(u1, u2) the copula density.
Using the FGM copula, we have the following relationship: R = R1 + θ D, where

R1 =
∫ ∞

0

∫ x

0
f (x)g(y)dy dx =

∫ ∞

0
G(x) f (x)dx = E[G(X)] (33)

and
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D =
∫ ∞

0

∫ x

0
(1− 2F(x))(1− 2 G(y))dF(x)dG(y) = E[G(X)(1− G(X))(1− 2F(X))]. (34)

Now, we calculate R when X and Y have possibly non-identical GHLD with the CDFs

F(x) = 1−
(

2 e−
x
σ

1+e−
x
σ

)µ1
and G(y) = 1−

(
2 e−

y
σ

1+e−
y
σ

)µ2

, respectively. Hence, σ is common to

the two marginal distributions. In this case, after some integral developments, we obtain

R =
µ2

µ1 + µ2
+ θ µ1

(
1

2 µ1 + µ2
− 2

µ1 + µ2
+

1
µ1 + 2 µ2

)
. (35)

5. Estimation Method for the Distribution Parameters

In this section, we present the ML method for estimating the FGMBHLD parameters.
Let (x1, y1) . . . (xn, yn) be a random sample from a random vector (X, Y) following the

FGMBHLD with the parameters µ1, µ2, σ1, σ2, and θ. Hence, in particular, X follows the
GBHLD(µ1, σ1) and Y follows the GBHLD(µ2, σ2). Elaal and Jarwan (2017) [14] introduced
the ML estimation method for bivariate distributions based on copula. The basis consists of
constructing the log-likelihood function as

Ln L =
n

∑
i=1

ln[ f (xi) g(yi)c(F(xi), G(yi))], (36)

where F(x) and G(y) are the CDFs of X and Y, and f (x) and g(y) are their respective
PDFs, and c(u1, u2) refers to the copula density. The ML estimates (MLEs) of the involved
parameters are obtained by maximizing this function with respect to these parameters.

Under the setting of the FGMBHLD, we have

Ln L = n Ln (µ1) + n Ln (µ2) + n (µ1 + µ2) ln(2)− µ1

σ1

n

∑
i=1

xi −
µ2

σ2

n

∑
i=1

yi − n ln(σ1)

− n ln(σ2)− (µ1 + 1)
n

∑
i=1

ln
(

1 + e−
xi
σ1

)
− (µ2 + 1)

n

∑
i=1

ln
(

1 + e−
yi
σ2

)
+

n

∑
i=1

ln(1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2)), (37)

where φ(xi, µ1, σ1) = 1− 2F(xi) and η(yi, µ2, σ2) = 1− 2G(yi).
The MLEs of the parameters µ1, µ2, σ1, σ2 and θ, say µ̂1, µ̂2, σ̂1, σ̂2, and θ̂, are those

maximizing this function. They can be obtained by differentiation. To be more precise, by
differentiating the log-likelihood with respect to the distribution parameters, we obtain

∂Ln L
∂µ1

=
n
µ1

+ n ln(2)− 1
σ1

n

∑
i=1

xi −
n

∑
i=1

ln
(

1 + e−
xi
σ1

)
+

n

∑
i=1

θ η(yi, µ2, σ2) φµ1(xi, µ1, σ1)

(1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2))
, (38)

∂Ln L
∂µ2

=
n
µ2

+ n ln(2)− 1
σ2

n

∑
i=1

yi −
n

∑
i=1

ln
(

1 + e−
yi
σ2

)
+

n

∑
i=1

θ φ(xi, µ1, σ1)ηµ2(yi, µ2, σ2)

(1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2))
, (39)

∂Ln L
∂σ1

=
µ1

σ2
1

n

∑
i=1

xi −
n
σ1

+
(µ1 + 1)

σ2
1

n

∑
i=1

xi e−
xi
σ1

1 + e−
xi
σ1

+
n

∑
i=1

θ η(yi, µ2, σ2) φσ1(xi, µ1, σ1)

(1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2))
, (40)

∂Ln L
∂σ2

=
µ2

σ2
2

n

∑
i=1

yi −
n
σ2

+
(µ2 + 1)

σ2
2

n

∑
i=1

yi e−
yi
σ2

1 + e−
yi
σ2

+
n

∑
i=1

θ φ(xi, µ1, σ1)ησ2(yi, µ2, σ2)

(1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2))
(41)

and
∂Ln L

∂θ
=

n

∑
i=1

φ(xi, µ1, σ1)η(yi, µ2, σ2)

1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2)
, (42)
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where

φµ1(xi, µ1, σ1) = 2µ1+1

(
1

1 + e
xi
σ1

)µ1 (
− xi

σ1
+ ln(2)− ln

(
1 + e−

xi
σ1

))
, (43)

ηµ2(yi, µ2, σ2) = 2µ2+1

(
1

1 + e
yi
σ2

)µ2 (
− yi

σ2
+ ln(2)− ln

(
1 + e−

yi
σ2

))
, (44)

φσ1(xi, µ1, σ1) =

µ1 xi2µ1+1
(

e−
xi
σ1

)µ1−1 (
1 + e−

xi
σ1

)−µ1

σ2
1

(
1 + e

xi
σ1

) (45)

and

ησ2(yi, µ2, σ2) =

µ2 yi2µ2+1
(

e−
yi
σ2

)µ2−1 (
1 + e−

yi
σ2

)−µ2

σ2
2

(
1 + e

yi
σ1

) . (46)

By setting the above first partial derivatives of Ln L to zero, we obtain µ̂1, µ̂2, σ̂1, σ̂2
and θ̂. Since we cannot obtain a closed form for these estimates, a numerical method must
be used.

6. Estimation of the Stress–Strength Distribution Parameter

In this section, we introduce the MLE for R = P(Y < X). Moreover, we derive a
motivated asymptotic confidence interval and a bootstrap confidence interval for it.

6.1. Maximum Likelihood Estimate of R

From observed data (x1, y1) . . . (xn, yn), which are taken from a random vector (X, Y)
following the FGMBHLD with the parameters µ1, µ2, σ1, σ2, and θ, with σ = σ1 = σ2,
we consider the MLEs µ̂1, µ̂2, σ̂ and θ̂ of these parameters, respectively. Then, based on
Equation (35) and the invariance property, the MLE of R is obtained by substitution as

RMLE =
µ̂2

µ̂1 + µ̂2
+ θ̂ µ̂1

(
1

2 µ̂1 + µ̂2
− 2

µ̂1 + µ̂2
+

1
µ̂1 + 2 µ̂2

)
. (47)

6.2. Asymptotic Confidence Interval (ACI)

We now aim to compute the ACI for R with a large sample. Let Θ = (µ1, µ2, σ, θ), and
Θi be the i-th component of this vector. First, we construct the Fisher information matrix
as follows:

I(Θ) = I(µ1, µ2, σ, θ) =

 I11 · · · I14
...

. . .
...

I41 · · · I44

, (48)

where Iij = −E[ ∂2Ln L(X,Y)
∂Θi∂Θj

], i, j = 1, . . . , 4, Θi refereing to the ith component of Θ.
Second, we construct the variance–covariance matrix by replacing the distribution

parameters by their MLEs, and we obtain

V̂ =

 V̂11 · · · V̂14
...

. . .
...

V̂41 · · · V̂44

, (49)

where V̂ij = − ∂2Ln L
∂Θi∂Θj

∣∣∣
Θ=Θ̂

, i, j = 1, . . . , 4.

To obtain the ACI of R, the following two theorems are useful.
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Theorem 1. As n→ ∞, we have

(
√

n(µ̂1 − µ1),
√

n(µ̂2 − µ2),
√

n(σ̂− σ),
√

n
(

θ̂ − θ
)
)→ N4(0, A−1), (50)

where A = V̂
n .

Proof. The theorem can be demonstrated using the asymptotic properties of MLEs of the distri-
bution parameters under regularity conditions and the multivariate central limit theorem.

Theorem 2. As n→ ∞, we have
√

n
(

R̂− R
)
→ N(0, B), where B = bT A−1b,

b =

(
∂R
∂µ1

,
∂R
∂µ2

,
∂R
∂σ

,
∂R
∂θ

)
. (51)

Proof. The proof is based on Theorem 1 and the application of the delta method.

According to Xu and Long (2007) [15], a 100(1− α)% ACI of R isR̂− Zα/2

√
B̂
n

, R̂ + Zα/2

√
B̂
n

, (52)

where Zα/2 denotes the value providing an area of α
2 in the upper tail of the standard

normal distribution, and B̂ = b̂T A−1b̂, where b̂ is defined as Equation (51) with substitution
of the unknown parameters by the corresponding MLEs.

7. Simulation

In this section, a Monte Carlo simulation study is introduced to describe the point and
interval estimation of R.

7.1. Random Variate Generation

Nelsen (2006) [16] discussed the generation of a sample from a specified joint distribu-
tion using the conditional distribution method. In the setting of the FGMBHLD, it consists
of the following steps:

(i) Generate u and v independently from a uniform (0, 1) distribution.
(ii) Put y1 = σ1 ln(1− 2 (1− u)µ1) .
(iii) Put F(y2|y1 ) = v to find y2 using numerical simulation.
(iv) Repeat (i) to (iii) n-times to obtain (y1j, y2j), j = 1, . . . , n.

The obtained n pair of values are thus generated values from (Y1, Y2) following the
FGMBHLD.

7.2. Bootstrap Confidence Interval (BCI)

Efron (1982) [17] proposed the bootstrap percentile method (Boot-P) as follows:

(i) Select the simple random sample (xi, yi), i = 1, . . . , n.
(ii) Re-sample the simple random sample (xi, yi) with replacement.
(iii) Obtain the new simple random sample (x∗i , y∗i ).
(iv) Compute R∗.
(v) Repeat step (i)–(iv) B-times and compute R∗1 , . . . , R∗n.
(vi) Arrange R∗1 , . . . , R∗n, from the smallest to the largest R∗(1), . . . , R∗(n).

(vii) Construct a 100(1− α)% ACI of R as(
R∗α

2 ,B, R∗
(1− α

2 ),B

)
. (53)
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7.3. Experiment

1. Assume some true values of the parameters µ1, µ2, σ, θ and compute the correspond-
ing true values of R.
Case 1: If µ1 = 0.5, µ2 = 1.5, σ = 1, θ = −0.75, then R = 0.8678.
Case 2: If µ1 = 0.5, µ2 = 1.5, σ = 1, θ = −0.25, then R = 0.7892.
Case 3: If µ1 = 0.5, µ2 = 1.5, σ = 1, θ = 0.25, then R = 0.7107.
Case 4: If µ1 = 0.5, µ2 = 1.5, σ = 1, θ = 0.75, then R = 0.6321.

2. Use the algorithm in Section 7.2 to generate different sample sizes with n = 30, 50, 70
and 100, with 10,000 replications. All computations are obtained using Mathematica
11.1.

3. Calculate RMLE according to the methodology in Section 6.1 and the “average RMLE”,
say R∗MLE, based on all the samples at a fixed size.

4. Evaluate the ACI and BCI according to the methodology in Sections 6.2 and 7.2.
5. Study the behavior of RMLE by evaluating the bias defined by the “average of (RMLE − R)”

and the mean square error (MSE) indicated as the “average of (RMLE − R)2”.
6. In the context of interval estimation, we compare the ACI and BCI using the asymp-

totic confidence length (ACL) and converge probability (CP).

The results of the simulation study are presented in Table 1.

Table 1. Results of the Monte Carlo simulation study.

Sample Size Rtrue R∗MLE MLE ACI BCI

Bias MSE ACL CP ACL CP

µ1 = 0.5, µ2 = 1.5, σ = 1, θ = −0.75

n = 30 0.8678 0.3960 −0.0228 0.0157 0.205 0.935 0.598 0.780

n = 50 0.6463 −0.0064 0.0020 0.474 0.831 0.838 0.690

n = 70 0.7841 −0.0084 0.0049 0.397 0.846 0.858 0.684

n = 100 0.3392 −0.0037 0.0014 0.223 0.980 0.503 0.819

µ1 = 0.5, µ2 = 1.5, σ = 1, θ = −0.25

n = 30 0.7892 0.1027 −0.0157 0.0074 0.792 0.856 0.511 0.818

n = 50 0.4670 −0.0044 0.0009 0.418 0.864 0.463 0.842

n = 70 0.1989 −0.0011 0.0001 0.251 0.926 0.524 0.810

n = 100 0.4110 −0.0052 0.0027 0.226 0.932 0.282 0.903

µ1 = 0.5, µ2 = 1.5, σ = 1, θ = 0.25

n = 30 0.7107 0.0858 −0.0208 0.0130 0.171 0.940 0.730 0.731

n = 50 0.3216 −0.0077 0.0030 0.367 0.861 0.806 0.693

n = 70 0.7090 −0.0001 0.0001 0.537 0.980 0.095 0.970

n = 100 0.6757 −0.0003 0.0001 0.099 0.967 0.126 0.960

µ1 = 0.5, µ2 = 1.5, σ = 1, θ = 0.75

n = 30 0.6321 0.6630 0.0010 0.0000 0.272 0.912 0.189 0.941

n = 50 0.5554 −0.0015 0.0001 0.308 0.894 0.194 0.922

n = 70 0.2641 −0.0052 0.0019 0.291 0.887 0.136 0.946

n = 100 0.6775 0.0004 0.0000 0.108 0.965 0.0931 0.970

From Table 1, we can conclude that:

1. At n = 100, the value of the MSE becomes very small.
2. In general, the length of the ACI becomes smaller than the length of the BCI.
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3. When the ACL decreases, the CP increases.
4. The CP in almost all cases of the ACI is more than the CP in the BCI.

Hence, from the above results, the behavior of the MLEs is good for large samples.
Moreover, the ACI is more suitable than the BCI for the stress–strength model.

8. Application: Household Financial Affordability in KSA 2018

In this section, we introduce a real application of the stress–strength model in an
economic data setting, where X and Y represent household income and consumption,
respectively. Here, R = P(Y < X) is a household’s financial affordability. We use the data
from the household income and expenditure survey of KSA 2018. The survey period was
from 28 February 2017 to 31 March 2018 in each month. In this study, we are interested
in studying the behavior of R when X represents the average household monthly income
by administrative region for Saudi households and Y represents the average household
monthly consumption expenditure by administrative region for Saudi households, in order
to measure the financial affordability for Saudi households by administrative region in
2018. The data are shown in Table 2. Table 3 presents the descriptive statistics for the data.

Table 2. Average household monthly income (X) and consumption expenditure (Y) by administrative
region for Saudi households in 2018.

Administrative Region Income Consumption

Riyadh 16,011 15,917
Makkah 14,648 14,256
Madinah 12,016 118,322

Al-Qassim 15,322 14,371
Eastern Region 17,872 17,665

Asir 11,817 11,666
Tabuk 11,024 10,890
Hail 11,571 11,461

North Board 12,051 11,876
Jazan 15,199 15,071

Najran 11,388 11,376
Al-Baha 13,728 13,605
Aljouf 14,193 14,101
Total 14,823 14,584

Table 3. Descriptive statistics for the income and consumption.

Measure Income Consumption

Min 11,024 10,890
Max 17,872 17,665

Median 13,728 13,605
SE 592.605 574.401

Skewness 0.529 0.637
Kurtosis −0.686 −0.378

Mean 13,603.076 13,391.307

To achieve our aim, we demonstrate the practicability of our proposed model. The
Anderson–Darling (AD) goodness of fit statistic value is used to confirm that the GHLD
is suitable for the income and consumption data; the corresponding p-values are almost
equal to 1. Moreover, the quantile–quantile (Q–Q) plot is used to confirm this statement, as
shown in Figure 2.
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Figure 2. Q–Q plot for the income and consumption.

Now, we evaluate R = P(Y < X) in the following two cases:

Case 1: If X and Y are independent with X following the GHLD(µ1, σ) and Y following
the GHLD(µ2, σ), and the dependent parameter θ is set as 0;
Case 2: If X and Y are dependent with (X,Y) following the FGMBGHLD.

We calculate, in both cases, the MLEs of the distribution parameters and R, as well as
the ACI and ACL. The results are shown in Table 4.

Table 4. The MLEs, ACIs, and ACLs of the distribution parameters for the income and consumption.

Case MLE MLE for R ACI ACL

Case 1
µ̂1 = 0.0143
µ̂2 = 0.0270
σ̂ = 0.3529

0.3462 (0.2979, 0.3945) 0.0965

Case 2

µ̂1 = 0.0135
µ̂2 = 0.0201
σ̂ = 0.1403
θ̂ = 0.4713

0.2149 (0.1248, 0.3050) 0.1802

From Table 4, we can conclude that:

1. Since θ is estimated as 0.4713, and is therefore positive, then the relation between X
and Y is positive, as we see in Figure 3.

2. The measure of affordability when X and Y are dependent is less than when X and Y
are independent, so the case of dependent variables is more realistic.

Figure 3. The scatter plot for the income and consumption of KSA, year 2018.
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Finally, Figure 4 shows the (estimated) PDF and CDF of the FGMGBHLD with the
estimated parameters from the considered data.

Figure 4. The estimated PDF and CDF of the FGMBGHLD for the income and consumption of KSA,
year 2018.

It can be noted that the PDF seems unimodal (bump effect) with a long two-dimensional
tail. With the FGMBGHLD, the equation behind the calculated PDF and CDF can be em-
ployed for further modeling.

To conclude this section, in order to show the performance of our new distribution on
KSA data, we compare it with the bivariate Weibull distribution (BWD) as presented in
Almetwally et al. (2020) [6]. First, we use the goodness of fit test and Q–Q plot to show that
the BWD is a good fit to the KSA data. From the AD goodness of fit test, we find that the
p-value equals 0.082 and 0.125 for the two considered data sets, respectively. As a result,
the BWD fits the KSA data well. Figure 5 illustrates this conclusion.

Figure 5. Q–Q plot for the BWD for the income and consumption of KSA, year 2018.

Now, we repeat our application but replace our proposed distribution by the BWD.
Table 5 shows the result of the MLEs, R, ACIs, and ACLs of the distribution parameters
and stress–strength model in the following two cases:

Case 1: If X and Y are independent with X following the Weibull(α1, β) and Y follow-
ing the Weibull(α2, β);
Case 2: If X and Y are dependent with (X,Y) following the BWD.
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Table 5. The MLEs, ACIs, and ACLs of the BWD parameters for the income and consumption of
KSA, year 2018.

Case MLE MLE for R ACI ACL

Case 1
α̂1 = 6.5
α̂2 = 7.5
β̂ = 1.45

0.4642 (0.4631, 0.6461) 0.1820

Case 2

α̂1 = 6.5
α̂2 = 7.5
β̂ = 1.45
θ̂ = 0.1082

0.4275 (0.3456, 0.6058) 0.2602

From the ACL viewpoint, we can compare the performance of our distribution and
the BWD on the KSA data. Thus, from Tables 4 and 5, we observe that the ACLs for our
proposed distribution are lower than those of the BWD for both cases.

We complete this result by using the AD test for copula-based distributions as de-
scribed in Genest et al. (2013) [18]. Table 6 shows the p-values of this AD test for our
distribution and the BWD (dependent case for both).

Table 6. AD test for the proposed distribution and the BWD.

Distribution p-Value

FGMBGHLD 0.4999
BWD 0.2067

The lower p-value is obtained for the FGMBGHLD distribution. Based on the results
above, we can confirm that the proposed distribution is more suitable than the BWD for
the considered KSA data.

9. Conclusions

In this paper, we introduced the bivariate distribution using the FGM copula approach,
abbreviated as FGMBGHLD. We studied some of its statistical properties, such as the PDF,
CDF, product moments, moment generating function, reliability function, and hazard rate
function. In a multivariate statistical setting (and bivariate in particular), it is well known
that the maximum likelihood estimation method gives unique estimates (under some
regularity conditions) and guarantees their asymptotic performance from the unbiased and
normality viewpoints. For these reasons, we developed it for the FGMBGHLD. We also
applied the FGMBGHLD in a real-life data analysis scenario. We investigated the stress–
strength model represented by R when the stress and strength variables are dependent
and have the FGMBGHLD as a joint distribution. A simulated study was performed to
study the behavior of the maximum likelihood estimate of R. Confidence intervals were
constructed using two different techniques. Finally, we provided a real application of
the considered (dependent) stress–strength model when X and Y measure the household
financial affordability in KSA 2018 for Saudi households by administrative region. The
obtained results are quite good and competitive with those of a valuable competitor (the
bivariate Weibull distribution as introduced by [6]). Research perspectives include the
application of the FGMBGHLD to more different bivariate data types, its multivariate
version, and the development of regression model types.
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